Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Small ; 16(21): e2000123, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32338440

RESUMO

Considering the potential exposure to graphene, the most investigated nanomaterial, the assessment of the impact on human health has become an urgent need. The deep understanding of nanomaterial safety is today possible by high-throughput single-cell technologies. Single-cell mass cytometry (cytometry by time-of flight, CyTOF) shows an unparalleled ability to phenotypically and functionally profile complex cellular systems, in particular related to the immune system, as recently also proved for graphene impact. The next challenge is to track the graphene distribution at the single-cell level. Therefore, graphene oxide (GO) is functionalized with AgInS2 nanocrystals (GO-In), allowing to trace GO immune-cell interactions via the indium (115 In) channel. Indium is specifically chosen to avoid overlaps with the commercial panels (>30 immune markers). As a proof of concept, the GO-In CyTOF tracking is performed at the single-cell level on blood immune subpopulations, showing the GO interaction with monocytes and B cells, therefore guiding future immune studies. The proposed approach can be applied not only to the immune safety assessment of the multitude of graphene physical and chemical parameters, but also for graphene applications in neuroscience. Moreover, this approach can be translated to other 2D emerging materials and will likely advance the understanding of their toxicology.


Assuntos
Grafite , Leucócitos , Nanoestruturas , Análise de Célula Única , Citometria de Fluxo , Grafite/toxicidade , Humanos , Leucócitos/efeitos dos fármacos , Nanopartículas/toxicidade , Nanoestruturas/toxicidade
2.
Ann Rheum Dis ; 78(5): 600-609, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30808624

RESUMO

OBJECTIVE: We aimed to understand the role of the tyrosine phosphatase PTPN14-which in cancer cells modulates the Hippo pathway by retaining YAP in the cytosol-in fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA). METHODS: Gene/protein expression levels were measured by quantitative PCR and/or Western blotting. Gene knockdown in RA FLS was achieved using antisense oligonucleotides. The interaction between PTPN14 and YAP was assessed by immunoprecipitation. The cellular localisation of YAP and SMAD3 was examined via immunofluorescence. SMAD reporter studies were carried out in HEK293T cells. The RA FLS/cartilage coimplantation and passive K/BxN models were used to examine the role of YAP in arthritis. RESULTS: RA FLS displayed overexpression of PTPN14 when compared with FLS from patients with osteoarthritis (OA). PTPN14 knockdown in RA FLS impaired TGFß-dependent expression of MMP13 and potentiation of TNF signalling. In RA FLS, PTPN14 formed a complex with YAP. Expression of PTPN14 or nuclear YAP-but not of a non-YAP-interacting PTPN14 mutant-enhanced SMAD reporter activity. YAP promoted TGFß-dependent SMAD3 nuclear localisation in RA FLS. Differences in epigenetic marks within Hippo pathway genes, including YAP, were found between RA FLS and OA FLS. Inhibition of YAP reduced RA FLS pathogenic behaviour and ameliorated arthritis severity. CONCLUSION: In RA FLS, PTPN14 and YAP promote nuclear localisation of SMAD3. YAP enhances a range of RA FLS pathogenic behaviours which, together with epigenetic evidence, points to the Hippo pathway as an important regulator of RA FLS behaviour.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas Tirosina Fosfatases não Receptoras/fisiologia , Transdução de Sinais/fisiologia , Sinoviócitos/metabolismo , Fatores de Transcrição/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Animais , Artrite Reumatoide/metabolismo , Proteínas de Ciclo Celular/fisiologia , Humanos , Camundongos , Proteínas de Sinalização YAP
3.
ACS Nano ; 18(3): 1892-1906, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38016062

RESUMO

Disease-modifying drugs have improved the treatment for autoimmune joint disorders, such as rheumatoid arthritis, but inflammatory flares are a common experience. This work reports the development and application of flare-modulating poly(lactic-co-glycolic acid)-poly(ethylene glycol)-maleimide (PLGA-PEG-MAL)-based nanoparticles conjugated with joint-relevant peptide antigens, aggrecan70-84 and type 2 bovine collagen256-270. Peptide-conjugated PLGA-PEG-MAL nanoparticles encapsulated calcitriol, which acted as an immunoregulatory agent, and were termed calcitriol-loaded nanoparticles (CLNP). CLNP had a ∼200 nm hydrodynamic diameter with a low polydispersity index. In vitro, CLNP induced phenotypic changes in bone marrow derived dendritic cells (DC), reducing the expression of costimulatory and major histocompatibility complex class II molecules, and proinflammatory cytokines. Bulk RNA sequencing of DC showed that CLNP enhanced expression of Ctla4, a gene associated with downregulation of immune responses. In vivo, CLNP accumulated in the proximal lymph nodes after intramuscular injection. Administration of CLNP was not associated with changes in peripheral blood cell numbers or cytokine levels. In the collagen-induced arthritis and SKG mouse models of autoimmune joint disorders, CLNP reduced clinical scores, prevented bone erosion, and preserved cartilage proteoglycan, as assessed by high-resolution microcomputed tomography and histomorphometry analysis. The disease protective effects were associated with increased CTLA-4 expression in joint-localized DC and CD4+ T cells but without generalized suppression of T cell-dependent immune response. The results support the potential of CLNP as modulators of disease flares in autoimmune arthropathies.


Assuntos
Doenças Autoimunes , Lactatos , Nanopartículas , Polietilenoglicóis , Camundongos , Animais , Bovinos , Calcitriol/metabolismo , Exacerbação dos Sintomas , Microtomografia por Raio-X , Citocinas/metabolismo , Imunidade , Nanopartículas/química , Células Dendríticas
4.
Adv Mater ; : e2413413, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39449193

RESUMO

The increasing exposure to nanoplastics (NPs) raises significant concerns for human health, primarily due to their potential bioaccumulative properties. While NPs have recently been detected in human blood, their interactions with specific immune cell subtypes and their impact on immune regulation remain unclear. In this proof-of-concept study, model palladium-doped polystyrene NPs (PS-Pd NPs) are utilized to enable single-cell mass cytometry (CyTOF) detection. The size-dependent impact of carboxylate polystyrene NPs (50-200 nm) is investigated across 15 primary immune cell subpopulations using CyTOF. By taking advantage of Pd-doping for detecting PS-Pd NPs, this work evaluates their impact on human immune-cells at the single-cell level following blood exposure. This work traces PS-Pd NPs in 37 primary immune-cell subpopulations from human blood, quantifying the palladium atom count per cell by CyTOF while simultaneously assessing the impact of PS-Pd NPs on cell viability, functionality, and uptake. These results demonstrate that NPs can interact with, interfere with, and translocate into several immune cell subpopulations after exposure. In vivo distribution experiments in mice further confirmed their accumulation in immune cells within the liver, blood, and spleen, particularly in monocytes, macrophages, and dendritic cells. These findings provide valuable insights into the impact of NPs on human health.

5.
Adv Sci (Weinh) ; 10(11): e2202720, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36890657

RESUMO

Disease modifying antirheumatic drugs (DMARDs) have improved the prognosis of autoimmune inflammatory arthritides but a large fraction of patients display partial or nonresponsiveness to front-line DMARDs. Here, an immunoregulatory approach based on sustained joint-localized release of all-trans retinoic acid (ATRA), which modulates local immune activation and enhances disease-protective T cells and leads to systemic disease control is reported. ATRA imprints a unique chromatin landscape in T cells, which is associated with an enhancement in the differentiation of naïve T cells into anti-inflammatory regulatory T cells (Treg ) and suppression of Treg destabilization. Sustained release poly-(lactic-co-glycolic) acid (PLGA)-based biodegradable microparticles encapsulating ATRA (PLGA-ATRA MP) are retained in arthritic mouse joints after intra-articular (IA) injection. IA PLGA-ATRA MP enhance migratory Treg which in turn reduce inflammation and modify disease in injected and uninjected joints, a phenotype that is also reproduced by IA injection of Treg . PLGA-ATRA MP reduce proteoglycan loss and bone erosions in the SKG and collagen-induced arthritis mouse models of autoimmune arthritis. Strikingly, systemic disease modulation by PLGA-ATRA MP is not associated with generalized immune suppression. PLGA-ATRA MP have the potential to be developed as a disease modifying agent for autoimmune arthritis.


Assuntos
Antirreumáticos , Artrite , Doenças Autoimunes , Camundongos , Animais , Doenças Autoimunes/tratamento farmacológico , Linfócitos T Reguladores , Inflamação , Tretinoína/farmacologia
6.
JCI Insight ; 7(8)2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35451370

RESUMO

Systemic sclerosis (SSc) is a fibrotic autoimmune disease characterized by pathogenic activation of fibroblasts enhanced by local oxidative stress. The tyrosine phosphatase PTP4A1 was identified as a critical promoter of TGF-ß signaling in SSc. Oxidative stress is known to functionally inactivate tyrosine phosphatases. Here, we assessed whether oxidation of PTP4A1 modulates its profibrotic action and found that PTP4A1 forms a complex with the kinase SRC in scleroderma fibroblasts, but surprisingly, oxidative stress enhanced rather than reduced PTP4A1's association with SRC and its profibrotic action. Through structural assessment of the oxo-PTP4A1-SRC complex, we unraveled an unexpected mechanism whereby oxidation of a tyrosine phosphatase promotes its function through modification of its protein complex. Considering the importance of oxidative stress in the pathogenesis of SSc and fibrosis, our findings suggest routes for leveraging PTP4A1 oxidation as a potential strategy for developing antifibrotic agents.


Assuntos
Escleroderma Sistêmico , Fibroblastos/metabolismo , Fibrose , Humanos , Estresse Oxidativo , Escleroderma Sistêmico/patologia , Tirosina/metabolismo
7.
Nanoscale ; 14(2): 333-349, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34796889

RESUMO

We recently found by single-cell mass cytometry that ex vivo human B cells internalize graphene oxide (GO). The functional impact of such uptake on B cells remains unexplored. Here, we disclosed the effects of GO and amino-functionalized GO (GONH2) interacting with human B cells in vitro and ex vivo at the protein and gene expression levels. Moreover, our study considered three different subpopulations of B cells and their functionality in terms of: (i) cytokine production, (ii) activation markers, (iii) killing activity towards cancer cells. Single-cell mass cytometry screening revealed the higher impact of GO on cell viability towards naïve, memory, and plasma B cell subsets. Different cytokines such as granzyme B (GrB) and activation markers, like CD69, CD80, CD138, and CD38, were differently regulated by GONH2 compared to GO, supporting possible diverse B cell activation paths. Moreover, co-culture experiments also suggest the functional ability of both GOs to activate B cells and therefore enhance the toxicity towards HeLa cancer cell line. Complete transcriptomic analysis on a B cell line highlighted the distinctive GO and GONH2 elicited responses, inducing pathways such as B cell receptor and CD40 signaling pathways, key players for GrB secretion. B cells were regularly left behind the scenes in graphene biological studies; our results may open new horizons in the development of GO-based immune-modulatory strategies having B cell as main actors.


Assuntos
Grafite , Linfócitos B , Granzimas , Humanos , Regulação para Cima
8.
NanoImpact ; 23: 100330, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-35559831

RESUMO

Given the wide variety of potential applications of graphene oxide (GO), its consequent release into the environment poses serious concerns on its safety. The future production and exploitation of graphene in the years to come should be guided by its specific chemical-physical characteristics. The unparalleled potential of single-cell mass cytometry (CyTOF) to dissect by high-dimensionality the specific immunological effects of nanomaterials, represents a turning point in nanotoxicology. It helps us to identify the safe graphene in terms of physical-chemical properties and therefore to direct its future safe production. Here we present a high-dimensional study to evaluate two historically indicated as key parameters for the safe exploitation: functionalization and dimension. The role of lateral dimension and the amino-functionalization of GO on their immune impact were here evaluated as synergistic players. To this end, we dissected the effects of GO, characterized by a large or small lateral size (GO 1.32 µm and GO 0.13 µm, respectively), and its amino-functionalized counterpart (GONH2 1.32 µm and GONH2 0.13 µm, respectively) on fifteen cell types of human primary peripheral blood mononuclear cells (PBMCs). We describe how the smallest later size not only evokes pronounced toxicity on the pool of PBMCs compared to larger GOs but also towards the distinct immune cell subpopulations, in particular on non-classical monocytes, plasmacytoid dendritic cells (pDCs), natural killer cells (NKs) and B cells. The amino-functionalization was able to improve the biocompatibility of classical and non-classical monocytes, pDCs, NKs, and B cells. Detailed single-cell analysis further revealed a complex interaction of all GOs with the immune cells, and in particular monocyte subpopulations, with different potency depending on their physicochemical properties. Overall, by high-dimensional profiling, our study demonstrates that the lateral dimension is an important factor modulating immune cells and specifically monocyte activation, but a proper surface functionalization is the dominant characteristic in its immune effects. In particular, the amino-functionalization can critically modify graphene impact dampening the immune cell activation. Our study can serve as a guide for the future broad production and use of graphene in our everyday life.


Assuntos
Grafite , Nanoestruturas , Grafite/toxicidade , Humanos , Leucócitos Mononucleares , Monócitos , Nanoestruturas/toxicidade , Análise de Célula Única
9.
JCI Insight ; 5(20)2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33055428

RESUMO

Loss-of-function variants of protein tyrosine phosphatase non-receptor type 2 (PTPN2) enhance risk of inflammatory bowel disease and rheumatoid arthritis; however, whether the association between PTPN2 and autoimmune arthritis depends on gut inflammation is unknown. Here we demonstrate that induction of subclinical intestinal inflammation exacerbates development of autoimmune arthritis in SKG mice. Ptpn2-haploinsufficient SKG mice - modeling human carriers of disease-associated variants of PTPN2 - displayed enhanced colitis-induced arthritis and joint accumulation of Tregs expressing RAR-related orphan receptor γT (RORγt) - a gut-enriched Treg subset that can undergo conversion into FoxP3-IL-17+ arthritogenic exTregs. SKG colonic Tregs underwent higher conversion into arthritogenic exTregs when compared with peripheral Tregs, which was exacerbated by haploinsufficiency of Ptpn2. Ptpn2 haploinsufficiency led to selective joint accumulation of RORγt-expressing Tregs expressing the colonic marker G protein-coupled receptor 15 (GPR15) in arthritic mice and selectively enhanced conversion of GPR15+ Tregs into exTregs in vitro and in vivo. Inducible Treg-specific haploinsufficiency of Ptpn2 enhanced colitis-induced SKG arthritis and led to specific joint accumulation of GPR15+ exTregs. Our data validate the SKG model for studies at the interface between intestinal and joint inflammation and suggest that arthritogenic variants of PTPN2 amplify the link between gut inflammation and arthritis through conversion of colonic Tregs into exTregs.


Assuntos
Artrite/genética , Doenças Autoimunes/genética , Proteínas de Ligação a DNA/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Peptídeos/genética , Animais , Artrite/induzido quimicamente , Artrite/patologia , Doenças Autoimunes/induzido quimicamente , Doenças Autoimunes/patologia , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Haploinsuficiência/genética , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/patologia , Interleucina-17/genética , Intestinos/patologia , Articulações/metabolismo , Articulações/patologia , Mananas/toxicidade , Camundongos , Camundongos Knockout , Dodecilsulfato de Sódio/toxicidade , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia
10.
Sci Adv ; 6(26): eaba4353, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32637608

RESUMO

Fibroblast-like synoviocytes (FLS) are joint-lining cells that promote rheumatoid arthritis (RA) pathology. Current disease-modifying antirheumatic agents (DMARDs) operate through systemic immunosuppression. FLS-targeted approaches could potentially be combined with DMARDs to improve control of RA without increasing immunosuppression. Here, we assessed the potential of immunoglobulin-like domains 1 and 2 (Ig1&2), a decoy protein that activates the receptor tyrosine phosphatase sigma (PTPRS) on FLS, for RA therapy. We report that PTPRS expression is enriched in synovial lining RA FLS and that Ig1&2 reduces migration of RA but not osteoarthritis FLS. Administration of an Fc-fusion Ig1&2 attenuated arthritis in mice without affecting innate or adaptive immunity. Furthermore, PTPRS was down-regulated in FLS by tumor necrosis factor (TNF) via a phosphatidylinositol 3-kinase-mediated pathway, and TNF inhibition enhanced PTPRS expression in arthritic joints. Combination of ineffective doses of TNF inhibitor and Fc-Ig1&2 reversed arthritis in mice, providing an example of synergy between FLS-targeted and immunosuppressive DMARD therapies.


Assuntos
Antirreumáticos , Artrite Reumatoide , Sinoviócitos , Animais , Antirreumáticos/uso terapêutico , Células Cultivadas , Fibroblastos/metabolismo , Camundongos , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa