Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(15): e23864, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39109513

RESUMO

Little is known about the blood-feeding physiology of arbovirus vector Aedes aegypti although this type of mosquito is known to transmit infectious diseases dengue, Zika, yellow fever, and chikungunya. Blood feeding in the female A. aegypti mosquito is essential for egg maturation and for transmission of disease agents between human subjects. Here, we identify the A. aegypti sulfakinin receptor gene SKR from the A. aegypti genome and show that SKR is expressed at different developmental stages and in varied anatomical localizations in the adult mosquito (at three days after eclosion), with particularly high expression in the CNS. Knockingdown sulfakinin and sulfakinin receptor gene expression in the female A. aegypti results in increased blood meal intake, but microinjection in the thorax of the sulfakinin peptide 1 and 2 both inhibits dose dependently blood meal intake (and delays the time course of blood intake), which is reversible with receptor antagonist. Sulfakinin receptor expressed ectopically in mammalian cells CHO-K1 responds to sulfakinin stimulation with persistent calcium spikes, blockable with receptor antagonist. These data together suggest that activation of the Gq protein-coupled (i.e., calcium-mobilizing) sulfakinin receptor inhibits blood meal intake in female A. aegypti mosquitoes and could serve as a strategic node for the future control of A. aegypti mosquito reproduction/population and disease transmission.


Assuntos
Aedes , Receptores Acoplados a Proteínas G , Animais , Aedes/metabolismo , Aedes/genética , Feminino , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Células CHO , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Cricetulus , Comportamento Alimentar/fisiologia , Mosquitos Vetores
2.
J Am Chem Soc ; 146(36): 25101-25107, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39196903

RESUMO

Tailoring the surface ligands of metal nanoclusters is important for engineering unique configurations of metal nanoclusters. Thiacalix[4]arene has found extensive applications in the construction of metal nanoclusters. In this investigation, we present the synthesis and characterization of the first all-calixarene-protected silver nanoclusters, [Ag(CH3CN)4]2[Ag44(BTCA)6] (Ag44, H4BTCA = p-tert-butylthiacalix[4]arene). Single-crystal X-ray structural analysis reveals that all silver atoms are in a face-centered cubic (fcc) arrangement. The formation of such an fcc structure is attributed to the selectively passivation on {100} facets by BTCA4-. Thiacalixarene substantially facilitates the stability of Ag44 due to its multiple coordination sites and bulkiness. Mass spectrometry and theoretical calculations reveal that Ag44 is a superatomic silver nanocluster with 22 free electrons in the following configuration: 1S21P61D61F22S21D4. This work not only elucidates the impact of macrocyclic ligands on the stabilization of silver clusters but also furnishes an approach for assembling atomically precise fcc nanoclusters.

3.
Chemistry ; 30(11): e202301948, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38081801

RESUMO

The application of supramolecular templates in aligning atomically precise heterometal arrays is important for pursuing functional materials. Herein, we report that a bilayered supramolecular tri-deprotonated melamine dimer functions as an effective template in the construction of a heterometallic gold(I)-silver(I) macrocyclic cluster [µ6 -(C3 N6 H3 )3- ]2 -AuI 6 AgI 6 . X-ray single crystal structural analysis showed that a crown-like AuI 6 AgI 6 macrocycle is aligned around two parallelly stacked µ6 -(C3 N6 H3 )3- moieties hold together with π-π interactions. Theoretical calculations revealed that the [µ6 -(C3 N6 H3 )3- ]2 motif dominantly contributes to the near-occupied orbitals in the electronic structure, which is closely related to its luminescence properties. This work demonstrates that the supramolecular templates containing multiple symmetric binding sites may present a facile approach in the construction of functional metal clusters.

4.
Chemistry ; 30(42): e202401094, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38797717

RESUMO

A 'passivated precursor' approach is developed for the efficient synthesis and isolation of all-alkynyl-protected gold nanoclusters. Direct reduction of dpa-passivated precursor Au-dpa (Hdpa=2,2'-dipyridylamine) in one-pot under ambient conditions gives a series of clusters including Au22(C≡CR)18 (R=-C6H4-2-F), Au36(C≡CR)24, Au44(C≡CR)28, Au130(C≡CR)50, and Au144(C≡CR)60. These clusters can be well separated via column chromatography. The overall isolation yield of this series of clusters is 40 % (based on gold), which is much improved in comparison with previous approaches. It is notable that the molecular structure of the giant cluster Au130(C≡CR)50 is revealed, which presents important information for understanding the structure of the mysterious Au130 nanoclusters. Theoretical calculations indicated Au130(C≡CR)50 has a smaller HOMO-LUMO gap than Au130(S-C6H4-4-CH3)50. This facile and reliable synthetic approach will greatly accelerate further studies on all-alkynyl-protected gold nanoclusters.

5.
Angew Chem Int Ed Engl ; 63(40): e202410827, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38965048

RESUMO

Due to the stability issue, It is difficult to prepare a silver nanocluster bearing functional sites, especially at a large scale. We report the synthesis and structure of a stable silver nanocluster bearing multiple surface aldehyde groups [Ag21(Ph2PO2)10(p-CHOPhC≡C)6]SbF6, which allows for postsynthesis modification such as surface functionalization through aldimine condensation to give homochiral clusters. Remarkably, the preparation of this cluster can be done in ~90 % high yield at gram scale, which facilitates further studies and potential applications. Through DFT calculations and geometric structure analysis, the high stability of this cluster is attributed to the geometric closure and electronic structure. This is the first time that an effective one-pot method has been developed to synthesize functional silver nanoclusters in high yield. The title cluster will be useful in the development of a variety of cluster-based materials.

6.
Angew Chem Int Ed Engl ; 63(29): e202404798, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38713516

RESUMO

A gold(I)-cluster-based twin-cage has been constructed by post-clustering covalent modification of a hexa-aldehyde cluster precursor with triaminotriethylamines. The cages-on-cluster structure has double cavities and four binding sites, which show site-discriminative binding for silver(I) and copper(I) guests. The guests in the tripodal hats affect the luminescence of the cluster: the tetra-silver(I) host-guest complex is weakly red-emissive, while the bis-copper(I)-bis-silver(I) one is non-emissive but is a stimuli-responsive supramolecule. The copper(I) ion inside the tri-imine cavity is oxidation sensitive, which enables the release of the bright emissive precursor cluster triggered by H2O2 solution. The hybridization of a cluster with cavities to construct a cluster-based cage presents an innovative concept for functional cluster design, and the post-clustering covalent modification opens up new avenues for finely tuning the properties of clusters.

7.
Angew Chem Int Ed Engl ; : e202416884, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39275956

RESUMO

Post-modification of porous materials with molecular modulators has emerged as a well-established strategy for improving gas adsorption and separation. However, a notable challenge lies in maintaining porosity and the limited applicability of the current method. In this study, we employed the mechanochemical "Cage-on-MOF" strategy, utilizing porous coordination cages (PCCs) with intrinsic pores and apertures as surface modulators to improve the gas adsorption and separation properties of the parent MOFs. We demonstrated the fast and facile preparation of 28 distinct MOF@PCC composites by combining 7 MOFs with 4 PCCs with varying aperture sizes and exposed functional groups through a mechanochemical reaction in 5 mins. Only the combinations of PCCs and MOFs with closely matched aperture sizes exhibited enhanced gas adsorption and separation performance. Specifically, MOF-808@PCC-4 exhibited a significantly increased C2H2 uptake (+64%) and a longer CO2/C2H2 separation retention time (+40%). MIL-101@PCC-4 achieved a substantial C2H2 adsorption capacity of 6.11 mmol/g. This work not only highlights the broad applicability of the mechanochemical "Cage-on-MOF" strategy for the functionalization of a wide range of MOFs but also establishes potential design principles for the development of hybrid porous materials with enhanced gas adsorption and separation capabilities, along with promising applications in catalysis and intracellular delivery.

8.
J Am Chem Soc ; 145(18): 10355-10363, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37104621

RESUMO

Owing to the inherent instability caused by the low Cu(I)/Cu(0) half-cell reduction potential, Cu(0)-containing copper nanoclusters are quite uncommon in comparison to their Ag and Au congeners. Here, a novel eight-electron superatomic copper nanocluster [Cu31(4-MeO-PhC≡C)21(dppe)3](ClO4)2 (Cu31, dppe = 1,2-bis(diphenylphosphino)ethane) is presented with total structural characterization. The structural determination reveals that Cu31 features an inherent chiral metal core arising from the helical arrangement of two sets of three Cu2 units encircling the icosahedral Cu13 core, which is further shielded by 4-MeO-PhC≡C- and dppe ligands. Cu31 is the first copper nanocluster carrying eight free electrons, which is further corroborated by electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy and density functional theory calculations. Interestingly, Cu31 demonstrates the first near-infrared (750-950 nm, NIR-I) window absorption and the second near-infrared (1000-1700 nm, NIR-II) window emission, which is exceptional in the copper nanocluster family and endows it with great potential in biological applications. Of note, the 4-methoxy groups providing close contacts with neighboring clusters are crucial for the cluster formation and crystallization, while 2-methoxyphenylacetylene leads only to copper hydride clusters, Cu6H or Cu32H14. This research not only showcases a new member of copper superatoms but also exemplifies that copper nanoclusters, which are nonluminous in the visible range may emit luminescence in the deep NIR region.

9.
J Am Chem Soc ; 145(30): 16924-16937, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37466996

RESUMO

The genomes of myxobacteria harbor a variety of biosynthetic gene clusters encoding numerous secondary metabolites, including ribosomally synthesized and post-translationally modified peptides (RiPPs) with diverse chemical structures and biological activities. However, the biosynthetic potential of RiPPs from myxobacteria remains barely explored. Herein, we report a novel myxobacteria lanthipeptide myxococin identified from Myxococcus fulvus. Myxococins represent the first example of lanthipeptides, of which the characteristic multiple thioether rings are installed by employing a Class II lanthipeptide synthetase MfuM and a Class I lanthipeptide cyclase MfuC in a cascaded way. Unprecedentedly, we biochemically characterized the first M61 family aminopeptidase MfuP involved in RiPP biosynthesis, demonstrating that MfuP showed the activity of an endopeptidase activity. MfuP is leader-independent but strictly selective for the multibridge structure of myxococin A and responsible for unwrapping two rings via amide bond hydrolysis, yielding myxococin B. Furthermore, the X-ray crystal structure of MfuP and structural analysis, including active-site mutations, are reported. Finally, myxococins are evaluated to exhibit anti-inflammatory activity in lipopolysaccharide-induced macrophages without detectable cytotoxicity.


Assuntos
Myxococcales , Peptídeos/química , Processamento de Proteína Pós-Traducional
10.
New Phytol ; 240(1): 173-190, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563927

RESUMO

The anther tapetum helps control microspore release and essential components for pollen wall formation. TAPETAL DEVELOPMENT and FUNCTION1 (TDF1) is an essential R2R3 MYB tapetum transcription factor in Arabidopsis thaliana; however, little is known about pollen development in the temperate monocot barley. Here, we characterize the barley (Hordeum vulgare L.) TDF1 ortholog using reverse genetics and transcriptomics. Spatial/temporal expression analysis indicates HvTDF1 has tapetum-specific expression during anther stage 7/8. Homozygous barley hvtdf1 mutants exhibit male sterility with retarded tapetum development, delayed tapetum endomitosis and cell wall degeneration, resulting in enlarged, vacuolated tapetum surrounding collapsing microspores. Transient protein expression and dual-luciferase assays show TDF1 is a nuclear-localized, transcription activator, that directly activates osmotin proteins. Comparison of hvtdf1 transcriptome data revealed several pathways were delayed, endorsing the observed retarded anther morphology. Arabidopsis tdf1 mutant fertility was recovered by HvTDF1, supporting a conserved role for TDF1 in monocots and dicots. This indicates that tapetum development shares similarity between monocot and dicots; however, barley HvTDF1 appears to uniquely act as a modifier to activate tapetum gene expression pathways, which are subsequently also induced by other factors. Therefore, the absence of HvTDF1 results in delayed developmental progression rather than pathway failure, although inevitably still results in pollen degeneration.


Assuntos
Arabidopsis , Hordeum , Hordeum/genética , Hordeum/metabolismo , Regulação da Expressão Gênica de Plantas , Flores/fisiologia , Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo
11.
Plant Physiol ; 189(2): 955-971, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35274732

RESUMO

Environmental signals, especially daylength, play important roles in determining fertility in photoperiod-sensitive genic male sterile (PGMS) lines that are critical to sustain production of high-yielding hybrid rice (Oryza sativa) varieties. However, the mechanisms by which PGMS lines perceive changes in photoperiod and transmit those signals to elicit downstream effects are not well understood. In this study, we compared the transcriptomes from the leaves and anthers of carbon starved anther (csa), a PGMS line, to wild-type (WT) tissues under different photoperiods. Components of circadian clock in the leaves, including Circadian Clock-Associated 1 and Pseudo-Response Regulator (PRR95), played vital roles in sensing the photoperiod signals. Photoperiod signals were weakly transduced to anthers, where gene expression was mainly controlled by the CSA allele. CSA played a critical role in regulating sugar metabolism and cell wall synthesis in anthers under short-day conditions, and transcription of key genes inducing csa-directed sterility was upregulated under long-day (LD) conditions though not to WT levels, revealing a mechanism to explain the partial restoration of fertility in rice under LD conditions. Eight direct targets of CSA regulation were identified, all of which were genes involved in sugar metabolism and transport (cell wall invertases, SWEETs, and monosaccharide transporters) expressed only in reproductive tissues. Several hub genes coordinating the effects of CSA regulation were identified as critical elements determining WT male fertility and further analysis of these and related genes will reveal insights into how CSA coordinates sugar metabolism, cell wall biosynthesis, and photoperiod sensing in rice anther development.


Assuntos
Oryza , Fertilidade/genética , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Fotoperíodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Açúcares/metabolismo
12.
Opt Lett ; 48(3): 590-593, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36723538

RESUMO

Uncoupled multicore fibers are promising platforms for advanced optical communications, optical computing, and novel laser systems. In this paper, an injection-locked highly ytterbium (Yb3+)-doped uncoupled-61-core phosphate fiber laser at 1030 nm is reported. The 61-core fiber with a core-to-core pitch of 20 µm was fabricated with the stack-and-draw technique. Each core doped with 6-wt.% Yb3+ ions has a diameter of 3 µm and numerical aperture of 0.2. Linearly polarized single-frequency output of 9.1 W was obtained from the injection-locked cavity with a 10-cm-long gain fiber at a pump power of 23.6 W. The injection locking of all 61 cores was confirmed by inspecting the longitudinal modes of the individual lasers with a scanning Fabry-Perot interferometer. The performance of the injection-locked 61-core fiber laser was characterized and compared to that of the free-running operation in terms of optical spectrum, near- and far-field intensity profiles, and relative intensity noise.

13.
Opt Lett ; 48(14): 3817-3820, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37450758

RESUMO

A single-frequency distributed-Bragg-reflector fiber laser at 980 nm with a quantum defect of less than 0.6% was developed with a 1.5-cm 12 wt% ytterbium-doped phosphate fiber pumped by a 974.5-nm laser diode. Linearly polarized single-longitude-mode laser with a polarization extinction ratio (PER) of nearly 30 dB and spectral linewidth of less than 1.8 kHz was obtained. A maximum output power of 275 mW was measured at a launched pump power of 620 mW. The performance of the single-frequency fiber laser pumped at 909 nm and 976 nm was also characterized. This research demonstrated an approach to high-power single-frequency fiber laser oscillators with mitigated thermal effects.


Assuntos
Lasers Semicondutores , Itérbio
14.
Inorg Chem ; 62(1): 401-407, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36537348

RESUMO

The first mixed-valence nanocluster CuI/CuII with the highest percentage of CuII ions was synthesized by using 4-tert-butylcalix[4]arene (Calix4), with the formula DMF2⊂[(CO3)2-@CuII6CuI3(Calix4)3Cl2(DMF)5(H3O)]•DMF (1), as a photothermal nanocluster. Its structure was characterized using single-crystal X-ray diffraction, Fourier-transform infrared spectroscopy, and powder X-ray diffraction. In addition, the charge state and chemical composition of the nanocluster were determined using electrospray ionization spectrometry and X-ray photoelectron spectroscopy (XPS) spectrum. The results of the XPS and X-ray crystallography revealed that there are two independent CuII and CuI centers in nanocluster 1 with the relative abundances of 66.6 and 33.3% for CuII and CuI, respectively. The nanocluster contains three four-coordinated CuI ions with a square-planar geometry and six five-coordinated CuII ions with a square pyramid geometry. The nanocluster shows strong near-infrared optical absorption in the solid state and excellent photothermal conversion ability (the equilibrium temperature ∼78.2 °C) with the light absorption centers in 286-917 nm over previous reported pentanucleus CuI4CuII clusters and CuII compounds.

15.
Phys Chem Chem Phys ; 25(44): 30373-30380, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37909301

RESUMO

Structurally precise metal nanoclusters with a facile synthetic process and high catalytic performance have been long pursued. These atomically precise nanocatalysts are regarded as model systems to study structure-performance relationships, surface coordination chemistry, and the reaction mechanism of heterogeneous metal catalysts. Nevertheless, the research on silver-based nanoclusters for driving chemical transformations is sluggish in comparison to gold counterparts. Herein, we report the one-step synthesis of Pt/Ag alloy nanoclusters of [PtAg9(C18H12Br3P)7Cl3](C18H12Br3P), which are highly active in catalysing cycloaddition reactions of CO2 and epoxides. The cluster was obtained in a rather simple way with the reduction of silver and platinum salts in the presence of ligands in one pot. The molecular structure of the titled cluster describes the protection of the Pt-centred Ag9 crown by the shell of phosphine ligands and halides. Its electronic structure, as revealed by density function theoretical calculations, adopts a superatomic geometry with 1S21P6 configuration. Interestingly, the cluster displays high activity in the formation of cyclic carbonates from CO2 under mind conditions.

16.
Chem Soc Rev ; 51(19): 8378-8405, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36112107

RESUMO

Developing hierarchical ordered systems is challenging. Using organo-macrocycles to construct metal-organic frameworks (MOFs) and porous coordination cages (PCCs) provides an efficient way to obtain hierarchical assemblies. Macrocycles, such as crown ethers, cyclodextrins, calixarenes, cucurbiturils, and pillararenes, can be incorporated within MOFs/PCCs and they also endow the resultant composites with enhanced properties and functionalities. This review summarizes recent developments of organo-macrocycle-containing hierarchical MOFs/PCCs, emphasizing applications and structure-property relationships of these hierarchically porous materials. This review provides insights for future research on hierarchical self-assembly using macrocycles as building blocks and functional ligands to extend the applications of the composites.


Assuntos
Calixarenos , Éteres de Coroa , Ciclodextrinas , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Porosidade
17.
Molecules ; 28(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36771027

RESUMO

Cancer remains one of the most pressing diseases in the world. Traditional treatments, including surgery, chemotherapy, and radiotherapy still show certain limitations. Recently, numerous cancer treatments have been proposed in combination with novel materials, such as photothermal therapy, chemodynamic therapy, immunotherapy, and a combination of therapeutic approaches. These new methods have shown significant advantages in reducing side effects and synergistically enhancing anti-cancer efficacy. In addition to the above approaches, early diagnosis and in situ monitoring of lesion areas are also important for reducing side effects and improving the success rate of cancer therapy. This depends on the decent use of bioimaging technology. In this review, we mainly summarize the recent advances in porous framework materials for bioimaging and cancer therapy. In addition, we present future challenges relating to bioimaging and cancer therapy based on porous framework materials.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Porosidade , Fototerapia , Terapia Combinada , Neoplasias/diagnóstico por imagem , Neoplasias/terapia
18.
Water Sci Technol ; 87(8): 1945-1960, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37119165

RESUMO

A mechanical flocculation system with multi-chambers in series is commonly used as the advanced phosphorus removal technology for wastewater treatment. This work aims to numerically investigate the inner states and overall performance of industrial-scale mechanical flocculators in series. This is based on our previously developed computational fluid dynamics (CFD) flocculation model which is extended to consider the key chemical reactions of phosphorus removal. The effects of the number of flocculation chambers, locations, and sizes of the flocculation chamber connection as well as operational combinations of impeller speeds are investigated. With a decreasing number of flocculation chambers, the main vortexes and chemical reactions are weakened, while the small flocs form. Both the phosphorus removal efficiency η and the average floc size dp reduce as the number of flocculation chambers decreases. The connection location of flocculation chambers directly determines the turbulent flow, thus influencing the key performance indicators. However, the phosphorus removal efficiency η and average particle size dp are little affected by the size of the flocculation chamber connection. As the impeller speeds in series gradually increase, the gradient of floc size distribution in each chamber is enlarged and the chemical reaction is enhanced over the working volume.


Assuntos
Purificação da Água , Floculação , Simulação por Computador , Tamanho da Partícula , Fósforo
19.
Angew Chem Int Ed Engl ; 62(29): e202304134, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37211537

RESUMO

The reduction of alkynyl-silver and phosphine-silver precursors with a weak reducing reagent Ph2 SiH2 led to the formation of a novel silver nanocluster [Ag93 (PPh3 )6 (C≡CR)50 ]3+ (R=4-CH3 OC6 H4 ), which is the largest structurally characterized cluster of clusters. This disc-shaped cluster has a Ag69 kernel consisting of a bicapped hexagonal prismatic Ag15 unit wrapped by six Ino decahedra through edge-sharing. This is the first time that Ino decahedra are used as a building block to assemble a cluster of clusters. Moreover, the central silver atom has a coordination number of 14, which is the highest in metal nanoclusters. This work provides a diverse metal packing pattern in metal nanoclusters, which is helpful for understanding metal cluster assembling mechanisms.

20.
Angew Chem Int Ed Engl ; 62(31): e202303896, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37148158

RESUMO

Mimicking the active site and the substrate binding cavity of the enzyme to achieve specificity in catalytic reactions is an essential challenge. Herein, porous coordination cages (PCCs) with intrinsic cavities and tunable metal centers have proved the regulation of reactive oxygen species (ROS) generating pathways as evidenced by multiple photo-induced oxidations. Remarkably, in the presence of the Zn4 -µ4 -O center, PCC converted dioxygen molecules from triplet to singlet excitons, whereas the Ni4 -µ4 -O center promoted the efficient dissociation of electrons and holes to conduct electron transfer towards substrates. Accordingly, the distinct ROS generation behavior of PCC-6-Zn and PCC-6-Ni enables the conversion of O2 to 1 O2 and O2 ⋅- , respectively. In contrast, the Co4 -µ4 -O center combined the 1 O2 and O2 ⋅- together to generate carbonyl radicals, which in turn reacted with the oxygen molecules. Harnessing the three oxygen activation pathways, PCC-6-M (M=Zn/Ni/Co) display specific catalytic activities in thioanisole oxidation (PCC-6-Zn), benzylamine coupling (PCC-6-Ni), and aldehyde autoxidation (PCC-6-Co). This work not only provides fundamental insights into the regulation of ROS generation by a supramolecular catalyst but also demonstrates a rare example of achieving reaction specificity through mimicking natural enzymes by PCCs.


Assuntos
Metais , Oxigênio , Espécies Reativas de Oxigênio , Metais/química , Oxirredução , Oxigênio/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa