Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Biomed Chromatogr ; 36(9): e5428, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35708903

RESUMO

Unconjugated bile acids (BAs) have gained more attention than conjugated BAs in the association studies among diet, gut microbiota, and diseases. GC-MS is probably a good choice for specialized analysis of unconjugated BAs due to its high separation capacity and identification convenience. However, few reports have focused on the rodent unconjugated BAs using GC-MS, and the main library for identification has not included rodent-specific BAs. We developed a GC-MS method for targeted profiling of eight main unconjugated BAs in rodent models, which showed excellent performance on sensitivity, reproducibility, and accuracy. Quantitative reproducibility in terms of relative standard deviation (RSD) was in the range of 2.05-2.91%, with detection limits of 3-55 ng/mL, quantitation limits of 9-182 ng/mL, and the recovery rate of 72-115%. All the calibration curves displayed good linearity with correlation coefficient values (R2 ) more than 0.99. Using the established method, the influence of high-fat diet on the metabolism of unconjugated BAs was revealed. Significant increase in fecal unconjugated BAs induced by high-fat diet would be a potential risk to gut inflammation and cancer. The study provides a convenient and targeted GC-MS method for specialized profiling of rodent unconjugated BAs in physiological and pathological studies.


Assuntos
Ácidos e Sais Biliares , Dieta Hiperlipídica , Animais , Cromatografia Gasosa-Espectrometria de Massas , Reprodutibilidade dos Testes , Roedores
2.
Appl Microbiol Biotechnol ; 103(19): 8255-8265, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31396677

RESUMO

Coupling algal cultivation with wastewater treatment due to their potentials to alleviate energy crisis and reduce environmental burden has attracted the increased attention in recent years. However, these microalgal-based processes are challenging since daily and seasonal temperature fluctuation may affect microalgal growth in wastewater, and the effects of the temperature regimes on microalgal biomass production and wastewater nutrient removal remain unclear. In this study, Chlorella vulgaris was continuously cultured for 15 days in municipal wastewater to investigate the effects on the algal biomass and wastewater nutrient removal in three temperature regimes: (1) low temperature (4 °C), (2) high temperature (35 °C), and (3) alternating high-low temperature (35 °C in the day: 4 °C at night). Compared with the other two temperature regimes, the high-low temperature conditions generated the most biomass (1.62 g L-1), the highest biomass production rate (99.21 mg L-1 day-1), and most efficient removal of COD, TN, NH3-N, and TP (83.0%, 96.5%, 97.8%, and 99.2%, respectively). In addition, the polysaccharides, proteins, lipid content, and fatty acid methyl ester composition analysis indicates that in alternating high-low temperature condition, biomass production increased the potential for biofuel production, and there was the highest lipid content (26.4% of total dry biomass). The results showed that the nutrients except COD were all efficiently removed in these temperature conditions, and the alternating high-low temperature condition showed great potential to generate algal biomass and alleviate the wastewater nutrients. This study provides some valuable information for large-scale algal cultivation in wastewater and microalgal-based wastewater treatments.


Assuntos
Chlorella vulgaris/crescimento & desenvolvimento , Chlorella vulgaris/efeitos da radiação , Compostos Orgânicos/metabolismo , Temperatura , Águas Residuárias/microbiologia , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Biomassa , Lipídeos/análise , Polissacarídeos/análise , Proteínas/análise , Águas Residuárias/química
3.
Bioprocess Biosyst Eng ; 42(3): 391-400, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30460400

RESUMO

Harvesting technology has a significant influence on the microalgal biomass industry. This study develops a buoy-bead flotation method and analyzes the factors impacting flotation. Experimental results show that adding sodium borosilicate as an alternative microsphere material can result in 58.5% harvesting efficiency, a 25.65% increase over the foam flotation average. The Plackett-Burman design experimental results reveal that pH conditions, microsphere diameter, and the speed of agitation are the three most important factors affecting harvesting efficiency. The interaction between these three factors was all found to be significant, which indicates that the harvesting efficiency was affected by a combination of multiple factors. Analyses of the Extended Derjaguin-Landau-Vewey-Overbeek (XDLVO) theory show that the Van der Waals interactions are the key factor in the attachment of algae and microspheres. A harvesting efficiency of 89.9% can be achieved at pH 10, with 56 µm dimeter microspheres and an agitation speed of 114 rpm.


Assuntos
Biomassa , Chlorella vulgaris/crescimento & desenvolvimento , Microalgas/crescimento & desenvolvimento , Microesferas , Floculação
4.
Water Sci Technol ; 80(3): 426-436, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31596254

RESUMO

Thermal pre-flocculation to enable dispersed air flotation is an economical and ecofriendly technology for harvesting microalgae from water. However, the underlying mechanism and optimal conditions for this method remain unclear. In this study, Chlorella vulgaris (C. vulgaris) and Scenedesmus obliquus (S. obliquus) were harvested using a thermal flotation process. The surface structure and characteristics (morphology, electricity, and hydrophobicity) of the microalgae were analyzed using FT-IR (Fourier transform infrared spectroscopy), SEM (scanning electron microscopy), zeta potential, and a hydrophobic test. Further, response surface methodology (RSM) was used to optimize the flotation process. The hydrophobicity of S. obliquus exceeded that of C. vulgaris; as such, under the thermal pre-flocculation, S. obliquus (88.16%) was harvested more efficiently than C. vulgaris (47.16%). Thermal pre-flocculation denatured the lipids, carbohydrate, and proteins of microalgal cell surfaces. This resulted in a decrease in the electrostatic repulsion between the cells and air bubbles. The highest harvesting efficiency was 91.96% at 70 °C, 1,412 rpm, and 13.36 min. The results of this study demonstrate the potential for economic and ecofriendly harvesting of microalgae for biofuels and other bioproducts industries.


Assuntos
Chlorella vulgaris , Microalgas , Biocombustíveis , Biomassa , Floculação , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Biology (Basel) ; 12(4)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37106794

RESUMO

Plant and algal LDs are gaining popularity as a promising non-chemical technology for the production of lipids and oils. In general, these organelles are composed of a neutral lipid core surrounded by a phospholipid monolayer and various surface-associated proteins. Many studies have shown that LDs are involved in numerous biological processes such as lipid trafficking and signaling, membrane remodeling, and intercellular organelle communications. To fully exploit the potential of LDs for scientific research and commercial applications, it is important to develop suitable extraction processes that preserve their properties and functions. However, research on LD extraction strategies is limited. This review first describes recent progress in understanding the characteristics of LDs, and then systematically introduces LD extraction strategies. Finally, the potential functions and applications of LDs in various fields are discussed. Overall, this review provides valuable insights into the properties and functions of LDs, as well as potential approaches for their extraction and utilization. It is hoped that these findings will inspire further research and innovation in the field of LD-based technology.

6.
Eur J Pharm Sci ; 170: 106101, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34936935

RESUMO

PURPOSE: Methotrexate (MTX) is a first-line drug for rheumatoid arthritis (RA). Targeting of MTX to inflamed joints is essential to the prevention of potential toxicity and improving therapeutic effects. Gold nanoparticles (GNPs) are characterized by controllable particle sizes and good biocompatibilities, therefore, they are promising drug delivery systems. We aimed at developing a GNPs drug delivery system incorporating MTX and folic acid (FA) with strong efficacies against RA. METHODS: MTX-Cys-FA was synthesized through solid-phase organic synthesis. Then, it was coupled with sulfhydryl groups in GNPs, thereby successfully preparing a GNPs/MTX-Cys-FA nanoconjugate with targeting properties. Physical and chemical techniques were used to characterize it. Moreover, we conducted its stability, release, pharmacokinetics, biodistribution and cell cytotoxicity, cell uptake, cell migration, as well as its therapeutic effect on CIA rats. The histopathology was conducted to investigate anti-RA effects of GNPs/MTX-Cys-FA nanoconjugates. RESULTS: The GNPs/MTX-Cys-FA nanoconjugate exhibited a spherical appearance, had a particle size of 103.06 nm, a zeta potential of -33.68 mV, drug loading capacity of 11.04 %, and an encapsulation efficiency of 73.61%. Cytotoxicity experiments revealed that GNPs had good biocompatibilities while GNPs/MTX-Cys-FA exhibited excellent drug-delivery abilities. Cell uptake and migration experiment showed that nanoconjugates containing FA by LPS activated mouse mononuclear macrophages (RAW264.7) was significantly increased, and they exerted significant inhibitory effects on human fibroblast-like synoviocytes (HFLS) of RA (p<0.01). In addition, the nanoconjugate prolonged blood circulation time of MTX in collagen-induced arthritis (CIA) rats (p<0.01), enhanced MTX accumulation in inflamed joints (p<0.01), enhanced their therapeutic effects (p<0.01), and reduced toxicity to major organs (p<0.01). CONCLUSION: GNPs/MTX-Cys-FA nanoconjugates provide effective approaches for RA targeted therapeutic strategies.


Assuntos
Artrite Reumatoide , Nanopartículas Metálicas , Nanopartículas , Animais , Artrite Reumatoide/tratamento farmacológico , Ácido Fólico , Ouro , Metotrexato , Camundongos , Ratos , Técnicas de Síntese em Fase Sólida , Distribuição Tecidual
7.
Foods ; 11(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36429314

RESUMO

Until now, Streptoverticillium mobaraense transglutaminase (TG) is the only commercialized TG, but limited information is known about its selection tendency on crosslinking sites at the protein level, restricting its application in the food industry. Here, four recombinant Bacillus TGs were stable in a broad range of pH (5.0−9.0) and temperatures (<50 °C), exhibiting their maximum activity at 50−60 °C and pH 6.0−7.0. Among them, TG of B. cereus (BCETG) demonstrated the maximal specific activity of 177 U/mg. A structural analysis indicated that the Ala147-Ala156 region in the substrate tunnel of BCETG played a vital role in catalytic activity. Furthermore, bovine serum albumin, as well as nearly all protein ingredients in soy protein isolate and whey protein, could be cross-linked by BCETG, and the internal crosslinking paths of three protein substrates were elucidated. This study demonstrated Bacillus TGs are a candidate for protein crosslinking and provided their crosslinking mechanism at the protein level for applications in food processing.

8.
Biology (Basel) ; 10(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919407

RESUMO

Bioflocculation represents an attractive technology for harvesting microalgae with the potential additive effect of flocculants on the production of added-value chemicals. Chitosan, as a cationic polyelectrolyte, is widely used as a non-toxic, biodegradable bioflocculant for many algal species. The high cost of chitosan makes its large-scale application economically challenging, which triggered research on reducing its amount using co-flocculation with other components. In our study, chitosan alone at a concentration 10 mg/L showed up to an 89% flocculation efficiency for Chlorella vulgaris. Walnut protein extract (WPE) alone showed a modest level (up to 40%) of flocculation efficiency. The presence of WPE increased chitosan's flocculation efficiency up to 98% at a reduced concentration of chitosan (6 mg/L). Assessment of co-flocculation efficiency at a broad region of pH showed the maximum harvesting efficiency at a neutral pH. Fourier transform infrared spectroscopy, floc size analysis, and microscopy suggested that the dual flocculation with chitosan and walnut protein is a result of the chemical interaction between the components that form a web-like structure, enhancing the bridging and sweeping ability of chitosan. Co-flocculation of chitosan with walnut protein extract, a low-value leftover from walnut oil production, represents an efficient and relatively cheap system for microalgal harvesting.

9.
Mater Sci Eng C Mater Biol Appl ; 128: 112354, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474902

RESUMO

In this paper, silk fibroin (SF) porous microcarriers containing strontium were constructed as injectable bone tissue engineering vehicles. The effects of SF concentration and strontium content on micromorphology, element distribution, strontium ion release and cellular behavior of the constructed microcarriers were investigated. The microcarriers with an open interconnected pore can be fabricated by controlling the concentration of SF. The strontium functionalized SF microcarriers showed the sustained release of strontium ion and allowed bone mesenchymal stem cells (BMSCs) to attach, proliferate and secrete extracellular matrix. Furthermore, the strontium functionalized SF microcarriers improved the osteogenic capability of BMSCs in vitro compared with those microcarriers without sustained release of strontium ion. This study presents a valuable approach to fabricate polymeric microcarriers with the capability of sustained release of strontium ion that show potential in bone tissue engineering applications.


Assuntos
Fibroínas , Diferenciação Celular , Osteogênese , Porosidade , Estrôncio , Engenharia Tecidual , Alicerces Teciduais
10.
Nanomaterials (Basel) ; 11(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34947687

RESUMO

Thermochromic smart windows can automatically control solar radiation according to the ambient temperature. Compared with photochromic and electrochromic smart windows, they have a stronger applicability and lower energy consumption, and have a wide range of application prospects in the field of building energy efficiency. At present, aiming at the challenge of the high transition temperature of thermochromic smart windows, a large amount of innovative research has been carried out via the principle that thermochromic materials can be driven to change their optical performance by photothermal or electrothermal effects at room temperature. Based on this, the research progress of photo- and electro-driven thermochromic smart windows is summarized from VO2-based composites, hydrogels and liquid crystals, and it is pointed out that there are two main development trends of photo-/electro-driven thermochromic smart windows. One is exploring the diversified combination methods of photothermal materials and thermochromic materials, and the other is developing low-cost large-area heating electrodes.

11.
Environ Sci Pollut Res Int ; 27(23): 29239-29247, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32440871

RESUMO

Harmful algal blooms (HABs) are a growing problem worldwide, damaging human and ecosystem health. In this study, a novel buoyant-bead flotation (BBF) method using chitosan-coated fly ash cenospheres (CFACs) was developed to remove HABs in freshwater. To achieve a high removal efficiency of harmful algae (Chlorella vulgaris, Scenedesmus quadricauda, and Microcystis aeruginosa), this study investigated the effects of chitosan/fly ash ratios in CFAC composite, CFAC concentration, flotation time, and pH values on the microalgae removal. The optimized ratio of CFACs is 0.1:12, and the optimized CFAC concentration is 0.3-0.7 g L-1. However, the lower or higher ratios (0.1:4, 0.1:8, 0.1:16) result in microalgae reaching a zero-point charge too late or early, which failed to effectively remove HABs with an appropriate coal fly ash dosage. An optimized removal efficiency of 98.50% for Microcystis aeruginosa was reached at pH of 6.0. The optimized efficiency of Scenedesmus quadricauda and Chlorella vulgaris was 99.37% and 91.63%, respectively, at pH of 8.0. At neutral pH conditions, the surface charge of microalgae cells and CFACs are different, promoting aggregate formation. When CFACs were used to remove microalgae, aggregate size significantly influenced removal efficiency. Meanwhile, at the optimized pH and concentration, the removal efficiency of all three algal species exceeded 90.00% in 5 min. The study highlights an efficient and inexpensive method for removing HABs and obtains the optimized operational conditions.


Assuntos
Quitosana , Chlorella vulgaris , Cinza de Carvão , Ecossistema , Floculação , Água Doce , Proliferação Nociva de Algas
12.
Bioresour Technol ; 267: 341-346, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30029180

RESUMO

To improve microalgae harvesting efficiency and to reduce the addition of chemicals in the buoy-bead flotation process, a novel buoy-bead flotation approach has been developed for harvesting Chlorella vulgaris, using surface-layered polymeric microspheres (SLPMs). Next, the detachment of microalgae cell-SLPM aggregates and the reusability of SLPMs were investigated. The experimental results showed that a maximum harvesting efficiency of 98.43% was achieved at a SLPM dosage of 0.7 g/L and a pH of 9, and harvesting efficiency quickly decreased with increasing ionic strength. A detachment efficiency of 78.46% and a concentration factor of 19.56 were achieved at an ionic strength of 700 mM and a mixing speed of 3000 rpm without changing the pH. Reused SLPMs can still reach an efficiency of 72.13% after five cycles. The presented results show that this method can potentially be applied for large-scale microalgae harvesting.


Assuntos
Chlorella vulgaris , Microesferas , Biomassa , Chlorella , Floculação , Microalgas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa