Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Chem ; 150: 107536, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38878751

RESUMO

Carboxylesterase 1 (CES1), a member of the serine hydrolase superfamily, is involved in a wide range of xenobiotic and endogenous substances metabolic reactions in mammals. The inhibition of CES1 could not only alter the metabolism and disposition of related drugs, but also be benefit for treatment of metabolic disorders, such as obesity and fatty liver disease. In the present study, we aim to develop potential inhibitors of CES1 and reveal the preferred inhibitor structure from a series of synthetic pyrazolones (compounds 1-27). By in vitro high-throughput screening method, we found compounds 25 and 27 had non-competitive inhibition on CES1-mediated N-alkylated d-luciferin methyl ester (NLMe) hydrolysis, while compound 26 competitively inhibited CES1-mediated NLMe hydrolysis. Additionally, Compounds 25, 26 and 27 can inhibit CES1-mediated fluorescent probe hydrolysis in live HepG2 cells with effect. Besides, compounds 25, 26 and 27 could effectively inhibit the accumulation of lipid droplets in mouse adipocytes cells. These data not only provided study basis for the design of newly CES1 inhibitors. The present study not only provided the basis for the development of lead compounds for novel CES1 inhibitors with better performance, but also offered a new direction for the explore of candidate compounds for the treatment of hyperlipidemia and related diseases.

2.
J Nat Prod ; 86(7): 1824-1831, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37337963

RESUMO

A set of 22 analogs of licochalcone A was designed and synthesized to explore their potentials as dipeptidyl peptidase 4 (DPP4) inhibitors with anti-inflammatory effects. The anti-DPP4 effects of these analogs were evaluated using the fluorescent substrate Gly-Pro-N-butyl-4-amino-1,8-naphthalimide (GP-BAN). The nitro-substituted analogue 27 exhibited the most potent activity (Ki = 0.96 µM). A structure-activity relationship investigation revealed that 4-hydroxyl and 5-chloro substituents are essential for DPP4 inhibition, while the 3'-nitro substituent improved both DPP4 inhibition and microsomal stability. Furthermore, compound 27 demonstrated good selectivity for DPP4 over other proteases, including dipeptidyl peptidase 9 (DPP9), thrombin, prolyl endopeptidase (PREP), and fibroblast activation protein (FAP). The cytotoxic effect of 27 was evaluated in cancer cell lines HepG-2 and Caco-2 and in somatic RAW264.7 cells and RPTECs. Compound 27 showed no toxicity to normal cells and weak toxicity to cancer cells. In a living cell imaging assay, 27 blocked the dipeptidase activity of DPP4 in both Caco-2 and HepG-2 cells. This compound also dose-dependently suppressed the expression levels of the chemokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1ß (IL-1ß).


Assuntos
Chalconas , Inibidores da Dipeptidil Peptidase IV , Humanos , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/química , Células CACO-2 , Chalconas/farmacologia , Anti-Inflamatórios/farmacologia
3.
Acta Pharmacol Sin ; 43(4): 1072-1081, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34183756

RESUMO

Jingyin granules, a marketed antiviral herbal medicine, have been recommended for treating H1N1 influenza A virus infection and Coronavirus disease 2019 (COVID-19) in China. To fight viral diseases in a more efficient way, Jingyin granules are frequently co-administered in clinical settings with a variety of therapeutic agents, including antiviral drugs, anti-inflammatory drugs, and other Western medicines. However, it is unclear whether Jingyin granules modulate the pharmacokinetics of Western drugs or trigger clinically significant herb-drug interactions. This study aims to assess the inhibitory potency of the herbal extract of Jingyin granules (HEJG) against human drug-metabolizing enzymes and to clarify whether HEJG can modulate the pharmacokinetic profiles of Western drug(s) in vivo. The results clearly demonstrated that HEJG dose-dependently inhibited human CES1A, CES2A, CYPs1A, 2A6, 2C8, 2C9, 2D6, and 2E1; this herbal medicine also time- and NADPH-dependently inhibited human CYP2C19 and CYP3A. In vivo tests showed that HEJG significantly increased the plasma exposure of lopinavir (a CYP3A-substrate drug) by 2.43-fold and strongly prolonged its half-life by 1.91-fold when HEJG (3 g/kg) was co-administered with lopinavir to rats. Further investigation revealed licochalcone A, licochalcone B, licochalcone C and echinatin in Radix Glycyrrhizae, as well as quercetin and kaempferol in Folium Llicis Purpureae, to be time-dependent CYP3A inhibitors. Collectively, our findings reveal that HEJG modulates the pharmacokinetics of CYP substrate-drug(s) by inactivating CYP3A, providing key information for both clinicians and patients to use herb-drug combinations for antiviral therapy in a scientific and reasonable way.


Assuntos
Tratamento Farmacológico da COVID-19 , Vírus da Influenza A Subtipo H1N1 , Animais , Antivirais/farmacologia , Inibidores do Citocromo P-450 CYP3A , Interações Ervas-Drogas , Humanos , Microssomos Hepáticos , Ratos
4.
J Enzyme Inhib Med Chem ; 37(1): 629-640, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35100926

RESUMO

Pancreatic lipase (PL) is a well-known key target for the prevention and treatment of obesity. Human carboxylesterase 1A (hCES1A) has become an important target for the treatment of hyperlipidaemia. Thus, the discovery of potent dual-target inhibitors based on PL and hCES1A hold great potential for the development of remedies for treating related metabolic diseases. In this study, a series of natural triterpenoids were collected and the inhibitory effects of these triterpenoids on PL and hCES1A were determined using fluorescence-based biochemical assays. It was found that oleanolic acid (OA) and ursolic acid (UA) have the excellent inhibitory effects against PL and hCES1A, and highly selectivity over hCES2A. Subsequently, a number of compounds based on the OA and UA skeletons were synthesised and evaluated. Structure-activity relationship (SAR) analysis of these compounds revealed that the acetyl group at the C-3 site of UA (compound 41) was very essential for both PL and hCES1A inhibition, with IC50 of 0.75 µM and 0.014 µM, respectively. In addition, compound 39 with 2-enol and 3-ketal moiety of OA also has strong inhibitory effects against both PL and hCES1A, with IC50 of 2.13 µM and 0.055 µM, respectively. Furthermore, compound 39 and 41 exhibited good selectivity over other human serine hydrolases including hCES2A, butyrylcholinesterase (BChE) and dipeptidyl peptidase IV (DPP-IV). Inhibitory kinetics and molecular docking studies demonstrated that both compounds 39 and 41 were effective mixed inhibitors of PL, while competitive inhibitors of hCES1A. Further investigations demonstrated that both compounds 39 and 41 could inhibit adipocyte adipogenesis induced by mouse preadipocytes. Collectively, we found two triterpenoid derivatives with strong inhibitory ability on both PL and hCES1A, which can be served as promising lead compounds for the development of more potent dual-target inhibitors targeting on PL and hCES1A.


Assuntos
Hidrolases de Éster Carboxílico/antagonistas & inibidores , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Lipase/antagonistas & inibidores , Pâncreas/enzimologia , Triterpenos/farmacologia , Hidrolases de Éster Carboxílico/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Lipase/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Triterpenos/síntese química , Triterpenos/química
5.
Bioorg Med Chem ; 40: 116187, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33965840

RESUMO

Carboxylesterase 2 (CES2) is one of the most important Phase I drug metabolizing enzymes in the carboxylesterase family. It plays crucial roles in the bioavailability of oral ester prodrugs and the therapeutic effect of some anticancer drugs such as irinotecan (CPT11) and capecitabine. In addition to the well-known roles of CES2 in xenobiotic metabolism, the enzyme also participates in endogenous metabolism and the production of lipids. In this study, we synthesized a series of pyrazolones and assayed their inhibitory effects against CES2 in vitro. Structure-activity relationship analysis of these pyrazolones reveals that the introduction of 4-methylphenyl unit (R1), 4-methylbenzyl (R2) and cyclohexyl (R3) moieties are beneficial for CES2 inhibition. Guided by these SARs results, 1-cyclohexyl-4-(4-methylbenzyl)-3-p-tolyl-1H- pyrazol-5(4H)-one (27) was designed and synthesized. Further investigations demonstrated that the compound 27 exhibited stronger CES2 inhibition activity with a lower IC50 value (0.13 µM). The inhibition kinetic study demonstrated that compound 27 inhibited the hydrolysis of CES2-fluorescein diacetate (FD) through non-competitive inhibition. In addition, the molecular docking showed that the core of pyrazolone, the cyclohexane moiety, 4-methylbenzyl and 4-methylphenyl groups in compound 27 all played important roles with the amino acid residues of CSE2. Also, compound 27 could inhibit adipocyte adipogenesis induced by mouse preadipocytes. In brief, we designed and synthesized a novel pyrazolone compound with a strong inhibitory ability on CES2 and could inhibit the adipogenesis induced by mouse preadipocytes, which can be served as a promising lead compound for the development of more potent pyrazolone-type CES2 inhibitors, and also used as a potential tool for exploring the biological functions of CES2 in human being.


Assuntos
Adipogenia/efeitos dos fármacos , Carboxilesterase/antagonistas & inibidores , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Pirazolonas/farmacologia , Carboxilesterase/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Pirazolonas/síntese química , Pirazolonas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
6.
J Enzyme Inhib Med Chem ; 36(1): 1079-1087, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34030574

RESUMO

Inhibitors of COMT are clinically used for the treatment of Parkinson's disease. Here, we report the first natural pentacyclic triterpenoid-type COMT inhibitors and their structure-activity relationships and inhibition mechanism. The most potent compounds were found to be oleanic acid, betulinic acid and celastrol with IC50 values of 3.89-5.07 µM, that acted as mixed (uncompetitive plus non-competitive) inhibitors of COMT, representing a new skeleton of COMT inhibitor. Molecular docking suggested that they can specifically recognise and bind with the unique hydrophobic residues surrounding the catechol pocket. Furthermore, oleanic acid and betulinic acid proved to be less disruptive of mitochondrial membrane potential (MMP) compared to tolcapone, thus reducing the risk of liver toxicity. These findings could be used to produce an ideal lead compound and to guide synthetic efforts in generating related derivatives for further preclinical testing.


Assuntos
Produtos Biológicos/farmacologia , Catecol O-Metiltransferase/metabolismo , Inibidores Enzimáticos/farmacologia , Triterpenos Pentacíclicos/farmacologia , Produtos Biológicos/síntese química , Produtos Biológicos/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Cinética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Conformação Molecular , Simulação de Acoplamento Molecular , Triterpenos Pentacíclicos/síntese química , Triterpenos Pentacíclicos/química , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade
7.
Bioorg Chem ; 105: 104367, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33080495

RESUMO

Human Carboxylesterase 2A (hCES2A), one of the most important serine hydrolases, plays crucial roles in the hydrolysis and the metabolic activation of a wide range of esters and amides. Increasing evidence has indicated that potent inhibition on intestinal hCES2A may reduce the excessive accumulation of SN-38 (the hydrolytic metabolite of irinotecan with potent cytotoxicity) in the intestinal tract and thereby alleviate the intestinal toxicity triggered by irinotecan. In this study, more than sixty natural alkaloids have been collected and their inhibitory effects against hCES2A are assayed using a fluorescence-based biochemical assay. Following preliminary screening, seventeen alkaloids are found with strong to moderate hCES2A inhibition activity. Primary structure-activity relationships (SAR) analysis of natural isoquinoline alkaloids reveal that the benzo-1,3-dioxole group and the aromatic pyridine structure are beneficial for hCES2A inhibition. Further investigations demonstrate that a steroidal alkaloid reserpine exhibits strong hCES2A inhibition activity (IC50 = 0.94 µM) and high selectivity over other human serine hydrolases including hCES1A, dipeptidyl peptidase IV (DPP-IV), butyrylcholinesterase (BChE) and thrombin. Inhibition kinetic analyses demonstrated that reserpine acts as a non-competitive inhibitor against hCES2A-mediated FD hydrolysis. Molecular docking simulations demonstrated that the potent inhibition of hCES2A by reserpine could partially be attributed to its strong σ-π and S-π interactions between reserpine and hCES2A. Collectively, our findings suggest that reserpine is a potent and highly selective inhibitor of hCES2A, which can be served as a promising lead compound for the development of more efficacious and selective alkaloids-type hCES2A inhibitors for biomedical applications.


Assuntos
Alcaloides/farmacologia , Produtos Biológicos/farmacologia , Carboxilesterase/antagonistas & inibidores , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Alcaloides/síntese química , Alcaloides/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Carboxilesterase/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Cinética , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
8.
Bioorg Chem ; 77: 320-329, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29421708

RESUMO

Human carboxylesterases (hCEs) are key enzymes from the serine hydrolase superfamily. Among all identified hCEs, human carboxylesterase 2 (hCE2) plays crucial roles in the metabolic activation of ester drugs including irinotecan and flutamide. Selective and potent hCE2 inhibitors could be used to alleviate the toxicity induced by hCE2-substrate drugs. In this study, more than fifty flavonoids were collected to assay their inhibitory effects against hCE2 using a fluorescence-based method. The results demonstrated that C3 and C6 hydroxy groups were essential for hCE2 inhibition, while O-glycosylation or C-glycosylation would lead to the loss of hCE2 inhibition. Among all tested flavonoids, 5,6-dihydroxyflavone displayed the most potent inhibitory effect against hCE2 with the IC50 value of 3.50 µM. The inhibition mechanism of 5,6-dihydroxyflavone was further investigated by both experimental and docking simulations. All these findings are very helpful for the medicinal chemists to design and develop more potent and highly selective flavonoid-type hCE2 inhibitors.


Assuntos
Carboxilesterase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Carboxilesterase/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Flavonoides/síntese química , Flavonoides/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
9.
Chemistry ; 23(45): 10800-10807, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28512752

RESUMO

A practical two-photon fluorescent probe was developed for highly sensitive and selective sensing of the activities of catechol-O-methyltransferase (COMT) in complex biological samples. To this end, a series of 3-substituted 7,8-dihydroxycoumarins were designed and synthesized. Among them, 3-BTD displayed the best combination of selectivity, sensitivity, reactivity, and fluorescence response following COMT-catalyzed 8-O-methylation. The newly developed two-photon fluorescent probe 3-BTD can be used for determining the activities of COMT in complex biological samples and bio-imaging of endogenous COMT in living cells and tissue slices with good cell permeability, low cytotoxicity, and high imaging resolution. All these findings suggest that 3-BTD holds great promise for developing therapeutic molecules that target COMT, as well as for exploring COMT-associated biological processes and its biological functions in living systems. Furthermore, the strategy also sheds new light on the development of fluorescent probes for other conjugative enzymes.


Assuntos
Catecol O-Metiltransferase/metabolismo , Cumarínicos/síntese química , Corantes Fluorescentes/química , Animais , Sítios de Ligação , Encéfalo/metabolismo , Catecol O-Metiltransferase/química , Linhagem Celular Tumoral , Cumarínicos/química , Cumarínicos/metabolismo , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Humanos , Cinética , Microscopia de Fluorescência por Excitação Multifotônica , Simulação de Acoplamento Molecular , Fótons , Ratos , Espectrometria de Fluorescência
10.
Biotechnol Lett ; 38(8): 1367-73, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27146204

RESUMO

OBJECTIVES: To develop a practical method to prepare tilianin by highly selective and efficient hydrolysis of the C-7 rhamnosyl group from linarin. RESULTS: Naringinase was utilized to selectively catalyze the formation of tilianin using linarin as the starting material. The reaction conditions, including temperature, pH, metal ions, substrate concentration and enzyme concentration, were optimized. At 60 °C, naringinase showed enhanced α-L-rhamnosidase activity while the ß-D-glucosidase activity was abrogated. The addition of Mg(2+), Fe(2+) and Co(2+) was also beneficial for selective biotransformation of linarin to tilianin. Under the optimized conditions (pH 7.0 at 60 °C), linarin could be nearly completely transformed to tilianin with excellent selectivity (>98.9 %), while that of the by-product acacetin was less than 1.1 %. In addition, the structure of target product tilianin was fully characterized by HR-MS and (1)H-NMR. CONCLUSION: A highly selective and efficient biotransformation of linarin to tilianin was developed by the proper control of incubation temperature, which enhanced the α-L-rhamnosidase activity of naringinase and blocked its ß-D-glucosidase activity.


Assuntos
Flavonoides/metabolismo , Glicosídeos/metabolismo , Complexos Multienzimáticos/metabolismo , beta-Glucosidase/metabolismo , Concentração de Íons de Hidrogênio , Temperatura
11.
Xenobiotica ; 45(11): 954-60, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26053559

RESUMO

1. Bufalin (BF), one of the major bioactive compounds in traditional Chinese medicine (TCM) Chansu, has been found with various pharmacological and toxicological effects. This study aims to investigate the species differences in phase I metabolism of BF in hepatic microsomes from human and five common experimental animals. 2. Metabolite profiling demonstrated that two major metabolites were formed in liver microsomes from human and animal species in NADPH-generating system. Two major metabolites were identified as 5ß-hydroxyl-bufalin and 3-keto-bufalin, with the help of authentic standards. CYP3A was assigned as the main isoform involved in both 5ß-hydroxylation and 3-oxidation in all studied liver microsomes. The apparent kinetic parameters including substrate affinity and catalytic efficiency for 5ß-hydroxylation and 3-oxidation of BF were also determined. 3. In summary, CYP3A mediated 5ß-hydroxylation and 3-oxidation were two major metabolic pathways of BF in hepatic microsomes from human and five studied animals, but kinetic analysis demonstrated that the intrinsic clearances of these two metabolic pathways were much different among various species. The qualitative and quantitative interspecies study indicated that minipig exhibited the similar metabolic profile, kinetic behaviors and intrinsic metabolic clearances of BF phase I biotransformation in comparison with that of human.


Assuntos
Bufanolídeos/farmacocinética , Microssomos Hepáticos/metabolismo , Animais , Bufanolídeos/química , Bufanolídeos/farmacologia , Cães , Humanos , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos ICR , Microssomos Hepáticos/química , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie , Suínos , Porco Miniatura
12.
Anal Chim Acta ; 1297: 342379, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38438245

RESUMO

Here, 1,3,4-thiadiazole unit was employed as novel excited state intramolecular proton transfer (ESIPT) structure to prepare favorable fluorescent probe. High selectivity and rapid response to Cu2+ was obtained and the settling reaction was also used to recover ESIPT characteristics of probe to achieve sequential detection of H2S. Remarkable color change of solution from colorless to bright yellow and fluorescence emission from green to dark realized the visual detection of Cu2+ by naked eyes and transition of probe into portable fluorescent test strips. As expected, L-E could be utilized to quantitatively sense Cu2+ and H2S in different actual water and food samples including herbs, wine and fruits. The limits of detection for Cu2+ and H2S were as low as 34.5 nM and 38.6 nM. Also, probe L-E achieved real-time, portable, on-site quantitative detection of Cu2+ via a colorimeter and a smartphone platform with limit of detection to 90.3 nM.


Assuntos
Corantes Fluorescentes , Tiadiazóis , Vinho , Frutas , Prótons
13.
Front Bioeng Biotechnol ; 12: 1387146, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638318

RESUMO

Butyrylcholinesterase (BChE) is widely expressed in multiple tissues and has a vital role in several key human disorders, such as Alzheimer's disease and tumorigenesis. However, the role of BChE in human disorders has not been investigated. Thus, to quantitatively detect and visualize dynamical variations in BChE activity is essential for exploring the biological roles of BChE in the progression of a number of human disorders. Herein, based on the substrate characteristics of BChE, we customized and synthesized three near-infrared (NIR) fluorescent probe substrates with cyanine-skeleton, and finally selected a NIR fluorescence probe substrate named CYBA. The CYBA demonstrated a significant increase in fluorescence when interacting with BChE, but mainly avoided AChE. Upon the addition of BChE, CYBA could be specifically hydrolyzed to TBO, resulting in a significant NIR fluorescence signal enhancement at 710 nm. Systematic evaluation revealed that CYBA exhibited exceptional chemical stability in complex biosamples and possessed remarkable selectivity and sensitivity towards BChE. Moreover, CYBA was successfully applied for real-time imaging of endogenous BChE activity in two types of nerve-related living cells. Additionally, CYBA demonstrated exceptional stability in the detection of complex biological samples in plasma recovery studies (97.51%-104.01%). Furthermore, CYBA was used to construct a high-throughput screening (HTS) method for BChE inhibitors using human plasma as the enzyme source. We evaluated inhibitory effects of a series of natural products and four flavonoids were identified as potent inhibitors of BChE. Collectively, CYBA can serve as a practical tool to track the changes of BChE activity in complicated biological environments due to its excellent capabilities.

14.
J Org Chem ; 78(22): 11444-9, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24131444

RESUMO

Evolution of the synthetic strategy that culminated in the first asymmetric total synthesis of the Aspidosperma alkaloid limaspermidine is described. The successful enantioselective route to (-)-limaspermidine proceeds in 10 steps and with the isolation of only six intermediates using a Pd-catalyzed enantioselective decarboxylative allylation we have recently developed. This first enantioselective synthesis of (-)-limaspermidine establishes unambiguously its absolute configuration and allows the first asymmetric formal total synthesis of the Aspidoalbine alkaloid (-)-1-acetylaspidoalbidine.


Assuntos
Alcaloides Indólicos/síntese química , Alcaloides Indólicos/química , Estrutura Molecular , Estereoisomerismo
15.
Mol Biol Rep ; 40(1): 255-62, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23070908

RESUMO

To perform a meta-analysis investigating the association of MTHFR C677T polymorphism and susceptibility of cervical cancer. All case-control studies published in English and Chinese with estimates of the relationship between MTHFR C677T polymorphism and risk of cervical cancer were analyzed using odds ratio (OR) with 95 % confidence interval (CI). A total of 10 studies (2,023 cases and 2,570 controls) were included in the meta-analysis. No significant association was observed between T allele and C allele (OR = 0.90; 95 %CI = 0.70-1.17; P = 0.43), and for genotype TT versus CC (OR = 1.09; 95 %CI = 0.74-1.61; P = 0.67), CT versus CC (OR = 0.95; 95 %CI = 0.75-1.20; P = 0.65), CT + TT versus CC (OR = 0.91; 95 %CI = 0.66-1.24; P = 0.55). The current meta-analysis results suggest that the MTHFR C677T polymorphism may not be associated with cervical cancer.


Assuntos
Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Polimorfismo de Nucleotídeo Único , Neoplasias do Colo do Útero/genética , Alelos , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Razão de Chances , Viés de Publicação
16.
Mol Biol Rep ; 40(9): 5213-23, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23922195

RESUMO

The aim of this study was to summarize results on the association of cytotoxic T-lymphocyte antigen-4 (CTLA-4) promoter exon-1 +49 and 1722T/C polymorphism with systemic lupus erythematosus (SLE) susceptibility by using the meta-analysis. We searched all the publications about the association between CTLA-4) promoter exon-1 +49 and 1722T/C polymorphism and SLE from PubMed, Elsevier Science Direct, Chinese Biomedical Literature Database (CBM), Chinese National Knowledge Infrastructure (CNKI), and Wanfang (Chinese). Previous CTLA-4 association studies with SLE, however, have produced inconsistent results. We have performed a meta-analysis to better assess the purported associations. A total of 17 independent studies (to June 2012) testing association between one or more CTLA-4 polymorphisms and SLE were used in this analysis. We have compared allele and genotype frequencies at two polymorphic sites found in exon-1 (at +49) and the promoter region (at -1722). The data demonstrate that the exon-1 +49 polymorphism is associated with SLE susceptibility in Asian population. The overall risk, measured by odds ratio (OR), stratification by ethnicity indicates the exon-1 +49 GG+GA genotype is associated with SLE, at least in Asians (OR = 0.85, 95 % CI = 0.73-0.99, P = 0.04 for GG+GA vs. AA; OR = 0.85, 95 % CI = 0.72-1.00, P = 0.05 for AG vs. AA). Similar trends are found in allele-specific risk estimates and disease association. Overall, there was significant association between the 1722T/C polymorphism and overall SLE risks (OR = 0.78, 95 % CI = 0.63-0.97, P = 0.04 for GG+GA vs. AA, OR = 0.87, 95 % CI = 0.76-0.99, P = 0.04 for G vs. A) in Asian population.In summary, this meta-analysis demonstrates that the CTLA-4 promoter +49A/G and promoter -1722C/T polymorphism may confer susceptibility to SLE, especially in Asian-derived population.


Assuntos
Antígeno CTLA-4/genética , Predisposição Genética para Doença/genética , Lúpus Eritematoso Sistêmico/genética , Povo Asiático/genética , Biologia Computacional , Frequência do Gene , Estudos de Associação Genética , Humanos , Razão de Chances , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 300: 122904, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37229941

RESUMO

In this work, three Schiff-based fluorescent probes with aggregation-induced emission (AIE) and excited intramolecular proton transfer (ESIPT) characters were synthesized by grafting 2-aminobenzothiazole group onto 4-substituted salicylaldehydes. More important, a rare tri-responsive fluorescent probe (SN-Cl) was developed by purposeful variation of substituents in the molecule. It could selectively identify Pb2+, Ag+ and Fe3+ in different solvent systems or with the help of masking agent and show complete fluorescence enhancement without interference of other ions. Meanwhile, the other two probes (SN-ON and SN-N) could only recognize Pb2+ in DMSO/Tris-HCl buffer (3: 7, v/v, pH = 7.4). According to Job's plot, density functional theory (DFT) calculations and NMR analysis, coordination between SN-Cl and Pb2+/Ag+/Fe3+ was determined. The LOD values for three ions were as low as 0.059 µM, 0.012 µM and 8.92 µM, respectively. Ideally, SN-Cl showed satisfactory performance in real water samples detection and test paper experiments for three ions. Also, SN-Cl could be used as an excellent imaging agent for Fe3+ in HeLa cells. Therefore, SN-Cl has the ability to be a "single fluorescent probe for three targets".


Assuntos
Corantes Fluorescentes , Prótons , Humanos , Corantes Fluorescentes/química , Chumbo , Bases de Schiff/química , Células HeLa , Espectrometria de Fluorescência/métodos , Íons
18.
Fitoterapia ; 168: 105549, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37244503

RESUMO

Dipeptidyl peptidase IV (DPP-IV) is an integrated type II transmembrane protein that reduces endogenous insulin contents and increases plasma glucose levels by hydrolyzing glucagon-like peptide-1 (GLP-1). Inhibition of DPP-IV regulates and maintains glucose homeostasis, making it an attractive drug target for the treatment of diabetes II. Natural compounds have tremendous potential to regulate glucose metabolism. In this study, we examined the DPP-IV inhibitory activity of a series of natural anthraquinones and synthetic structural analogues on DPP-IV using fluorescence-based biochemical assays. The inhibitory efficiency differed among anthraquinone compounds with different structures. Alizarin (7), aloe emodin (11), emodin (13) emerged the outstanding inhibitory potential for DPP-IV with IC50 values lower than 5 µM. To clarifying the inhibitory mechanism, inhibitory kinetics were performed, which showed that alizarin red S (8) and 13 were effective non-competitive inhibitors of DPP-IV, while alizarin complexone (9), rhein (12), and anthraquinone-2-carboxylic acid (23) were mixed inhibitors. Emodin was determined as inhibitor with the strongest DPP-IV-binding affinity determined via molecular docking. Structure-activity relationship (SAR) demonstrated that hydroxyl group at C-1 and C-8 sites and hydroxyl, hydroxymethyl or carboxyl group at the C-2 or C-3 site were very essential for DPP-IV inhibition, replacement of hydroxyl group with amino group at C-1 could led to an increase of the inhibitory potential. Further fluorescence imaging showed that both compounds 7 and 13 significantly inhibited DPP-IV activity in RTPEC cells. Overall, the results indicated that anthraquinones would be a natural functional ingredient for inhibiting DPP-IV and provided new ideas for searching and developing potential antidiabetic compounds.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Emodina , Humanos , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Simulação de Acoplamento Molecular , Emodina/farmacologia , Emodina/uso terapêutico , Estrutura Molecular , Hipoglicemiantes/farmacologia , Relação Estrutura-Atividade , Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/metabolismo
19.
Nat Prod Res ; : 1-9, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37471672

RESUMO

The inhibitory effects of twenty-six ginsenosides on human pancreatic lipase (hPL) and porcine pancreatic lipase (pPL) were studied. Study reveals that nine ginsenosides have moderate inhibitory effects against hPL, and good selectivity over pPL. By contrast, (S)-Rh2 showed good inhibitory effects on pPL over hPL. SAR analysis indicated that introduction of the O-glycosyl group(s) at C-3/C-7 site is unbeneficial for hPL inhibition, ginsenosides with A-skeleton is more beneficial than ginsenosides with B-/C-skeleton. Inhibition kinetic analysis indicated that Rg3 and (S)-Rh2 inhibited hPL-catalyzed DDAO-ol hydrolysis in a mixed manner. Molecular docking studies have confirmed that Rg3 and (S)-Rh2 inhibit hPL via many Pi-hydrogen interactions and hydrogen bonds with catalytic residues of hPL. These results indicated that pPL as an enzyme source could not fully represent the inhibitory effect of the tested compounds on hPL, and hPL should be used as far as possible to evaluate the inhibitory effect of PL.

20.
J Coll Physicians Surg Pak ; 33(10): 1113-1117, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37804015

RESUMO

OBJECTIVE: To investigate the changes in volumetric bone mineral density (vBMD) assessed by quantitative computed tomography (QCT) in chronic kidney disease (CKD) patients on maintenance dialysis. STUDY DESIGN: Descriptive study. Place and Duration of the Study: Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China, from March to July 2022. METHODOLOGY: Maintenance dialysis patients were selected for this study, and parameters related to renal function and bone metabolism markers were recorded. Patients undergoing routine physical examination were age-matched with maintenance dialysis patients to serve as the control group. vBMD scans of the lumbar spine (L1-3) were obtained by QCT for all participants. RESULTS: Among the 141 maintenance dialysis patients, there were 67 patients with secondary hyperparathyroidism (SHPT) and 74 patients with non-secondary hyperparathyroidism (non-SHPT) with mean vBMDs of 145.99±55.13 mg/cm3 and 129.10±44.20 mg/cm3, respectively. The 159 individuals in the control group had mean age of 52.77±11.66 years and mean vBMD of 129.62±36.36 mg/cm3. The vBMD of the SHPT group was greater than that of both the non-SHPT group and the control group (all p<0.05). For dialysis patients, vBMD was positively correlated with calcium-phosphorus product and intact parathyroid hormone (iPTH) levels (r = 0.181, 0.214, respectively, p<0.05); vBMD was inversely correlated with age (r = -0.555, p<0.05). After adjusting for the covariates, vBMD remained positively correlated with iPTH (r = 0.184, p<0.05). CONCLUSION: Increased lumbar vertebral vBMD in maintenance dialysis patients may be associated with high iPTH, providing clinicians with a new understanding of the changes in bone mineral density in maintenance dialysis patients. KEY WORDS: Bone mineral density, Quantitative computed tomography, Chronic kidney disease, Maintenance dialysis.


Assuntos
Hiperparatireoidismo Secundário , Insuficiência Renal Crônica , Humanos , Adulto , Pessoa de Meia-Idade , Densidade Óssea , Diálise Renal/efeitos adversos , Tomografia Computadorizada por Raios X/métodos , Hiperparatireoidismo Secundário/etiologia , Hiperparatireoidismo Secundário/complicações , Vértebras Lombares/diagnóstico por imagem , Hormônio Paratireóideo , Insuficiência Renal Crônica/complicações
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa