Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Behav Immun ; 62: 137-150, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28109896

RESUMO

Both sleep loss and pathogens can enhance brain inflammation, sleep, and sleep intensity as indicated by electroencephalogram delta (δ) power. The pro-inflammatory cytokine interleukin-1 beta (IL-1ß) is increased in the cortex after sleep deprivation (SD) and in response to the Gram-negative bacterial cell-wall component lipopolysaccharide (LPS), although the exact mechanisms governing these effects are unknown. The nucleotide-binding domain and leucine-rich repeat protein-3 (NLRP3) inflammasome protein complex forms in response to changes in the local environment and, in turn, activates caspase-1 to convert IL-1ß into its active form. SD enhances the cortical expression of the somnogenic cytokine IL-1ß, although the underlying mechanism is, as yet, unidentified. Using NLRP3-gene knockout (KO) mice, we provide evidence that NLRP3 inflammasome activation is a crucial mechanism for the downstream pathway leading to increased IL-1ß-enhanced sleep. NLRP3 KO mice exhibited reduced non-rapid eye movement (NREM) sleep during the light period. We also found that sleep amount and intensity (δ activity) were drastically attenuated in NLRP3 KO mice following SD (homeostatic sleep response), as well as after LPS administration, although they were enhanced by central administration of IL-1ß. NLRP3, ASC, and IL1ß mRNA, IL-1ß protein, and caspase-1 activity were greater in the somatosensory cortex at the end of the wake-active period when sleep propensity was high and after SD in wild-type but not NLRP3 KO mice. Thus, our novel and converging findings suggest that the activation of the NLRP3 inflammasome can modulate sleep induced by both increased wakefulness and a bacterial component in the brain.


Assuntos
Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Privação do Sono/metabolismo , Sono/fisiologia , Animais , Inflamassomos/genética , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Polissonografia , Transdução de Sinais/fisiologia , Privação do Sono/genética , Vigília/fisiologia
2.
J Circadian Rhythms ; 14: 2, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-27103935

RESUMO

Limited research has compared the circadian phase-shifting effects of bright light and exercise and additive effects of these stimuli. The aim of this study was to compare the phase-delaying effects of late night bright light, late night exercise, and late evening bright light followed by early morning exercise. In a within-subjects, counterbalanced design, 6 young adults completed each of three 2.5-day protocols. Participants followed a 3-h ultra-short sleep-wake cycle, involving wakefulness in dim light for 2h, followed by attempted sleep in darkness for 1 h, repeated throughout each protocol. On night 2 of each protocol, participants received either (1) bright light alone (5,000 lux) from 2210-2340 h, (2) treadmill exercise alone from 2210-2340 h, or (3) bright light (2210-2340 h) followed by exercise from 0410-0540 h. Urine was collected every 90 min. Shifts in the 6-sulphatoxymelatonin (aMT6s) cosine acrophase from baseline to post-treatment were compared between treatments. Analyses revealed a significant additive phase-delaying effect of bright light + exercise (80.8 ± 11.6 [SD] min) compared with exercise alone (47.3 ± 21.6 min), and a similar phase delay following bright light alone (56.6 ± 15.2 min) and exercise alone administered for the same duration and at the same time of night. Thus, the data suggest that late night bright light followed by early morning exercise can have an additive circadian phase-shifting effect.

3.
Front Neurosci ; 18: 1361014, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426017

RESUMO

Traumatic brain injury (TBI) can induce dysregulation of sleep. Sleep disturbances include hypersomnia and hyposomnia, sleep fragmentation, difficulty falling asleep, and altered electroencephalograms. TBI results in inflammation and altered hemodynamics, such as changes in blood brain barrier permeability and cerebral blood flow. Both inflammation and altered hemodynamics, which are known sleep regulators, contribute to sleep impairments post-TBI. TBIs are heterogenous in cause and biomechanics, which leads to different molecular and symptomatic outcomes. Animal models of TBI have been developed to model the heterogeneity of TBIs observed in the clinic. This review discusses the intricate relationship between sleep, inflammation, and hemodynamics in pre-clinical rodent models of TBI.

4.
Neuroimmunomodulation ; 20(6): 323-33, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23948712

RESUMO

BACKGROUND: Within hours of intranasal challenge, mouse-adapted H1N1 A/Puerto Rico/8/34 (PR8) influenza genomic RNA is found in the olfactory bulb (OB) and OB pro-inflammatory cytokines are up-regulated. Severing the olfactory tract delays the acute-phase response (APR) and the APR is attenuated by immunization. OBJECTIVES: To determine if immunization affects OB localization of influenza or the molecular brain mechanisms regulating APR. METHODS: Male mice were immunized with PR8 influenza, then OB viral RNA, APR, and influenza-related cytokine responses were determined after homologous viral challenge. RESULTS: Immunization did not prevent influenza OB viral invasion within 24 h of viral challenge. However, it greatly attenuated OB viral RNA 6 days after viral challenge and the APR including hypothermia and body weight loss responses. Within the OB, 24 h after influenza challenge, prior immunization blocked virus-induced up-regulation of toll-like receptor 7 and interferon (IFN) γ mRNAs. At this time, hypothalamic (HT) growth hormone-releasing hormone receptor and tumor necrosis factor-α mRNAs were greatly enhanced in immunized but not in positive control mice. By 6 days after viral challenge, OB and HT mRNAs returned towards baseline values. In the lung, mRNA up-regulation was greater than that in the brain and maximized 6 days after challenge. Lung IFNγ mRNA decreased at 24 h but increased 6 days after challenge in the positive compared to negative controls. Immunization prevented the up-regulation of most of the flu-related mRNAs measured in lungs. CONCLUSION: Collectively, these data suggest a role for OB and HT involvement in immunization protection against influenza infection.


Assuntos
Reação de Fase Aguda/imunologia , Hipotálamo/imunologia , Neuroimunomodulação/fisiologia , Bulbo Olfatório/imunologia , Infecções por Orthomyxoviridae/imunologia , Vacinação , Animais , Citocinas/biossíntese , Citocinas/imunologia , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Viral/análise
5.
Eur J Neurosci ; 35(11): 1789-98, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22540145

RESUMO

Adenosine and extracellular adenosine triphosphate (ATP) have multiple physiological central nervous system actions including regulation of cerebral blood flow, inflammation and sleep. However, their exact sleep regulatory mechanisms remain unknown. Extracellular ATP and adenosine diphosphate are converted to adenosine monophosphate (AMP) by the enzyme ectonucleoside triphosphate diphosphohydrolase 1, also known as CD39, and extracellular AMP is in turn converted to adenosine by the 5'-ectonuleotidase enzyme CD73. We investigated the role of CD73 in sleep regulation. Duration of spontaneous non-rapid eye movement sleep (NREMS) was greater in CD73-knockout (KO) mice than in C57BL/6 controls whether determined in our laboratory or by others. After sleep deprivation (SD), NREMS was enhanced in controls but not CD73-KO mice. Interleukin-1 beta (IL1ß) enhanced NREMS in both strains, indicating that the CD73-KO mice were capable of sleep responses. Electroencephalographic power spectra during NREMS in the 1.0-2.5 Hz frequency range was significantly enhanced after SD in both CD73-KO and WT mice; the increases were significantly greater in the WT mice than in the CD73-KO mice. Rapid eye movement sleep did not differ between strains in any of the experimental conditions. With the exception of CD73 mRNA, the effects of SD on various adenosine-related mRNAs were small and similar in the two strains. These data suggest that sleep is regulated, in part, by extracellular adenosine derived from the actions of CD73.


Assuntos
5'-Nucleotidase/deficiência , 5'-Nucleotidase/genética , Adenosina/metabolismo , Privação do Sono/fisiopatologia , Fases do Sono/fisiologia , Sono REM/fisiologia , 5'-Nucleotidase/fisiologia , Adenosina Trifosfatases/metabolismo , Animais , Ritmo Delta/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Privação do Sono/genética , Privação do Sono/metabolismo
6.
Brain Behav Immun ; 26(4): 672-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22433899

RESUMO

The effects of chronic moderate sleep restriction and exercise training on carcinogenesis were examined in adenomatous polyposis coli multiple intestinal neoplasma (APC Min(+/-)) mice, a genetic strain which is predisposed to developing adenomatous polyposis. The mice were randomized to one of four 11 week treatments in a 2×2 design involving sleep restriction (by 4 h/day) vs. normal sleep and exercise training (1h/day) vs. sedentary control. Wild-type control mice underwent identical experimental treatments. Compared with the wild-type mice, APC Min(+/-) mice had disrupted hematology and enhanced pro-inflammatory cytokine production from peritoneal exudate cells. Among the APC Min(+/-) mice, consistent interactions of sleep loss and exercise were found for measures of polyp formation, inflammation, and hematology. Sleep loss had little effect on these variables under sedentary conditions, but sleep loss had clear detrimental effects under exercise conditions. Exercise training resulted in improvements in these measures under normal sleep conditions, but exercise tended to elicit no effect or to exacerbate the effects of sleep restriction. Significant correlations of inflammation with polyp burden were observed. Among wild-type mice, similar, but less consistent interactions of sleep restriction and exercise were found. These data suggest that the benefits of exercise on carcinogenesis and immune function were impaired by chronic moderate sleep restriction, and that harmful effects of sleep restriction were generally realized only in the presence of exercise.


Assuntos
Pólipos Adenomatosos/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Neoplasias Intestinais/metabolismo , Condicionamento Físico Animal/fisiologia , Privação do Sono/metabolismo , Animais , Genes APC , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distribuição Aleatória
7.
Front Cell Infect Microbiol ; 12: 853096, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392608

RESUMO

Molecules involved in innate immunity affect sleep and circadian oscillators and vice versa. Sleep-inducing inflammatory molecules are activated by increased waking activity and pathogens. Pathologies that alter inflammatory molecules, such as traumatic brain injury, cancer, cardiovascular disease, and stroke often are associated with disturbed sleep and electroencephalogram power spectra. Moreover, sleep disorders, such as insomnia and sleep disordered breathing, are associated with increased dysregulation of inflammatory processes. Inflammatory molecules in both the central nervous system and periphery can alter sleep. Inflammation can also modulate cerebral vascular hemodynamics which is associated with alterations in electroencephalogram power spectra. However, further research is needed to determine the interactions of sleep regulatory inflammatory molecules and circadian clocks. The purpose of this review is to: 1) describe the role of the inflammatory cytokines interleukin-1 beta and tumor necrosis factor-alpha and nucleotide-binding domain and leucine-rich repeat protein-3 inflammasomes in sleep regulation, 2) to discuss the relationship between the vagus nerve in translating inflammatory signals between the periphery and central nervous system to alter sleep, and 3) to present information about the relationship between cerebral vascular hemodynamics and the electroencephalogram during sleep.


Assuntos
Ritmo Circadiano , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Inflamassomos , Doenças Neuroinflamatórias , Sono/fisiologia
8.
Depress Anxiety ; 28(4): 324-32, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21254315

RESUMO

BACKGROUND: Available treatments for anxiety have limitations and/or side effects. The aim of this study was to examine the influence of bright light exposure as a treatment in high-anxious young adults. METHODS: In an acute exposure study, participants (n = 33) were randomly assigned to 45 min of (1) bright light or (2) placebo. Participants then performed a 5-week study (n = 29). Following a 1-week baseline, participants were randomly assigned to 4 weeks of daily exposure to either (1) bright light (45 min/day) or (2) placebo treatment, initiated ≤1 hr after awakening. Before and after the experiment, clinical ratings were conducted with the Hamilton Anxiety Scale (HAM-A), Hamilton Depression Scale, and Clinical Global Impressions scale. Following each week, blood pressure, anxiety (Spielberger State-Trait Anxiety Inventory Y1), depression, mood, sleep, and side effects were assessed. RESULTS: No significant treatment effect was found in the acute exposure study. Likewise, in the 5-week study, no significant treatment effect was found. However, bright light elicited marginally greater reductions in psychic symptoms of the HAM-A (P = .06) and other measures. CONCLUSIONS: This pilot study provides little compelling evidence for an anxiolytic effect of bright light in high-anxious young adults.


Assuntos
Transtornos de Ansiedade/terapia , Fototerapia/métodos , Transtornos de Ansiedade/diagnóstico , Transtornos de Ansiedade/psicologia , Comorbidade , Transtorno Depressivo/diagnóstico , Transtorno Depressivo/psicologia , Transtorno Depressivo/terapia , Feminino , Humanos , Masculino , Inventário de Personalidade/estatística & dados numéricos , Projetos Piloto , Psicometria , Inquéritos e Questionários , Adulto Jovem
9.
Sci Rep ; 11(1): 9031, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33907230

RESUMO

Abnormalities in electroencephalographic (EEG) biomarkers occur in patients with schizophrenia and those clinically at high risk for transition to psychosis and are associated with cognitive impairment. Converging evidence suggests N-methyl-D-aspartate receptor (NMDAR) hypofunction plays a central role in the pathophysiology of schizophrenia and likely contributes to biomarker impairments. Thus, characterizing these biomarkers is of significant interest for early diagnosis of schizophrenia and development of novel treatments. We utilized in vivo EEG recordings and behavioral analyses to perform a battery of electrophysiological biomarkers in an established model of chronic NMDAR hypofunction, serine racemase knockout (SRKO) mice, and their wild-type littermates. SRKO mice displayed impairments in investigation-elicited gamma power that corresponded with reduced short-term social recognition and enhanced background (pre-investigation) gamma activity. Additionally, SRKO mice exhibited sensory gating impairments in both evoked-gamma power and event-related potential amplitude. However, other biomarkers including the auditory steady-state response, sleep spindles, and state-specific power spectral density were generally neurotypical. In conclusion, SRKO mice demonstrate how chronic NMDAR hypofunction contributes to deficits in certain translationally-relevant EEG biomarkers altered in schizophrenia. Importantly, our gamma band findings suggest an aberrant signal-to-noise ratio impairing cognition that occurs with NMDAR hypofunction, potentially tied to impaired task-dependent alteration in functional connectivity.


Assuntos
Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/metabolismo , Animais , Biomarcadores , Modelos Animais de Doenças , Eletroencefalografia , Feminino , Ritmo Gama , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Esquizofrenia/diagnóstico , Esquizofrenia/fisiopatologia , Filtro Sensorial , Comportamento Social
10.
Sleep ; 32(11): 1467-79, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19928386

RESUMO

STUDY OBJECTIVES: To examine the influence of chronic time-in-bed (TIB) restriction on selected health-related outcome variables in older long sleepers. DESIGN: Randomized, controlled trial. SETTING: Home-based. PARTICIPANTS: Forty-two older adults (aged 50-70 y) who reported sleeping at least 8.5 hours. Following extensive screening, participants were assessed for 10 weeks. INTERVENTION: During a two-week baseline, participants followed their usual sleep-wake habits. Participants were then randomized to one of two eight-week treatments: (1) TIB restriction, in which participants were asked to follow a fixed sleep schedule with a TIB of 90 minutes less than recorded during baseline or (2) a control treatment, which involved following a fixed sleep schedule (consistent with average baseline) but no TIB restriction. MEASUREMENTS AND RESULTS: Continuous wrist actigraphic sleep estimation indicated that TIB restriction elicited significant reductions in TIB and total sleep time compared with the control treatment and significant (albeit modest) improvements in sleep efficiency and sleep latency. However, compared with the control treatment, TIB restriction elicited no significant change in depression, sleepiness, health-related quality of life, or neurobehavioral performance. Moreover, follow-up assessments for one year indicated that, after completing the experiment, the participants assigned to TIB restriction continued to restrict their TIB (at their own initiative) by an average of approximately one hour. CONCLUSIONS: The results suggest good tolerance of chronic moderate TIB restriction, without detrimental effects, among older long sleepers.


Assuntos
Repouso em Cama/métodos , Transtornos do Sono-Vigília/fisiopatologia , Transtornos do Sono-Vigília/terapia , Actigrafia , Idoso , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Desempenho Psicomotor/fisiologia , Qualidade de Vida , Transtornos do Sono-Vigília/psicologia , Fatores de Tempo , Resultado do Tratamento
11.
Front Immunol ; 10: 1827, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447842

RESUMO

Profound and debilitating fatigue is the most common complaint reported among individuals with autoimmune disease, such as systemic lupus erythematosus, multiple sclerosis, type 1 diabetes, celiac disease, chronic fatigue syndrome, and rheumatoid arthritis. Fatigue is multi-faceted and broadly defined, which makes understanding the cause of its manifestations especially difficult in conditions with diverse pathology including autoimmune diseases. In general, fatigue is defined by debilitating periods of exhaustion that interfere with normal activities. The severity and duration of fatigue episodes vary, but fatigue can cause difficulty for even simple tasks like climbing stairs or crossing the room. The exact mechanisms of fatigue are not well-understood, perhaps due to its broad definition. Nevertheless, physiological processes known to play a role in fatigue include oxygen/nutrient supply, metabolism, mood, motivation, and sleepiness-all which are affected by inflammation. Additionally, an important contributing element to fatigue is the central nervous system-a region impacted either directly or indirectly in numerous autoimmune and related disorders. This review describes how inflammation and the central nervous system contribute to fatigue and suggests potential mechanisms involved in fatigue that are likely exhibited in autoimmune and related diseases.


Assuntos
Doenças Autoimunes/complicações , Fadiga/etiologia , Sono/fisiologia , Ritmo Circadiano/fisiologia , Citocinas/fisiologia , Humanos , Inflamação/complicações , Espécies Reativas de Oxigênio/metabolismo , Estresse Psicológico/complicações , Nervo Vago/fisiologia
12.
Sleep ; 42(10)2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31328777

RESUMO

Slow-wave activity (SWA) is an oscillatory neocortical activity occurring in the electroencephalogram delta (δ) frequency range (~0.5-4 Hz) during nonrapid eye movement sleep. SWA is a reliable indicator of sleep homeostasis after acute sleep loss and is involved in memory processes. Evidence suggests that cortical neuronal nitric oxide synthase (nNOS) expressing neurons that coexpress somatostatin (SST) play a key role in regulating SWA. However, previous studies lacked selectivity in targeting specific types of neurons that coexpress nNOS-cells which are activated in the cortex after sleep loss. We produced a mouse model that knocks out nNOS expression in neurons that coexpress SST throughout the cortex. Mice lacking nNOS expression in SST positive neurons exhibited significant impairments in both homeostatic low-δ frequency range SWA production and a recognition memory task that relies on cortical input. These results highlight that SST+/nNOS+ neurons are involved in the SWA homeostatic response and cortex-dependent recognition memory.


Assuntos
Córtex Cerebral/metabolismo , Ritmo Delta/fisiologia , Memória/fisiologia , Óxido Nítrico Sintase Tipo I/deficiência , Reconhecimento Psicológico/fisiologia , Somatostatina/deficiência , Animais , Eletroencefalografia/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Sono/fisiologia , Somatostatina/genética
13.
J Sleep Res ; 17(4): 412-9, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18691360

RESUMO

The aim of this study was to investigate the effects of 8 weeks of moderate restriction of time in bed (TIB) on glucose tolerance and insulin sensitivity in healthy older self-reported long sleepers. Forty-two older adults (ages 50-70 years) who reported average sleep durations of >or=8.5 h per night were assessed. Following a 2-week baseline, participants were randomly assigned to two 8-week treatments: either (i) TIB restriction (n = 22), which involved following a fixed sleep schedule in which time in bed was reduced by 90 min compared with baseline; (ii) a control (n = 18), which involved following a fixed sleep schedule but no imposed change of TIB. Sleep was monitored continuously via wrist actigraphy recordings, supplemented with a daily diary. Glucose tolerance and insulin sensitivity were assessed before and following the treatments. Compared with the control treatment, TIB restriction resulted in a significantly greater reduction of nocturnal TIB (1.39 +/- 0.40 h versus 0.14 +/- 0.26 h), nocturnal total sleep time (TST) (1.03 +/- 0.53 h versus 0.40 +/- 0.42 h), and 24-h TST (1.03 +/- 0.53 h versus 0.33 +/- 0.43 h) from baseline values. However, no significant effect of TIB restriction was found for glucose tolerance or insulin sensitivity. These results suggest that healthy older long sleepers can tolerate 8 weeks of moderate TIB restriction without impairments in glucose tolerance or insulin sensitivity.


Assuntos
Distúrbios do Sono por Sonolência Excessiva/diagnóstico , Distúrbios do Sono por Sonolência Excessiva/epidemiologia , Teste de Tolerância a Glucose , Idoso , Índice de Massa Corporal , Feminino , Humanos , Masculino , Programas de Rastreamento , Pessoa de Meia-Idade , Polissonografia , Índice de Gravidade de Doença , Privação do Sono/epidemiologia , Inquéritos e Questionários
14.
Neuroscience ; 379: 189-201, 2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29438803

RESUMO

Slow-wave activity (SWA) in the electroencephalogram during slow-wave sleep (SWS) varies as a function of sleep-wake history. A putative sleep-active population of neuronal nitric oxide synthase (nNOS)-containing interneurons in the cerebral cortex, defined as such by the expression of Fos in animals euthanized after protracted deep sleep, may be a local regulator of SWA. We investigated whether electrophysiological responses to activation of these cells are consistent with their role of a local regulator of SWA. Using a Cre/loxP strategy, we targeted the population of nNOS interneurons to express the light-activated cation channel Channelrhodopsin2 and the histological marker tdTomato in mice. We then performed histochemical and optogenetic studies in these transgenic mice. Our studies provided histochemical evidence of transgene expression and electrophysiological evidence that the cerebral cortex was responsive to optogenetic manipulation of these cells in both anesthetized and behaving mice. Optogenetic stimulation of the cerebral cortex of animals expressing Channelrhodopsin2 in nNOS interneurons triggered an acute positive deflection of the local field potential that was followed by protracted oscillatory events only during quiet wake and slow wave sleep. The response during wake was maximal when the electroencephalogram (EEG) was in a negative polarization state and abolished when the EEG was in a positive polarization state. Since the polarization state of the EEG is a manifestation of slow-wave oscillations in the activity of underlying pyramidal neurons between the depolarized (LFP negative) and hyperpolarized (LFP positive) states, these data indicate that sleep-active cortical neurons expressing nNOS function in sleep slow-wave physiology.


Assuntos
Córtex Cerebral/fisiologia , Neurônios/fisiologia , Óxido Nítrico Sintase Tipo I/metabolismo , Sono de Ondas Lentas/fisiologia , Animais , Córtex Cerebral/citologia , Córtex Cerebral/fisiopatologia , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Eletrocorticografia , Eletromiografia , Potenciais Evocados , Masculino , Camundongos Transgênicos , Neurônios/citologia , Optogenética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Privação do Sono/fisiopatologia
15.
J Appl Physiol (1985) ; 102(2): 641-9, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17095634

RESUMO

Previous findings of time-of-day differences in athletic performance could be confounded by diurnal fluctuations in environmental and behavioral "masking" factors (e.g., sleep, ambient temperature, and energy intake). The purpose of this study was to examine whether there is a circadian rhythm in swim performance that is independent of these masking factors. Experienced swimmers (n = 25) were assessed for 50-55 consecutive hours in the laboratory. The swimmers followed a 3-h "ultra-short" sleep-wake cycle, involving 1 h of sleep in darkness and 2 h of wakefulness in dim light, that was repeated throughout the observation. The protocol distributes behavioral and environmental masking factors equally across the 24-h period. Each swimmer was scheduled to perform six maximal-effort 200-m swim trials that were distributed equally across eight times of day (n = 147 trials). Each trial was separated by 9 h. A cosine fit of intra-aural temperature data established the time of the lowest body temperature (Tmin). Swim performances were z-transformed and compared across the eight times of day and across twelve 2-h intervals relative to Tmin. Analysis of covariance, controlling for trial number, revealed a significant (P < 0.001) pattern in swim performance relative to environmental and circadian times of day. Performance peaked 5-7 h before Tmin (approximately 2300) and was worst from 1 h before to 1 h after Tmin (approximately 0500). Mean swim performance was 169.5 s; circadian variation from peak to worst performance was 5.8 s. These data suggest a circadian rhythm in athletic performance independent of environmental and behavioral masking effects.


Assuntos
Temperatura Corporal/fisiologia , Ritmo Circadiano/fisiologia , Natação/fisiologia , Adulto , Afeto/fisiologia , Interpretação Estatística de Dados , Ingestão de Energia/fisiologia , Fadiga/fisiopatologia , Feminino , Humanos , Masculino , Psicometria , Sono/fisiologia , Natação/psicologia
16.
Neurosci Lett ; 659: 44-47, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28866052

RESUMO

Evidence indicates that the neuropeptide substance P (SP) can act through neurokinin receptors to alter sleep and/or non-rapid eye movement (NREM) sleep slow-wave activity. Consequently, drugs acting on SP receptors could potentially be used as a novel treatment for sleep-related disorders. In the present study, we used SP conjugated with cholera toxin A subunit (SP-CTA), which enhances its duration of activity on SP receptor-expressing cells, to determine the effects of selectively activating SP receptor-expressing brain cells on sleep regulation in mice. Herein, we found that intracerebroventricular administration of SP-CTA enhanced amounts of NREM sleep which was highly fragmented. This result suggests that the activation of SP receptor-expressing cells in the brain can produce not only arousal effects as shown in previous studies but also sleep-inducing effects.


Assuntos
Toxina da Cólera/farmacologia , Sono/efeitos dos fármacos , Substância P/farmacologia , Animais , Toxina da Cólera/administração & dosagem , Imunotoxinas/farmacologia , Infusões Intraventriculares , Masculino , Camundongos , Receptores da Neurocinina-1/metabolismo , Substância P/administração & dosagem
17.
Artigo em Inglês | MEDLINE | ID: mdl-28070566

RESUMO

Multiple interactions between the immune system and sleep are known, including the effects of microbial challenge on sleep or the effects of sleep loss on facets of the immune response. Cytokines regulate, in part, sleep and immune responses. Here we examine the role of an anti-inflammatory cytokine, interleukin-37 (IL-37) on sleep in a mouse strain that expresses human IL-37b (IL37tg mice). Constitutive expression of the IL-37 gene in the brains of these mice under resting conditions is low; however, upon an inflammatory stimulus, expression increases dramatically. We measured sleep in three conditions; a) under baseline conditions and after 6 h of sleep loss, b) after bolus intraperitoneal administration of lipopolysaccharide (LPS) or IL-1ß and c) after intranasal influenza virus challenge. Under baseline conditions, the IL37tg mice had 7% more spontaneous non-rapid eye movement sleep (NREMS) during the light period than wild-type (WT) mice. After sleep deprivation both WT mice and IL37tg mice slept an extra 21% and 12%, respectively, during the first 6 h of recovery. NREMS responses after sleep deprivation did not significantly differ between WT mice and IL37tg mice. However, in response to either IL-1ß or LPS, the increases in time spent in NREMS were about four-fold greater in the WT mice than in the IL37tg mice. In contrast, in response to a low dose of mouse-adapted H1N1 influenza virus, sleep responses developed slowly over the 6 day recording period. By day 6, NREMS increased by 10% and REMS increased by 18% in the IL37tg mice compared to the WT mice. Further, by day 4 IL37tg mice lost less weight, remained more active, and retained their body temperatures closer to baseline values than WT mice. We conclude that conditions that promote IL-37 expression attenuate morbidity to severe inflammatory challenge.

18.
AIMS Neurosci ; 3(1): 67-104, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28413828

RESUMO

Sleep is a complex physiological process that is regulated globally, regionally, and locally by both cellular and molecular mechanisms. It occurs to some extent in all animals, although sleep expression in lower animals may be co-extensive with rest. Sleep regulation plays an intrinsic part in many behavioral and physiological functions. Currently, all researchers agree there is no single physiological role sleep serves. Nevertheless, it is quite evident that sleep is essential for many vital functions including development, energy conservation, brain waste clearance, modulation of immune responses, cognition, performance, vigilance, disease, and psychological state. This review details the physiological processes involved in sleep regulation and the possible functions that sleep may serve. This description of the brain circuitry, cell types, and molecules involved in sleep regulation is intended to further the reader's understanding of the functions of sleep.

20.
J Appl Physiol (1985) ; 96(6): 2249-56, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15020578

RESUMO

This investigation determined whether daily strenuous exercise would alter the progression and regression of an allogeneic lymphoid tumor in mice. We also determined whether exercise would alter the cellular composition and vascularity of the tumor. Female BALB/c mice (age 6-8 wk) were randomly assigned to sedentary control (Con) or daily exercised groups (EXH). EXH mice ran on a treadmill at incremental speeds (20-40 m/min) for 3 h or until fatigue. Each mouse was subcutaneously injected with 20 x 10(6) EL-4 lymphoma cells immediately after the first exercise bout (day 1) and run daily. Tumor volume was measured daily with calipers. In some experiments, mice were euthanized on days 5-10, 12, and 14. Tumors were excised and stained with hematoxylin and eosin or for Factor VIII-associated antigen using immunohistochemistry and analyzed in a blinded fashion under a light microscope. There was no significant treatment main effect found for tumor volumes. Interestingly, a significant treatment x time interaction was found, such that there was a 2-day delay in peak tumor volume and a more rapid tumor regression in EXH. Tumors isolated from Con exhibited significantly higher numbers of apoptotic bodies, blood vessels, macrophages, and neutrophils when compared with EXH. Intratumoral lymphocytes were higher in Con early in tumor growth but higher in EXH at peak tumor size. These data indicate that daily strenuous exercise may influence tumor growth by affecting the microenvironment of the tumor, resulting in a delay in tumor growth and a more rapid regression.


Assuntos
Divisão Celular/fisiologia , Linfoma/patologia , Linfoma/prevenção & controle , Neovascularização Patológica/prevenção & controle , Condicionamento Físico Animal , 9,10-Dimetil-1,2-benzantraceno , Animais , Linhagem Celular Tumoral , Teste de Esforço , Feminino , Inflamação , Camundongos , Camundongos Endogâmicos BALB C , Necrose , Transplante de Neoplasias , Descanso
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa