Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurochem ; 146(5): 631-641, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29959860

RESUMO

Neurofilament proteins (Nf) are a biomarker of disease progression in amyotrophic lateral sclerosis (ALS). This study investigated whether there are major differences in expression from in vivo measurements of neurofilament isoforms, from the light chain, NfL (68 kDa), compared with larger proteins, the medium chain (NfM, 150 kDa) and the heavy (NfH, 200-210 kDa) chains in ALS patients and healthy controls. New immunological methods were combined with Nf subunit stoichiometry calculations and Monte Carlo simulations of a coarse-grained Nf brush model. Based on a physiological Nf subunit stoichiometry of 7 : 3 : 2 (NfL:NfM:NfH), we found an 'adaptive' Nf subunit stoichiometry of 24 : 2.4 : 1.6 in ALS. Adaptive Nf stoichiometry preserved NfL gyration radius in the Nf brush model. The energy and time requirements for Nf translation were 56 ± 27k ATP (5.6 h) in control subjects compared to 123 ± 102k (12.3 h) in ALS with 'adaptive' (24:2.4:1.6) Nf stoichiometry (not significant) and increased significantly to 355 ± 330k (35.5 h) with 'luxury' (7:3:2) Nf subunit stoichiometry (p < 0.0001 for each comparison). Longitudinal disease progression-related energy consumption was highest with a 'luxury' (7:3:2) Nf stoichiometry. Therefore, an energy and time-saving option for motor neurons is to shift protein expression from larger to smaller (cheaper) subunits, at little or no costs on a protein structural level, to compensate for increased energy demands.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/patologia , Neurônios Motores/fisiologia , Proteínas de Neurofilamentos/sangue , Trifosfato de Adenosina/metabolismo , Idoso , Estudos de Casos e Controles , Estudos de Coortes , Progressão da Doença , Metabolismo Energético/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neurofilamentos/metabolismo , Isoformas de Proteínas/sangue , Fatores de Tempo
2.
Int J Mol Sci ; 20(1)2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30577465

RESUMO

(1) Background: Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative disorders with an overlap in clinical presentation and neuropathology. Common and differential mechanisms leading to protein expression changes and neurodegeneration in ALS and FTD were studied trough a deep neuroproteome mapping of the spinal cord. (2) Methods: A liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of the spinal cord from ALS-TAR DNA-binding protein 43 (TDP-43) subjects, ubiquitin-positive frontotemporal lobar degeneration (FTLD-U) subjects and controls without neurodegenerative disease was performed. (3) Results: 281 differentially expressed proteins were detected among ALS versus controls, while 52 proteins were dysregulated among FTLD-U versus controls. Thirty-three differential proteins were shared between both syndromes. The resulting data was subjected to network-driven proteomics analysis, revealing mitochondrial dysfunction and metabolic impairment, both for ALS and FTLD-U that could be validated through the confirmation of expression levels changes of the Prohibitin (PHB) complex. (4) Conclusions: ALS-TDP-43 and FTLD-U share molecular and functional alterations, although part of the proteostatic impairment is region- and disease-specific. We have confirmed the involvement of specific proteins previously associated with ALS (Galectin 2 (LGALS3), Transthyretin (TTR), Protein S100-A6 (S100A6), and Protein S100-A11 (S100A11)) and have shown the involvement of proteins not previously described in the ALS context (Methanethiol oxidase (SELENBP1), Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN-1), Calcyclin-binding protein (CACYBP) and Rho-associated protein kinase 2 (ROCK2)).


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Demência Frontotemporal/metabolismo , Proteoma , Proteômica , Esclerose Lateral Amiotrófica/patologia , Biomarcadores , Feminino , Demência Frontotemporal/patologia , Humanos , Masculino , Mitocôndrias/metabolismo , Neurônios Motores/metabolismo , Especificidade de Órgãos , Proibitinas , Proteômica/métodos , Transdução de Sinais , Medula Espinal/metabolismo , Medula Espinal/patologia
3.
Biochim Biophys Acta ; 1862(4): 725-732, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26675529

RESUMO

BACKGROUND: Cardiovascular disease (CVD) is the leading cause of death globally, being atherosclerosis the main cause. Main risk factors are known and current effort is very much dedicated to improve prevention. However, the asymptomatic and silent course of atherosclerosis hampers an accurate and individualized risk evaluation. OBJECTIVES: Here we investigate subjacent molecular changes taking place in arterial tissue which can be ultimately translated in a measurable fingerprint in plasma. METHODS: First, we applied a combined approach to find out main molecular alterations at protein and metabolite level in response to early atherosclerosis development in a rabbit model. A potential reflection of all these alterations observed in aortic tissue was investigated in rabbit plasma and further analyzed in a translational study in human plasma from 62 individuals. RESULTS: Data link the structural remodeling taking place in atherosclerotic arteries in terms of loss of contractile properties and favored cellular migration, with an up-regulation of integrin linked kinase, tropomyosin isoform 2 and capping protein gelsolin-like, and a down-regulation of vinculin. A molecular response to oxidative stress is evidenced, involving changes in the glucose metabolism enzymes pyruvate kinase (PKM) and phosphoglycerate kinase (PGK), and pyruvate. Up-regulation of aspartate connects different changes observed in amino acid metabolism and, additionally, alterations in the phosphatidylcholine route of the glycerophospholipid metabolism were found. CONCLUSIONS: A specific molecular marker panel composed by PKM, valine and pyruvate is shown here linked to cardiovascular risk.


Assuntos
Aminoácidos/metabolismo , Aorta/metabolismo , Aterosclerose/sangue , Citoesqueleto/metabolismo , Metabolismo Energético , Animais , Aorta/patologia , Aterosclerose/patologia , Citoesqueleto/patologia , Masculino , Coelhos
4.
Kidney Int ; 85(1): 103-11, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24048377

RESUMO

The prevalence of chronic kidney disease (CKD) is increasing and frequently progresses to end-stage renal disease. There is an urgent demand to discover novel markers of disease that allow monitoring disease progression and, eventually, response to treatment. To identify such markers, and as a proof of principle, we determined if a metabolite signature corresponding to CKD can be found in urine. In the discovery stage, we analyzed the urine metabolome by NMR of 15 patients with CKD and compared that with the metabolome of 15 healthy individuals and found a classification pattern clearly indicative of CKD. A validation cohort of urine samples from an additional 16 patients with CKD and 15 controls was then analyzed by (Selected Reaction Monitoring) liquid chromatography-triple quadrupole mass spectrometry and indicated that a group of seven urinary metabolites differed between CKD and non-CKD urine samples. This profile consisted of 5-oxoproline, glutamate, guanidoacetate, α-phenylacetylglutamine, taurine, citrate, and trimethylamine N-oxide. Thus, we identified a panel of urine metabolites differentially present in urine that may help identify and monitor patients with CKD.


Assuntos
Biomarcadores/urina , Falência Renal Crônica/urina , Metaboloma , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade
5.
Electrophoresis ; 35(18): 2634-41, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24913465

RESUMO

Urine is a source of potential markers of disease. In the context of renal disease, urine is particularly important as it may directly reflect kidney injury. Current markers of renal dysfunction lack both optimal specificity and sensitivity, and improved technologies and approaches are needed. There is no clear consensus about the best sample pretreatment procedure for 2DE analysis of the urine proteome. Sample pretreatment conditions spots resolution and detection sensitivity, critically. As a first goal, we exhaustively compared eight different sample cleaning and protein purification methodologies for 2DE analysis of urine from healthy individuals. Oasis® HLB cartridges allowed the detection of the highest number of low molecular weight proteins; while PD10 desalting columns resulted in the highest number of detected spots in the high molecular weight area. Sample pretreatment strategies were also explored in the context of proteinuria, a clinical condition often associated to renal damage. Testing of urine samples from 13 patients with hypertension or kidney disease and different levels of proteinuria identified Oasis® HLB cartridge purification in combination with albumin depletion by ProteoPrep kit as the best option for urine proteome profiling from patients with proteinuric (> 30 mg/L albumin in urine) renal disease.


Assuntos
Biomarcadores/urina , Eletroforese em Gel Bidimensional/métodos , Nefropatias/metabolismo , Proteoma/análise , Proteômica/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas/química , Proteínas/isolamento & purificação , Proteinúria/metabolismo , Proteoma/química
6.
Mol Cell Proteomics ; 10(4): M110.003517, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21248247

RESUMO

Coronary atherosclerosis still represents the major cause of mortality in western societies. Initiation of atherosclerosis occurs within the intima, where major histological and molecular changes are produced during pathogenesis. So far, proteomic analysis of the atherome plaque has been mainly tackled by the analysis of the entire tissue, which may be a challenging approach because of the great complexity of this sample in terms of layers and cell type composition. Based on this, we aimed to study the intimal proteome from the human atherosclerotic coronary artery. For this purpose, we analyzed the intimal layer from human atherosclerotic coronaries, which were isolated by laser microdissection, and compared with those from preatherosclerotic coronary and radial arteries, using a two-dimensional Differential-In-Gel-Electrophoresis (DIGE) approach. Results have pointed out 13 proteins to be altered (seven up-regulated and six down-regulated), which are implicated in the migrative capacity of vascular smooth muscle cells, extracellular matrix composition, coagulation, apoptosis, heat shock response, and intraplaque hemorrhage deposition. Among these, three proteins (annexin 4, myosin regulatory light 2, smooth muscle isoform, and ferritin light chain) constitute novel atherosclerotic coronary intima proteins, because they were not previously identified at this human coronary layer. For this reason, these novel proteins were validated by immunohistochemistry, together with hemoglobin and vimentin, in an independent cohort of arteries.


Assuntos
Doença da Artéria Coronariana/metabolismo , Vasos Coronários/patologia , Proteoma/metabolismo , Túnica Íntima/patologia , Anexina A4/metabolismo , Apoferritinas/metabolismo , Estudos de Casos e Controles , Vasos Coronários/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Hemoglobinas/metabolismo , Humanos , Cadeias Leves de Miosina/metabolismo , Análise de Componente Principal , Espectrometria de Massas em Tandem , Túnica Íntima/metabolismo , Eletroforese em Gel Diferencial Bidimensional/métodos , Vimentina/metabolismo
7.
J Biomed Biotechnol ; 2011: 790132, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21274272

RESUMO

Metabolomics involves the identification and quantification of metabolites present in a biological system. Three different approaches can be used: metabolomic fingerprinting, metabolic profiling, and metabolic footprinting, in order to evaluate the clinical course of a disease, patient recovery, changes in response to surgical intervention or pharmacological treatment, as well as other associated features. Characteristic patterns of metabolites can be revealed that broaden our understanding of a particular disorder. In the present paper, common strategies and analytical techniques used in metabolomic studies are reviewed, particularly with reference to the cardiovascular field.


Assuntos
Doenças Cardiovasculares/metabolismo , Metabolômica/métodos , Animais , Biomarcadores/metabolismo , Humanos
8.
Brain Commun ; 3(3): fcab148, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34396108

RESUMO

Plasma proteome composition reflects the inflammatory and metabolic state of the organism and can be predictive of system-level and organ-specific pathologies. Circulating protein aggregates are enriched with neurofilament heavy chain-axonal proteins involved in brain aggregate formation and recently identified as biomarkers of the fatal neuromuscular disorder amyotrophic lateral sclerosis. Using unbiased proteomic methods, we have fully characterized the content in neuronal proteins of circulating protein aggregates from amyotrophic lateral sclerosis patients and healthy controls, with reference to brain protein aggregate composition. We also investigated circulating protein aggregate protein aggregation propensity, stability to proteolytic digestion and toxicity for neuronal and endothelial cell lines. Circulating protein aggregates separated by ultracentrifugation are visible as electron-dense macromolecular particles appearing as either large globular or as small filamentous formations. Analysis by mass spectrometry revealed that circulating protein aggregates obtained from patients are enriched with proteins involved in the proteasome system, possibly reflecting the underlying basis of dysregulated proteostasis seen in the disease, while those from healthy controls show enrichment of proteins involved in metabolism. Compared to the whole human proteome, proteins within circulating protein aggregates and brain aggregates show distinct chemical features of aggregation propensity, which appear dependent on the tissue or fluid of origin and not on the health status. Neurofilaments' two high-mass isoforms (460 and 268 kDa) showed a strong differential expression in amyotrophic lateral sclerosis compared to healthy control circulating protein aggregates, while aggregated neurofilament heavy chain was also partially resistant to enterokinase proteolysis in patients, demonstrated by immunoreactive bands at 171 and 31 kDa fragments not seen in digested healthy controls samples. Unbiased proteomics revealed that a total of 4973 proteins were commonly detected in circulating protein aggregates and brain, including 24 expressed from genes associated with amyotrophic lateral sclerosis. Interestingly, 285 circulating protein aggregate proteins (5.7%) were regulated (P < 0.05) and are present in biochemical pathways linked to disease pathogenesis and protein aggregation. Biologically, circulating protein aggregates from both patients and healthy controls had a more pronounced effect on the viability of hCMEC/D3 endothelial and PC12 neuronal cells compared to immunoglobulins extracted from the same plasma samples. Furthermore, circulating protein aggregates from patients exerted a more toxic effect than healthy control circulating protein aggregates on both cell lines at lower concentrations (P: 0.03, in both cases). This study demonstrates that circulating protein aggregates are significantly enriched with brain proteins which are representative of amyotrophic lateral sclerosis pathology and a potential source of biomarkers and therapeutic targets for this incurable disorder.

9.
10.
Expert Rev Proteomics ; 6(4): 395-409, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19681675

RESUMO

Atherosclerosis is a disease with higher levels of mortality in developed countries. Comprehension of the molecular mechanisms can yield very useful information in clinics for prevention, diagnosis and recovery monitoring. Proteomics represents an ideal methodology for this purpose, as proteins constitute the effectors of the different biological processes running during pathogenesis. To date, studies in atherosclerosis have been mainly focused on the search for plasma biomarkers. However, tissue proteomics allows going deeper into tissue secretomes, arterial layers or particular cells of interest, which, in turn, constitutes a more direct approximation to in vivo operating mechanisms. The aim of this review is to report latest advances in tissue proteomics in atherosclerosis and related diseases (e.g., aortic stenosis and ischemic injury).


Assuntos
Aterosclerose/metabolismo , Doenças Cardiovasculares/metabolismo , Proteômica , Animais , Aterosclerose/patologia , Doenças Cardiovasculares/patologia , Humanos
11.
Electrophoresis ; 30(23): 4095-108, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19960473

RESUMO

With the aim of studying a wide cohort of erythrocyte samples in a clinical setting, we propose here a novel approach that allows the analysis of both human cytosolic and membrane sub-proteomes. Despite their simple structure, the high content of hemoglobin present in the red blood cells (RBCs) makes their proteome analysis enormously difficult. We investigate here different strategies for isolation of the membrane and cytosolic fractions from erythrocytes and their influence on proteome profiling by 2-DE, paying particular attention to hemoglobin removal. A simple, quick and satisfactory approach for hemoglobin depletion based on HemogloBind reagent was satisfactorily applied to erythrocyte cells, allowing the analysis of the cytosolic sub-proteome by 2-DE without major interference. For membrane proteome, a novel combined strategy based on hypotonic lysis isolation and further purification on minicolumns is described here, allowing detection of high molecular weight proteins (i.e. spectrin, ankyrin) and well-resolved 2-DE patterns. An aliquot of the membrane fraction was also in solution digested and analyzed by nano-LC coupled to an LTQ-Orbitrap mass spectrometer. A total of 188 unique proteins were identified by this approach. This study sets the basis for future clinical studies where the erythrocyte cell may be implicated.


Assuntos
Citosol/química , Eletroforese em Gel Bidimensional/métodos , Eritrócitos/química , Proteínas de Membrana/análise , Proteômica/métodos , Fracionamento Celular/métodos , Membrana Eritrocítica/química , Hemoglobinas/isolamento & purificação , Humanos , Espectrometria de Massas/métodos , Proteoma/análise
12.
Sci Rep ; 9(1): 4478, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872628

RESUMO

The lack of biomarkers for early diagnosis, clinical stratification and to monitor treatment response has hampered the development of new therapies for amyotrophic lateral sclerosis (ALS), a clinically heterogeneous neurodegenerative disorder with a variable site of disease initiation and rate of progression. To identify new biomarkers and therapeutic targets, two separate proteomic workflows were applied to study the immunological response and the plasma/brain proteome in phenotypic variants of ALS. Conventional multiplex (TMT) proteomic analysis of peripheral blood mononuclear cells (PBMCs) was performed alongside a recently introduced method to profile neuronal-derived proteins in plasma using brain tissue-enhanced isobaric tagging (TMTcalibrator). The combined proteomic analysis allowed the detection of regulated proteins linked to ALS pathogenesis (RNA-binding protein FUS, superoxide dismutase Cu-Zn and neurofilaments light polypeptide) alongside newly identified candidate biomarkers (myosin-9, fructose-bisphosphate aldolase and plectin). In line with the proteomic results, orthogonal immunodetection showed changes in neurofilaments and ApoE in bulbar versus limb onset fast progressing ALS. Functional analysis of significantly regulated features showed enrichment of pathways involved in regulation of the immune response, Rho family GTPases, semaphorin and integrin signalling. Our cross-phenotype investigation of PBMCs and plasma/brain proteins provides a more sensitive biomarker exploratory platform than conventional case-control studies in a single matrix. The reported regulated proteins may represent novel biomarker candidates and potentially druggable targets.


Assuntos
Esclerose Lateral Amiotrófica/diagnóstico , Apolipoproteínas E/metabolismo , Biomarcadores/metabolismo , Filamentos Intermediários/metabolismo , Proteômica/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/metabolismo , Estudos de Casos e Controles , Diagnóstico Precoce , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Análise de Componente Principal , Fluxo de Trabalho
13.
Biochem Biophys Rep ; 14: 168-177, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29872749

RESUMO

Protein aggregation in biofluids is a poorly understood phenomenon. Under normal physiological conditions, fluid-borne aggregates may contain plasma or cell proteins prone to aggregation. Recent observations suggest that neurofilaments (Nf), the building blocks of neurons and a biomarker of neurodegeneration, are included in high molecular weight complexes in circulation. The composition of these Nf-containing hetero-aggregates (NCH) may change in systemic or organ-specific pathologies, providing the basis to develop novel disease biomarkers. We have tested ultracentrifugation (UC) and a commercially available protein aggregate binder, Seprion PAD-Beads (SEP), for the enrichment of NCH from plasma of healthy individuals, and then characterised the Nf content of the aggregate fractions using gel electrophoresis and their proteome by mass spectrometry (MS). Western blot analysis of fractions obtained by UC showed that among Nf isoforms, neurofilament heavy chain (NfH) was found within SDS-stable high molecular weight aggregates. Shotgun proteomics of aggregates obtained with both extraction techniques identified mostly cell structural and to a lesser extent extra-cellular matrix proteins, while functional analysis revealed pathways involved in inflammatory response, phagosome and prion-like protein behaviour. UC aggregates were specifically enriched with proteins involved in endocrine, metabolic and cell-signalling regulation. We describe the proteome of neurofilament-containing aggregates isolated from healthy individuals biofluids using different extraction methods.

14.
Mol Neurodegener ; 13(1): 60, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30404656

RESUMO

BACKGROUND: It is unclear to what extent pre-clinical studies in genetically homogeneous animal models of amyotrophic lateral sclerosis (ALS), an invariably fatal neurodegenerative disorder, can be informative of human pathology. The disease modifying effects in animal models of most therapeutic compounds have not been reproduced in patients. To advance therapeutics in ALS, we need easily accessible disease biomarkers which can discriminate across the phenotypic variants observed in ALS patients and can bridge animal and human pathology. Peripheral blood mononuclear cells alterations reflect the rate of progression of the disease representing an ideal biological substrate for biomarkers discovery. METHODS: We have applied TMTcalibrator™, a novel tissue-enhanced bio fluid mass spectrometry technique, to study the plasma proteome in ALS, using peripheral blood mononuclear cells as tissue calibrator. We have tested slow and fast progressing SOD1G93A mouse models of ALS at a pre-symptomatic and symptomatic stage in parallel with fast and slow progressing ALS patients at an early and late stage of the disease. Immunoassays were used to retest the expression of relevant protein candidates. RESULTS: The biological features differentiating fast from slow progressing mouse model plasma proteomes were different from those identified in human pathology, with only processes encompassing membrane trafficking with translocation of GLUT4, innate immunity, acute phase response and cytoskeleton organization showing enrichment in both species. Biological processes associated with senescence, RNA processing, cell stress and metabolism, major histocompatibility complex-II linked immune-reactivity and apoptosis (early stage) were enriched specifically in fast progressing ALS patients. Immunodetection confirmed regulation of the immunosenescence markers Galectin-3, Integrin beta 3 and Transforming growth factor beta-1 in plasma from pre-symptomatic and symptomatic transgenic animals while Apolipoprotein E differential plasma expression provided a good separation between fast and slow progressing ALS patients. CONCLUSIONS: These findings implicate immunosenescence and metabolism as novel targets for biomarkers and therapeutic discovery and suggest immunomodulation as an early intervention. The variance observed in the plasma proteomes may depend on different biological patterns of disease progression in human and animal model.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Biomarcadores/análise , Proteômica , Esclerose Lateral Amiotrófica/genética , Animais , Modelos Animais de Doenças , Progressão da Doença , Galectina 3/genética , Galectina 3/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Camundongos , Proteômica/métodos , Superóxido Dismutase/análise , Superóxido Dismutase/genética
15.
Metabolomics ; 11(5): 1056-1067, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26413039

RESUMO

We pursued here the identification of specific signatures of proteins and metabolites in urine which respond to atherosclerosis development, acute event and/or recovery. An animal model (rabbit) of atherosclerosis was developed and molecules responding to atherosclerosis silent development were identified. Those molecules were investigated in human urine from patients suffering an acute coronary syndrome (ACS), at onset and discharge. Kallikrein1 (KLK1) and zymogen granule protein16B (ZG16B) proteins, and l-alanine, l-arabitol, scyllo-inositol, 2-hydroxyphenilacetic acid, 3-hydroxybutyric acid and N-acetylneuraminic acid metabolites were found altered in response to atherosclerosis progression and the acute event, composing a molecular panel related to cardiovascular risk. KLK1 and ZG16B together with 3-hydroxybutyric acid, putrescine and 1-methylhydantoin responded at onset but also showed normalized levels at discharge, constituting a molecular panel to monitor recovery. The observed decreased of KLK1 is in alignment with the protective mechanism of the kallikrein-kinin system. The connection between KLK1 and ZG16B shown by pathway analysis explains reduced levels of toll-like receptor 2 described in atherosclerosis. Metabolomic analysis revealed arginine and proline metabolism, glutathione metabolism and degradation of ketone bodies as the three main pathways altered. In conclusion, two novel urinary panels of proteins and metabolites are here for the first time shown related to atherosclerosis, ACS and patient's recovery.

16.
Transl Res ; 166(5): 474-484.e4, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26072307

RESUMO

Diabetic nephropathy (DN) is a major complication of diabetes mellitus and the most frequent cause of end-stage renal disease. DN progresses silently and without clinical symptoms at early stages. Current noninvasive available markers as albuminuria account with severe limitations (late response, unpredictable prognosis, and limited sensitivity). Thus, it urges the discovery of novel markers to help in diagnosis and outcome prediction. Tissue proteomics allows zooming-in where pathophysiological changes are taking place. We performed a differential analysis of renal tissue proteome in a rat model of early DN by 2-dimensional differential gel electrophoresis and mass spectrometry. Confirmation was performed by Western blot, immunohistochemistry (IHC), and selected reaction monitoring (SRM). Rat urine samples were collected and exosomes were isolated from urine to evaluate if these microvesicles reflect changes directly occurring at tissue level. The protein showing maximum altered expression in rat tissue in response to DN was further analyzed in human kidney tissue and urinary exosomes. Regucalcin protein or senescence marker protein-30 (SMP30) (Swiss-Prot Q03336) was found to be strongly downregulated in DN kidney tissue compared with healthy controls. The same trend was observed in exosomes isolated from urine of control and DN rats. These data were further confirmed in a pilot study with human samples. IHC revealed a significant decrease of regucalcin in human kidney disease tissue vs control kidney tissue, and regucalcin was detected in exosomes isolated from healthy donors' urine but not from kidney disease patients. In conclusion, regucalcin protein expression is reduced in DN kidney tissue and this significant change is reflected in exosomes isolated from urine. Urinary exosomal regucalcin represents a novel tool, which should be explored for early diagnosis and progression monitoring of diabetic kidney disease.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Nefropatias Diabéticas/metabolismo , Regulação para Baixo , Exossomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Rim/metabolismo , Proteômica , Idoso , Idoso de 80 Anos ou mais , Animais , Hidrolases de Éster Carboxílico , Estudos de Casos e Controles , Nefropatias Diabéticas/urina , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Endogâmicos WKY
17.
J Proteomics ; 96: 92-102, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24211404

RESUMO

Diabetic nephropathy (DN) is a major complication of diabetes mellitus (DM), the most frequent cause of end-stage renal disease (ESRD). Exosomes isolated from urine are considered a rich non-invasive source of markers for renal events. Proteinuria associated with DN patients at advanced stages may result in "contamination" of exosomal fraction by co-precipitation of high abundance urine proteins, making it enormously difficult to obtain a reliable comparison of healthy individuals and DN patients and to detect minor proteins. We evaluated different protocols for urinary exosome isolation (ultracentrifugation-based and Exoquick® reagent-based) in combination with an easy and quick depletion procedure of contaminating high abundance proteins (albumin). The optimal methodology was then applied to investigate the proteome of human urinary exosomes in DN and controls using spectral counting LC-MS/MS analysis followed by selected reaction monitoring (SRM) confirmation. A panel of 3 proteins (AMBP, MLL3, and VDAC1) is differentially present in urinary exosomes from DN patients, opening a new field of research focused on improving diagnosis and follow-up of this pathology. BIOLOGICAL SIGNIFICANCE: Diabetic nephropathy (DN) is a progressive proteinuric kidney disease, a major complication of diabetes mellitus, and the most frequent cause of end-stage renal disease. Current markers of disease (i.e. creatinine and urinary albumin excretion) have proven limitations (i.e. some patients regress to normoalbuminuria, kidney damage may be already present in recently diagnoses microalbuminuric patients and renal function may decrease in the absence of significant albuminuria). We show here the first study on human DN proteome of urinary exosomes. Proteinuria associated to DN patients resulting in contamination of exosomal fraction and the associated difficulty to reliably compare healthy and disease conditions, are here overcome. A combined methodology pointed to increase exosomal proteome recovery and depletion of high-abundance proteome was here set-up. A total of 352 proteins were here identified for the first time associated to human urinary exosomes. Label-free quantitative comparison of DN urinary exosomes vs control group and SRM further validation, resulted in the discovery of a panel of three proteins (AMBP, MLL3 and VDAC1) which changes in DN, opening a new field of research focused to improve diagnosis and follow-up of this pathology.


Assuntos
alfa-Globulinas/urina , Proteínas de Ligação a DNA/urina , Nefropatias Diabéticas/urina , Proteoma/metabolismo , Canal de Ânion 1 Dependente de Voltagem/urina , Adulto , Idoso , Albuminúria/urina , Exossomos/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
18.
Methods Mol Biol ; 1000: 209-20, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23585095

RESUMO

Urinary exosomes are membranous vesicles 40-100 nm in size containing proteins that are characteristic of every renal tubule epithelial cell type. In this chapter, we describe a methodology to isolate and analyze urinary exosomes proteome by 2-DE and LC-MS/MS, in the search for biomarkers of vascular and associated kidney diseases. We describe an isolation methodology by serial (ultra)centrifugation steps compatible with 2-DE and LC-MS/MS analysis. Exosome purity is confirmed by electron microscopy and Western blot.


Assuntos
Doenças Cardiovasculares/complicações , Cromatografia Líquida/métodos , Eletroforese em Gel Bidimensional/métodos , Exossomos/metabolismo , Nefropatias/urina , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Biomarcadores/urina , Western Blotting , Centrifugação , Exossomos/ultraestrutura , Humanos , Nefropatias/complicações , Nefropatias/patologia , Microscopia Eletrônica , Manejo de Espécimes
19.
J Proteomics ; 82: 155-65, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23429260

RESUMO

Fatal events derived from coronary atherosclerosis are the major cause of mortality in the developed countries. Proteomic analysis of the atherosclerotic coronary artery has been mainly carried out with whole tissue extracts, making it difficult to distinguish the alterations present in every region of the plaque. For this reason, we have recently described proteins altered in the human coronary intima layer as a consequence of the atherosclerotic disease. In order to complement this work, we aimed here to analyze proteomic alterations occurring within the human coronary media layer. Media layers from human atherosclerotic and preatherosclerotic coronary arteries were isolated by laser microdissection and compared by means of two-dimensional differential in-gel electrophoresis (2D-DIGE). Twelve proteins were found altered, 5 of which were cytoskeleton proteins decreased in the atherosclerotic coronary media. Among these, 4 proteins (filamin A, gelsolin, vinculin and vimentin) were further analyzed by immunohistochemistry and its alteration validated. Such cytoskeleton deregulation evidence, at the molecular level, explains how medial vascular smooth muscle cells (VSMCs) switch from a contractile to a synthetic phenotype. Moreover, an oxidative stress response within the media, leaded by superoxide dismutase 3 and glycolysis activation, may have been triggered by atherosclerosis development. BIOLOGICAL SIGNIFICANCE: Although atherosclerosis is mainly a disease of the intima layer, the media plays an important role in the initiation of the pathology, as a source of vascular smooth muscle cells (VSMCs), which migrate into the intima and may additionally be affected by intima layer degeneration through pathogenesis. In fact, intimal thickening has been related to a mechanical compression of the media layer, resulting on a significant thinning of the latter in the atherosclerotic carotid and coronary arteries, which may provoke alterations at a molecular level. Here we provide the first differential proteomic analysis of atherosclerotic coronary media layer, reporting important alterations of this sub-proteome with pathogenesis. It is important to remark a cytoskeleton deregulation observed at the molecular level within VSMCs, which may be explained by a contractile to synthetic phenotype switch. Moreover, atherosclerosis seems to trigger an oxidative stress response within the coronary media layer.


Assuntos
Doença da Artéria Coronariana/metabolismo , Vasos Coronários/metabolismo , Proteínas do Citoesqueleto/biossíntese , Citoesqueleto/metabolismo , Proteínas Musculares/biossíntese , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Doença da Artéria Coronariana/patologia , Vasos Coronários/patologia , Citoesqueleto/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Estresse Oxidativo
20.
Methods Mol Biol ; 1000: 81-90, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23585086

RESUMO

Early detection of cardiovascular diseases and knowledge of underlying mechanisms is essential. Tissue secretome studies resemble more closely to the in vivo situation, showing a much narrower protein concentrations dynamic range than plasma. In the present chapter, we detail the characterization and analysis of human arterial tissue secretome by two-dimensional electrophoresis (2-DE) and nano-liquid chromatography on-line coupled to mass spectrometry (nLC-MS/MS). General strategies shown here can be extended to other tissue secretome studies.


Assuntos
Artérias/citologia , Artérias/metabolismo , Nanotecnologia , Proteômica/métodos , Espectrometria de Massas em Tandem , Mama/irrigação sanguínea , Cromatografia Líquida , Vasos Coronários/metabolismo , Eletroforese em Gel Bidimensional , Humanos , Fragmentos de Peptídeos/isolamento & purificação , Fragmentos de Peptídeos/metabolismo , Proteólise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa