Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 119(9): 097701, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28949581

RESUMO

We present a study of Andreev quantum dots fabricated with small-diameter (30 nm) Si-doped InAs nanowires where the Fermi level can be tuned across a mobility edge separating localized states from delocalized states. The transition to the insulating phase is identified by a drop in the amplitude and width of the excited levels and is found to have remarkable consequences on the spectrum of superconducting subgap resonances. While at deeply localized levels only quasiparticle cotunneling is observed, for slightly delocalized levels Shiba bound states form and a parity-changing quantum phase transition is identified by a crossing of the bound states at zero energy. Finally, in the metallic regime, single Andreev resonances are observed.

2.
Sci Adv ; 7(45): eabj1164, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34730993

RESUMO

In solids, strong repulsion between electrons can inhibit their movement and result in a "Mott" metal-to-insulator transition (MIT), a fundamental phenomenon whose understanding has remained a challenge for over 50 years. A key issue is how the wave-like itinerant electrons change into a localized-like state due to increased interactions. However, observing the MIT in terms of the energy- and momentum-resolved electronic structure of the system, the only direct way to probe both itinerant and localized states, has been elusive. Here we show, using angle-resolved photoemission spectroscopy (ARPES), that in V2O3, the temperature-induced MIT is characterized by the progressive disappearance of its itinerant conduction band, without any change in its energy-momentum dispersion, and the simultaneous shift to larger binding energies of a quasi-localized state initially located near the Fermi level.

3.
Nat Commun ; 10(1): 126, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30631078

RESUMO

The transmission of Cooper pairs between two weakly coupled superconductors produces a superfluid current and a phase difference; the celebrated Josephson effect. Because of time-reversal and parity symmetries, there is no Josephson current without a phase difference between two superconductors. Reciprocally, when those two symmetries are broken, an anomalous supercurrent can exist in the absence of phase bias or, equivalently, an anomalous phase shift φ0 can exist in the absence of a superfluid current. We report on the observation of an anomalous phase shift φ0 in hybrid Josephson junctions fabricated with the topological insulator Bi2Se3 submitted to an in-plane magnetic field. This anomalous phase shift φ0 is observed directly through measurements of the current-phase relationship in a Josephson interferometer. This result provides a direct measurement of the spin-orbit coupling strength and open new possibilities for phase-controlled Josephson devices made from materials with strong spin-orbit coupling.

4.
ACS Nano ; 11(2): 1222-1229, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28045500

RESUMO

Addressing the optical properties of a single nanoparticle in the infrared is particularly challenging, thus alternative methods for characterizing the conductance spectrum of nanoparticles in this spectral range need to be developed. Here we describe an efficient method of fabricating single nanoparticle tunnel junctions on a chip circuit. We apply this method to narrow band gap nanoparticles of HgSe, which band structure combines the inverted character of the bulk semimetal with quantum confinement and self-doping. Upon tuning the gate bias, measurement reveals the presence of two energy gaps in the spectrum. The wider gap results from the interband gap, while the narrower gap results from intraband transitions. The observation of the latter near zero gate voltage confirms the doped character of the nanoparticle at the single particle level, which is in full agreement with the ensemble optical and transport measurements. Finally we probe the phototransport within a single quantum dot and demonstrate a large photogain mechanism resulting from photogating.

5.
Nat Commun ; 8: 14549, 2017 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-28240294

RESUMO

How small can superconductors be? For isolated nanoparticles subject to quantum size effects, P.W. Anderson in 1959 conjectured that superconductivity could only exist when the electronic level spacing δ is smaller than the superconducting gap energy Δ. Here we report a scanning tunnelling spectroscopy study of superconducting lead (Pb) nanocrystals grown on the (110) surface of InAs. We find that for nanocrystals of lateral size smaller than the Fermi wavelength of the 2D electron gas at the surface of InAs, the electronic transmission of the interface is weak; this leads to Coulomb blockade and enables the extraction of electron addition energy of the nanocrystals. For large nanocrystals, the addition energy displays superconducting parity effect, a direct consequence of Cooper pairing. Studying this parity effect as a function of nanocrystal volume, we find the suppression of Cooper pairing when the mean electronic level spacing overcomes the superconducting gap energy, thus demonstrating unambiguously the validity of the Anderson criterion.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa