Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Planta ; 260(3): 74, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153022

RESUMO

MAIN CONCLUSION: Transcriptome analysis in potato varieties revealed genes associated with tuber yield-related traits and developed gene expression markers. This study aimed to identify genes involved in high tuber yield and its component traits in test potato varieties (Kufri Frysona, Kufri Khyati, and Kufri Mohan) compared to control (Kufri Sutlej). The aeroponic evaluation showed significant differences in yield-related traits in the varieties. Total RNA sequencing was performed using tuber and leaf tissues on the Illumina platform. The high-quality reads (QV > 25) mapping with the reference potato genomes revealed statistically significant (P < 0.05) differentially expressed genes (DEGs) into two categories: up-regulated (> 2 Log2 fold change) and down-regulated (< -2 Log2 fold change). DEGs were characterized by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Collectively, we identified genes participating in sugar metabolism, stress response, transcription factors, phytohormones, kinase proteins, and other genes greatly affecting tuber yield and its related traits. A few selected genes were UDP-glucose glucosyltransferase, glutathion S-transferase, GDSL esterase/lipase, transcription factors (MYB, WRKY, bHLH63, and BURP), phytohormones (auxin-induced protein X10A, and GA20 oxidase), kinase proteins (Kunitz-type tuber invertase inhibitor, BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1) and laccase. Based on the selected 17 peptide sequences representing 13 genes, a phylogeny tree and motifs were analyzed. Real time-quantitative polymerase chain reaction (RT-qPCR) analysis was used to validate the RNA-seq results. RT-qPCR based gene expression markers were developed for the genes such as 101 kDa heat shock protein, catechol oxidase B chloroplastic, cysteine protease inhibitor 1, Kunitz-type tuber invertase inhibitor, and laccase to identify high yielding potato genotypes. Thus, our study paved the path for potential genes associated with tuber yield traits in potato under aeroponics.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Fenótipo , Tubérculos , Solanum tuberosum , Transcriptoma , Solanum tuberosum/genética , Solanum tuberosum/crescimento & desenvolvimento , Tubérculos/genética , Tubérculos/crescimento & desenvolvimento , Ontologia Genética , Análise de Sequência de RNA , Genes de Plantas/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Marcadores Genéticos/genética
2.
Mol Biol Rep ; 48(1): 623-635, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33442830

RESUMO

Wild Solanum species are the important resources for potato improvement. With the availability of potato genome and sequencing progress, knowledge about genomic resources is essential for novel genes discovery. Hence, the aim of this study was to decipher draft genome sequences of unique potato genotypes i.e. somatic hybrid P8 (J1), wild species S. pinnatisectum (J2), progeny MSH/14-112 (P8 × cv. Kufri Jyoti) (J3), and S. tuberosum dihaploid C-13 (J4). Draft genome sequencing using Illumina platform and reference-based assemblies with the potato genome yielded genome assembly size of 725.01 Mb (J1), 724.95 Mb (J2), 725.01 Mb (J3), and 809.59 Mb (J4). Further, 39,260 (J1), 25,711 (J2), 39,730 (J3) and 30,241 (J4) genes were identified and 17,411 genes were found common in the genotypes particularly late blight resistance genes (R3a, RGA2, RGA3, R1B-16, Rpi-blb2, Rpi and Rpi-vnt1). Gene ontology (GO) analysis showed that molecular function was predominant and signal transduction was major KEGG pathways. Further, gene enrichment analysis revealed dominance of metabolic process (GO: 0008152) in all the samples. Phylogeny analysis showed relatedness with potato and other plant species. Heterozygous single nucleotide polymorphism (SNP) was more than homozygous, and SNP in genic region was more than inter-genic region. Copy number variation (CNV) analysis indicated greater number of deletions than duplications. Sequence diversity and conserved motifs analysis revealed variation for late blight resistance genes. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed differential expression of late blight resistance genes. Our study provides insights on genome sequence, structural variation and late blight resistance genes in potato somatic hybrid (parents and progeny) for future research.


Assuntos
Resistência à Doença/genética , Genoma de Planta/genética , Proteínas de Plantas/genética , Solanum tuberosum/genética , Mapeamento Cromossômico , Variações do Número de Cópias de DNA/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Técnicas de Embriogênese Somática de Plantas , Solanum tuberosum/crescimento & desenvolvimento
3.
Genes Genomics ; 46(4): 409-421, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38381322

RESUMO

BACKGROUND: High temperature stress is an important abiotic factor, which affects tuberization and ultimately causes heavy yield reduction in potato. OBJECTIVES: Identification and characterization of genes associated with tuberization under high temperature stress is essential for future management through biotechnology. METHODOLOGY: Two contrasting potato varieties Kufri Anand (profuse tuber-bearing) versus Kufri Frysona (very less/scanty tuber-bearing, control) were cultivated in aeroponics under high temperature stress, and transcriptomes were analyzed. RESULTS: Potato cv. Kufri Anand was found superior over control (Kufri Frysona) for tuber yield and its component traits along with root morphology under aeroponics. Transcriptomes of tuber and leaf tissues were analyzed. Statistically significant (p < 0.05) differentially expressed genes (DEGs) were categorised into up-regulated (> 2 log2 fold change, FC) and down-regulated (< -2 log2 FC) genes. DEGs were annotated by gene ontology and KEGG pathways. A few selected up-regulated genes of both tissues were identified, and phylogeny tree and motif analysis were analysed based on 36 peptide sequences representing 15 selected DEGs in this study. Further, gene expression markers were developed and validated by real time qPCR analysis for the identification of high temperature tolerant genotypes. CONCLUSION: A few key genes associated in tuberization under high temperature conditions were heat shock proteins (e.g. 18.5 kDa class I heat shock protein), sugar metabolism (e.g. glucosyltransferase), transcription factor (e.g. WRKY), and phytohormones (e.g. auxin-induced beta-glucosidase). Our study provides an overview of key genes involved in tuberization under high temperature stress in potato cv. Kufri Anand under aeroponics.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Temperatura , Perfilação da Expressão Gênica , Transcriptoma , Genótipo
4.
Sci Rep ; 14(1): 15501, 2024 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969681

RESUMO

Late blight is a serious disease of potato worldwide. Our study aimed to unveil genes involved in late blight resistance in potato by RNA-seq analysis after artificial inoculation under controlled conditions. In this study, two potato somatic hybrids (P7 and Crd6) and three varieties such as Kufri Girdhari, Kufri Jyoti and Kufri Bahar (control) were used. Transcriptiome analysis revealed statistically significant (p < 0.05) differentially expressed genes (DEGs), which were analysed into up-regulated and down-regulated genes. Further, DEGs were functionally characterized by the Gene Ontology annotations and the Kyoto Encyclopedia of Genes and Genomes pathways. Overall, some of the up-regulated genes in resistant genotypes were disease resistance proteins such as CC-NBS-LRR resistance protein, ankyrin repeat family protein, cytochrome P450, leucine-rich repeat family protein/protein kinase family, and MYB transcription factor. Sequence diversity analysis based on 38 peptide sequences representing 18 genes showed distinct variation and the presence of three motifs in 15 amino acid sequences. Selected genes were also validated by real-time quantitative polymerase chain reaction analysis. Interestingly, gene expression markers were developed for late blight resistant genotypes. Our study elucidates genes involved in imparting late blight resistance in potato, which will be beneficial for its management strategies in the future.


Assuntos
Resistência à Doença , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/microbiologia , Solanum tuberosum/imunologia , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Transcriptoma , Genes de Plantas , Genótipo
5.
Front Plant Sci ; 14: 1212135, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37502703

RESUMO

Late blight (Phytophthora infestans) is a serious disease of potatoes. The aim of this study was to screen wild potato species and identify differentially expressed genes (DEGs) associated with late blight resistance. Wild potato species such as PIN45 (Solanum pinnatisectum), CPH62 (Solanum cardiophyllum), JAM07 (Solanum jamesii), MCD24 (Solanum microdontum), PLD47 (Solanum polyadenium), and cv. Kufri Bahar (control) were tested by artificial inoculation of P. infestans under controlled conditions. Transcriptomes of the leaf tissues (96 h post-inoculation) were sequenced using the Illumina platform. Statistically significant (p < 0.05) DEGs were analyzed in wild species by comparison with the control, and upregulated (>2 log2 fold change, FC) and downregulated (<-2 log2 FC) genes were identified. DEGs were functionally characterized with Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Selected genes were validated by real-time PCR analysis to confirm RNA-seq results. We identified some upregulated genes associated with late blight resistance in wild species such as cytochrome P450, proline-rich protein, MYB transcription factor MYB139, ankyrin repeat-containing protein, and LRR receptor-like serine/threonine-protein kinase in PIN45; glucosyltransferase, fructose-bisphosphate aldolase, and phytophthora-inhibited protease 1 in CPH62; steroid binding protein and cysteine proteinase 3 in JAM07; glycine-rich cell wall structural protein 1 and RING finger protein in MCD24; and cysteine proteinase 3 and major latex protein in PLD47. On the other hand, downregulated genes in these species were snakin-2 and WRKY transcription factor 3 in PIN45; lichenase and phenylalanine ammonia-lyase 1 in CPH62; metallothionein and LRR receptor-like serine/threonine-protein kinase in JAM07; UDP-glucoronosyl/UDP-glucosyl transferase family protein and steroid binding protein in MCD24; and cytoplasmic small heat shock protein class I and phosphatase PLD47. Our study identified highly resistant wild potato species and underlying genes such as disease resistance, stress response, phytohormones, and transcription factors (e.g., MYB, WRKY, AP2/ERF, and AN1) associated with late blight resistance in wild potato species.

6.
Life (Basel) ; 13(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36675982

RESUMO

The potato originated in southern Peru and north-western Bolivia (South America). However, native accessions have also been cultivated in India for many years. Late blight, caused by the fungus Phytophthora infestans, is the most devastating potato disease, while potato cyst nematode (Globodera spp.) (PCN) is another economically significant quarantine-requiring pest in India. In this study, we have generated a new Indian native collection of 94 potato accessions collected from different parts India. These accessions were screened against late blight and potato cyst nematode resistance by using gene-based molecular markers and phenotypic screening methods. Marker assisted selection using R1 gene-specific marker CosA210 revealed a late blight resistance gene in 11 accessions. PCN resistance bands were found in 3 accessions with marker TG689141, 5 accessions with marker 57R452, and 1 accession having Gro1-4-1602 marker for G. rostochiensis (Ro1,4), while 64 accessions amplified marker HC276 indicating G. pallida (Pa2,3) resistance gene (GpaVvrn QTL). On the other hand, phenotypic screening against late blight resistance under natural epiphytic conditions (hot-spot) revealed three accessions with high resistance, while others were resistant (1 accession), moderately resistant (5 accessions), susceptible (29 accessions), and highly susceptible (56 accessions). For G. rostochiensis (golden cyst nematode) and G. pallida (white cyst nematode) resistance, accessions were grouped into highly resistant (3, 3), resistant (0, 2), moderately resistant (6, 29), susceptible (32, 30), and highly susceptible (53, 30), respectively, for the two PCN species. Collectively, we identified promising accessions with high resistance to late blight (JG-1, Kanpuria Safed, and Rangpuria), and also highly resistant to both Globodera species (Garlentic, Jeevan Jyoti, and JG-1). Our findings suggested that these accessions would be useful for late blight and PCN resistance breeding, as well as future molecular studies in potatoes.

7.
Front Plant Sci ; 13: 805671, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35197996

RESUMO

Potato is one of the most important food crops in the world. Late blight, viruses, soil and tuber-borne diseases, insect-pests mainly aphids, whiteflies, and potato tuber moths are the major biotic stresses affecting potato production. Potato is an irrigated and highly fertilizer-responsive crop, and therefore, heat, drought, and nutrient stresses are the key abiotic stresses. The genus Solanum is a reservoir of genetic diversity, however, a little fraction of total diversity has been utilized in potato breeding. The conventional breeding has contributed significantly to the development of potato varieties. In recent years, a tremendous progress has been achieved in the sequencing technologies from short-reads to long-reads sequence data, genomes of Solanum species (i.e., pan-genomics), bioinformatics and multi-omics platforms such as genomics, transcriptomics, proteomics, metabolomics, ionomics, and phenomics. As such, genome editing has been extensively explored as a next-generation breeding tool. With the available high-throughput genotyping facilities and tetraploid allele calling softwares, genomic selection would be a reality in potato in the near future. This mini-review covers an update on germplasm, breeding, and genomics in potato improvement for biotic and abiotic stress tolerance.

8.
Front Plant Sci ; 13: 926214, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212284

RESUMO

The root is an important plant organ, which uptakes nutrients and water from the soil, and provides anchorage for the plant. Abiotic stresses like heat, drought, nutrients, salinity, and cold are the major problems of potato cultivation. Substantial research advances have been achieved in cereals and model plants on root system architecture (RSA), and so root ideotype (e.g., maize) have been developed for efficient nutrient capture to enhance nutrient use efficiency along with genes regulating root architecture in plants. However, limited work is available on potatoes, with a few illustrations on root morphology in drought and nitrogen stress. The role of root architecture in potatoes has been investigated to some extent under heat, drought, and nitrogen stresses. Hence, this mini-review aims to update knowledge and prospects of strengthening RSA research by applying multi-disciplinary physiological, biochemical, and molecular approaches to abiotic stress tolerance to potatoes with lessons learned from model plants, cereals, and other plants.

9.
PLoS One ; 15(5): e0233076, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32428011

RESUMO

Nitrogen is an important nutrient for plant growth and tuber quality of potato. Since potato crop requires high dose of N, improving nitrogen use efficiency (NUE) of plant is an inevitable approach to minimize N fertilization. The aim of this study was to identify and characterize microRNAs (miRNAs) by small RNA sequencing in potato plants grown in aeroponic under two contrasting N (high and low) regimes. A total of 119 conserved miRNAs belonging to 41 miRNAs families, and 1002 putative novel miRNAs were identified. From total, 52 and 54 conserved miRNAs, and 404 and 628 putative novel miRNAs were differentially expressed in roots and shoots, respectively under low N stress. Of total 34,135 predicted targets, the gene ontology (GO) analysis indicated that maximum targets belong to biological process followed by molecular function and cellular component. Eexpression levels of the selected miRNAs and targets were validated by real time-quantitative polymerase chain reaction (RT-qPCR) analysis. Two predicted targets of potential miRNAs (miR397 and miR398) were validated by 5' RLM-RACE (RNA ligase mediated rapid amplification of cDNA ends). In general, predicted targets are associated with stress-related, kinase, transporters and transcription factors such as universal stress protein, heat shock protein, salt-tolerance protein, calmodulin binding protein, serine-threonine protein kinsae, Cdk10/11- cyclin dependent kinase, amino acid transporter, nitrate transporter, sugar transporter, transcription factor, F-box family protein, and zinc finger protein etc. Our study highlights that miR397 and miR398 play crucial role in potato during low N stress management. Moreover, study provides insights to modulate miRNAs and their predicted targets to develop N-use efficient potato using transgenic/genome-editing tools in future.


Assuntos
Perfilação da Expressão Gênica/métodos , MicroRNAs/genética , Solanum tuberosum/crescimento & desenvolvimento , Sequenciamento Completo do Genoma/métodos , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Nitrogênio/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , RNA de Plantas/genética , Análise de Sequência de RNA , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Estresse Fisiológico
10.
Sci Rep ; 10(1): 1152, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980689

RESUMO

Potato crop requires high dose of nitrogen (N) to produce high tuber yield. Excessive application of N causes environmental pollution and increases cost of production. Hence, knowledge about genes and regulatory elements is essential to strengthen research on N metabolism in this crop. In this study, we analysed transcriptomes (RNA-seq) in potato tissues (shoot, root and stolon) collected from plants grown in aeroponic culture under controlled conditions with varied N supplies i.e. low N (0.2 milli molar N) and high N (4 milli molar N). High quality data ranging between 3.25 to 4.93 Gb per sample were generated using Illumina NextSeq500 that resulted in 83.60-86.50% mapping of the reads to the reference potato genome. Differentially expressed genes (DEGs) were observed in the tissues based on statistically significance (p ≤ 0.05) and up-regulation with ≥ 2 log2 fold change (FC) and down-regulation with ≤ -2 log2 FC values. In shoots, of total 19730 DEGs, 761 up-regulated and 280 down-regulated significant DEGs were identified. Of total 20736 DEGs in roots, 572 (up-regulated) and 292 (down-regulated) were significant DEGs. In stolons, of total 21494 DEG, 688 and 230 DEGs were significantly up-regulated and down-regulated, respectively. Venn diagram analysis showed tissue specific and common genes. The DEGs were functionally assigned with the GO terms, in which molecular function domain was predominant in all the tissues. Further, DEGs were classified into 24 KEGG pathways, in which 5385, 5572 and 5594 DEGs were annotated in shoots, roots and stolons, respectively. The RT-qPCR analysis validated gene expression of RNA-seq data for selected genes. We identified a few potential DEGs responsive to N deficiency in potato such as glutaredoxin, Myb-like DNA-binding protein, WRKY transcription factor 16 and FLOWERING LOCUS T in shoots; high-affinity nitrate transporter, protein phosphatase-2c, glutaredoxin family protein, malate synthase, CLE7, 2-oxoglutarate-dependent dioxygenase and transcription factor in roots; and glucose-6-phosphate/phosphate translocator 2, BTB/POZ domain-containing protein, F-box family protein and aquaporin TIP1;3 in stolons, and many genes of unknown function. Our study highlights that these potential genes play very crucial roles in N stress tolerance, which could be useful in augmenting research on N metabolism in potato.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Nitrogênio/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Solanum tuberosum/genética , Estresse Fisiológico/genética , Transcriptoma , Biomassa , Clorofila/análise , Ontologia Genética , Motivos de Nucleotídeos , Especificidade de Órgãos , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/metabolismo
11.
Plant Physiol Biochem ; 154: 171-183, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32563041

RESUMO

Nitrogen (N) is an important nutrient for plant growth. However, its excess application leads to environmental damage. Hence, improving nitrogen use efficiency (NUE) of plant is one of the plausible options to solve the problems. Aim of this study was to identify candidate genes involved in enhancing NUE in potato cv. Kufri Gaurav (N efficient). Plants were grown in aeroponic with two contrasting N regimes (low N: 0.75 mM, and high N: 7.5 mM). Higher NUE in Kufri Gaurav was observed in low N based on the parameters like NUE, NUpE (N uptake efficiency), NUtE (N utilization efficiency) and AgNUE (agronomic NUE). Further, global gene expression profiles in root, leaf and stolon tissues were analyzed by RNA-sequencing using Ion Proton™ System. Quality data (≥Q20) of 2.04-2.73 Gb per sample were mapped with the potato genome. Statistically significant (P ≤ 0.05) differentially expressed genes (DEGs) were identified such as 176 (up-regulated) and 30 (down-regulated) in leaves, 39 (up-regulated) and 105 (down-regulated) in roots, and 81 (up-regulated) and 694 (down-regulated) in stolons. The gene ontology (GO) terms like metabolic process, cellular process and catalytic activity were predominant. Our RT-qPCR analysis confirmed the gene expression profiles of RNA-seq. Overall, we identified candidate genes associated with improving NUE such as superoxide dismutase, GDSL esterase lipase, probable phosphatase 2C, high affinity nitrate transporters, sugar transporter, proline rich proteins, transcription factors (VQ motif, SPX domain, bHLH) etc. Our findings suggest that these candidate genes probably play crucial roles in enhancing NUE in potato.


Assuntos
Genoma de Planta , Nitrogênio/metabolismo , Solanum tuberosum , RNA de Plantas , Análise de Sequência de RNA , Solanum tuberosum/genética , Transcriptoma
12.
3 Biotech ; 9(7): 262, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31192087

RESUMO

Allelic variation in wild potato (Solanum) species was analysed using 14 simple sequence repeat (SSR) markers. SSR allelic profiles showed high polymorphism and distinctness among the wild species. A total of 109 alleles of 14 polymorphic SSR markers were scored in 82 accessions belonging to 22 wild potato species. Allele size ranged from a minimum of 104 bp (STI0030) to a maximum of 304 bp (STM5114). Number of SSR alleles per marker ranged from 4 (STM5127/STM1053) to 13 (STM0019), whereas PIC value varied between 0.66 (STM1053) and 0.91 (STM0019). Cluster analysis using SSR allelic profiles of 82 accessions grouped showed 5 major clusters (I-V) based on the Dice similarity coefficient using neighbour-joining clustering method. Distinct allelic variations were observed among the accessions irrespective of the origin country, series and species. Our study suggests that SSR-based molecular characterization of wild potato species is accession specific and development of an allelic dataset for all the accessions would strengthen their utilization in potato research in future.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa