Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 265(Pt 1): 130864, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493820

RESUMO

Ketoprofen (KET), commonly used for inflammation in clinical settings, leads to systemic adverse effects with prolonged use, mitigated by topical administration. Nanotechnology-based cutaneous forms, like films, may enhance KET efficacy. Therefore, this study aimed to prepare and characterize films containing KET nanoemulsions (F-NK) regarding mechanical properties, chemical composition and interactions, occlusive potential, bioadhesion, drug permeation in human skin, and safety. The films were prepared using a κ-carrageenan and xanthan gum blend (2 % w/w, ratio 3: 1) plasticized with glycerol through the solvent casting method. Non-nanoemulsioned KET films (F-K) were prepared for comparative purposes. F-NK was flexible and hydrophilic, exhibited higher drug content and better uniformity (94.40 ± 3.61 %), maintained the NK droplet size (157 ± 12 nm), and was thinner and lighter than the F-K. This film also showed increased tensile strength and Young's modulus values, enhanced bioadhesion and occlusive potential, and resulted in more of the drug in the human skin layers. Data also suggested that nano-based formulations are homogeneous and more stable than F-KET. Hemolysis and chorioallantoic membrane tests suggested the formulations' safety. Thus, the nano-based film is suitable for cutaneous KET delivery, which may improve the drug's efficacy in managing inflammatory conditions.


Assuntos
Cetoprofeno , Nanocompostos , Polissacarídeos Bacterianos , Humanos , Cetoprofeno/farmacologia , Cetoprofeno/química , Carragenina/química , Pele , Nanocompostos/química
2.
Dent J (Basel) ; 11(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37504228

RESUMO

This systematic review synthesizes the existing evidence in the literature regarding the association of propolis with controlled delivery systems (DDSs) and its potential therapeutic action in dental medicine. Two independent reviewers performed a literature search up to 1 June 2023 in five databases: PubMed/Medline, Web of Science, Cochrane Library, Scopus, and Embase, to identify the eligible studies. Clinical, in situ, and in vitro studies that investigated the incorporation of propolis as the main agent in DDSs for dental medicine were included in this study. Review articles, clinical cases, theses, dissertations, conference abstracts, and studies that had no application in dentistry were excluded. A total of 2019 records were initially identified. After carefully examining 21 full-text articles, 12 in vitro studies, 4 clinical, 1 animal model, and 3 in vivo and in vitro studies were included (n = 21). Relevant data were extracted from the included studies and analyzed qualitatively. The use of propolis has been reported in cariology, endodontics, periodontics, stomatology, and dental implants. Propolis has shown non-cytotoxic, osteoinductive, antimicrobial, and anti-inflammatory properties. Moreover, propolis can be released from DDS for prolonged periods, presenting biocompatibility, safety, and potential advantage for applications in dental medicine.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa