Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897792

RESUMO

Aedes aegypti is the main vector that transmits viral diseases such as dengue, hemorrhagic dengue, urban yellow fever, zika, and chikungunya. Worldwide, many cases of dengue have been reported in recent years, showing significant growth. The best way to manage diseases transmitted by Aedes aegypti is to control the vector with insecticides, which have already been shown to be toxic to humans; moreover, insects have developed resistance. Thus, the development of new insecticides is considered an emergency. One way to achieve this goal is to apply computational methods based on ligands and target information. In this study, sixteen compounds with acceptable insecticidal activities, with 100% larvicidal activity at low concentrations (2.0 to 0.001 mg·L−1), were selected from the literature. These compounds were used to build up and validate pharmacophore models. Pharmacophore model 6 (AUC = 0.78; BEDROC = 0.6) was used to filter 4793 compounds from the subset of lead-like compounds from the ZINC database; 4142 compounds (dG < 0 kcal/mol) were then aligned to the active site of the juvenile hormone receptor Aedes aegypti (PDB: 5V13), 2240 compounds (LE < −0.40 kcal/mol) were prioritized for molecular docking from the construction of a chitin deacetylase model of Aedes aegypti by the homology modeling of the Bombyx mori species (PDB: 5ZNT), which aligned 1959 compounds (dG < 0 kcal/mol), and 20 compounds (LE < −0.4 kcal/mol) were predicted for pharmacokinetic and toxicological prediction in silico (Preadmet, SwissADMET, and eMolTox programs). Finally, the theoretical routes of compounds M01, M02, M03, M04, and M05 were proposed. Compounds M01−M05 were selected, showing significant differences in pharmacokinetic and toxicological parameters in relation to positive controls and interaction with catalytic residues among key protein sites reported in the literature. For this reason, the molecules investigated here are dual inhibitors of the enzymes chitin synthase and juvenile hormonal protein from insects and humans, characterizing them as potential insecticides against the Aedes aegypti mosquito.


Assuntos
Aedes , Dengue , Inseticidas , Infecção por Zika virus , Zika virus , Animais , Biologia Computacional , Inibidores do Crescimento , Humanos , Insetos , Inseticidas/química , Inseticidas/farmacologia , Larva , Simulação de Acoplamento Molecular , Mosquitos Vetores
2.
Molecules ; 27(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36296371

RESUMO

The Aedes aegypti mosquito is the main hematophagous vector responsible for arbovirus transmission in Brazil. The disruption of A. aegypti hematophagy remains one of the most efficient and least toxic methods against these diseases and, therefore, efforts in the research of new chemical entities with repellent activity have advanced due to the elucidation of the functionality of the olfactory receptors and the behavior of mosquitoes. With the growing interest of the pharmaceutical and cosmetic industries in the development of chemical entities with repellent activity, computational studies (e.g., virtual screening and molecular modeling) are a way to prioritize potential modulators with stereoelectronic characteristics (e.g., pharmacophore models) and binding affinity to the AaegOBP1 binding site (e.g., molecular docking) at a lower computational cost. Thus, pharmacophore- and docking-based virtual screening was employed to prioritize compounds from Sigma-Aldrich® (n = 126,851) and biogenic databases (n = 8766). In addition, molecular dynamics (MD) was performed to prioritize the most potential potent compounds compared to DEET according to free binding energy calculations. Two compounds showed adequate stereoelectronic requirements (QFIT > 81.53), AaegOBP1 binding site score (Score > 42.0), volatility and non-toxic properties and better binding free energy value (∆G < −24.13 kcal/mol) compared to DEET ((N,N-diethyl-meta-toluamide)) (∆G = −24.13 kcal/mol).


Assuntos
Aedes , Repelentes de Insetos , Receptores Odorantes , Animais , Receptores Odorantes/metabolismo , DEET/química , Simulação de Acoplamento Molecular , Mosquitos Vetores , Repelentes de Insetos/farmacologia , Repelentes de Insetos/química , Preparações Farmacêuticas/metabolismo
3.
Molecules ; 23(2)2018 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-29463017

RESUMO

The Protein Kinase Receptor type 2 (RIPK2) plays an important role in the pathogenesis of inflammatory diseases; it signals downstream of the NOD1 and NOD2 intracellular sensors and promotes a productive inflammatory response. However, excessive NOD2 signaling has been associated with various diseases, including sarcoidosis and inflammatory arthritis; the pharmacological inhibition of RIPK2 is an affinity strategy that demonstrates an increased expression of pro-inflammatory secretion activity. In this study, a pharmacophoric model based on the crystallographic pose of ponatinib, a potent RIPK2 inhibitor, and 30 other ones selected from the BindingDB repository database, was built. Compounds were selected based on the available ZINC compounds database and in silico predictions of their pharmacokinetic, toxicity and potential biological activity. Molecular docking was performed to identify the probable interactions of the compounds as well as their binding affinity with RIPK2. The compounds were analyzed to ponatinib and WEHI-345, which also used as a control. At least one of the compounds exhibited suitable pharmacokinetic properties, low toxicity and an interesting binding affinity and high fitness compared with the crystallographic pose of WEHI-345 in complex with RIPK2. This compound also possessed suitable synthetic accessibility, rendering it a potential and very promising RIPK2 inhibitor to be further investigated in regards to different diseases, particularly inflammatory ones.


Assuntos
Imidazóis/química , Inflamação/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Piridazinas/química , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/antagonistas & inibidores , Cristalografia por Raios X , Humanos , Imidazóis/uso terapêutico , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/uso terapêutico , Piridazinas/uso terapêutico , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/química , Transdução de Sinais/efeitos dos fármacos , Interface Usuário-Computador
4.
Pharmaceuticals (Basel) ; 13(9)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858871

RESUMO

The cyclooxygenase-2 receptor is a therapeutic target for planning potential drugs with anti-inflammatory activity. The selective cyclooxygenase-2 (COX-2) inhibitor rofecoxib was selected as a pivot molecule to perform virtual ligand-based screening from six commercial databases. We performed the search for similarly shaped Rapid Overlay of Chemical Structures (ROCS) and electrostatic (EON) compounds. After, we used pharmacokinetic and toxicological parameters to determine the best potential compounds, obtained through the softwares QikProp and Derek, respectively. Then, the compounds proceeded to the molecular anchorage study, which showed promising results of binding affinity with the hCOX-2 receptor: LMQC72 (∆G = -11.0 kcal/mol), LMQC36 (∆G = -10.6 kcal/mol), and LMQC50 (∆G = -10.2 kcal/mol). LMQC72 and LMQC36 showed higher binding affinity compared to rofecoxib (∆G = -10.4 kcal/mol). Finally, molecular dynamics (MD) simulations were used to evaluate the interaction of the compounds with the target hCOX-2 during 150 ns. In all MD simulation trajectories, the ligands remained interacting with the protein until the end of the simulation. The compounds were also complexing with hCOX-2 favorably. The compounds obtained the following affinity energy values: rofecoxib: ΔGbind = -45.31 kcal/mol; LMQC72: ΔGbind = -38.58 kcal/mol; LMQC36: ΔGbind = -36.10 kcal/mol; and LMQC50: ΔGbind = -39.40 kcal/mol. The selected LMQC72, LMQC50, and LMQC36 structures showed satisfactory pharmacokinetic results related to absorption and distribution. The toxicological predictions of these compounds did not display alerts for possible toxic groups and lower risk of cardiotoxicity compared to rofecoxib. Therefore, future in vitro and in vivo studies are needed to confirm the anti-inflammatory potential of the compounds selected here with bioinformatics approaches based on rofecoxib ligand.

5.
Pharmaceuticals (Basel) ; 12(1)2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30871010

RESUMO

Tuberculosis (TB) is an infection caused by Mycobacterium tuberculosis, responsible for 1.5 million documented deaths in 2016. The increase in reported cases of M. tuberculosis resistance to the main drugs show the need for the development of new and efficient drugs for better TB control. Based on these facts, this work aimed to use combined in silico techniques for the discovery of potential inhibitors to ß-ketoacyl-ACP synthase (MtKasA). Initially compounds from natural sources present in the ZINC database were selected, then filters were sequentially applied by virtual screening, initially with pharmacophoric modeling, and later the selected compounds (based on QFIT scores) were submitted to the DOCK 6.5 program. After recategorization of the variables (QFIT score and GRID score), compounds ZINC35465970 and ZINC31170017 were selected. These compounds showed great hydrophobic contributions and for each established system 100 ns of molecular dynamics simulations were performed and the binding free energy was calculated. ZINC35465970 demonstrated a greater capacity for the KasA enzyme inhibition, with a ΔGbind = -30.90 kcal/mol and ZINC31170017 presented a ΔGbind = -27.49 kcal/mol. These data can be used in other studies that aim at the inhibition of the same biological targets through drugs with a dual action.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa