Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Guang Pu Xue Yu Guang Pu Fen Xi ; 37(3): 697-703, 2017 Mar.
Artigo em Zh, Inglês | MEDLINE | ID: mdl-30148547

RESUMO

In this work, regenerated cellulose films were prepared with an iced dissolution method, while the physical morphologies and crystal types of the products were systematically characterized with scanning electron microscope (SEM), Fourier transform infrared(FTIR), while X-Ray Diffraction (XRD). The results demonstrate that the as-prepared continuous and uniform films are indeed cellulose Ⅱ, whose morphology and crystal type are significantly different from those of the degreased cotton. Moreover, Terahertz time domain system (THz-TDS) and FTIR were employed to measure the THz spectra of the regenerated cellulose films. Accordingly, the THz characteristic peaks for the regenerated cellulose films are experimentally identified for the first time. In addition, the increase of the THz transmittance with the decrease of the wavenumber is attributed to the existence of amorphous components in the regenerated cellulose films. Although the shapes of Far-IR spectra in the range of 100~700 cm-1 are similar, the absorption peaks of the regenerated cellulose films move to lower wavenumbers (blue shift) compared with those of the degreased cotton. Based on this, we developed a new approach to distinguish the allomorphism of cellulose Ⅱ and cellulose Iß by Far-IR. Particularly, geometry optimization and IR calculation for the crystal structure of cellulose Ⅱ have been successfully processed by Density Functional Theory (DFT) using periodic boundary condition via CASTEP package. The calculated absorption peak positions are in good agreement with those experimentally measured. Consequently, the THz characteristic peaks of the regenerated cellulose films have been systematically and successfully assigned. Theoretical calculations reveal that the peaks at 42 and 54 cm-1 are assigned to the lattice vibration modes coupled with translational mode and rotational mode, respectively. Moreover, the absorption peaks in the range of 68~238 cm-1 are related with the torsion vibration of ­CH2OH group and deformation vibration of C­H bond and O­H bond, while those in the range of 351~583 cm-1 are assigned to the skeletal vibration of C­O­C bond and pyranoid ring, and those at 611 and 670 cm-1 are originated from the out-of-plane bending vibration of O­H bond. Each absorption peak is involved in more than single vibration mode. The THz spectra presented in this work, together with the theoretical simulations, indicate that the THz responses of regenerated cellulose are closely associated with both its chemical constituents and molecular structure. These results will be helpful not only for better understanding the relations between the molecular structure of the regenerated cellulose and its THz spectrum, but also for providing valuable information for future studies on the physical mechanisms of THz responses of other partially-crystalline polymers and organic biological macromolecules.


Assuntos
Celulose/química , Modelos Teóricos , Vibração , Difração de Raios X
2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(4): 870-4, 2015 Apr.
Artigo em Japonês | MEDLINE | ID: mdl-26197565

RESUMO

Fourier transform infrared (FTIR) was exploited to measure terahertz (THz) spectra in the wave number range of 30-300 cm(-1) for saturated straight chain organic molecules at room temperature. The results reveal that different organic functional groups exhibit different THz spectral characteristics. The absorption peaks of vibration modes of organic crystal lattice locate in high frequency range of THz, while those of vibration modes of intermolecular hydrogen (H) bonds appear in low frequency range of THz. Moreover, a typical absorption peak of intermolecular H bonds caused by saturated straight-chain monohydric alcohol hydroxyl functional groups locates at 57 cm(-1), while a characteristic absorption peak of intermolecular hydrogen bonds caused by triacontanoic acid carboxyl functional groups appears at 74 cm(-1). The intermolecular H bonds not only result in that the THz absorbing abilities of triacontanol and triacontanoic acid are significantly stronger than that of triacontane, but also cause regular red-shift and blue-shift of the THz absorption peaks of triacontanoic acid, as compared with those of triacontanol. In addition, density functional theory (DFT) B3LYP/6-311G(d,p) basis set was employed to simulate the THz spectra of saturated straight-chain alkane, alkanol and acid, respectively. The simulation results indicate that for the organic molecules with stronger intermolecular H bonds, lower consistent degree of the THz spectrum simulated from monomer molecule with the THz spectrum experimentally measured will occur. Moreover, the simulation results of dimer structures agree well with the measured spectra as compared to those simulated from monomer molecule structures. The results presented in this work are of great significance not only to the study of the THz spectral characteristics of other organic functional groups, but also to the clarification of the vibration modes of organic molecules. Particularly, our results are also helpful for clarifying the THz response theory of organics, and for exploiting the applications of organic materials in THz devices.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa