Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Ecol ; 87(1): 29, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191681

RESUMO

The Cerrado is the most diverse tropical savanna worldwide and the second-largest biome in South America. The objective of this study was to understand the heterogeneity and dynamics of arbuscular mycorrhizal fungi (AMF) in different types of natural Cerrado vegetation and areas that are transitioning to dryer savannas or tropical rainforests and to elucidate the driving factors responsible for the differences between these ecosystems. Twenty-one natural sites were investigated, including typical Cerrado forest, typical Caatinga, Atlantic Rainforest, transitions between Cerrado and Caatinga, Cerrado areas near Caatinga or rainforest, and Carrasco sites. Spores were extracted from the soils, counted, and morphologically analyzed. In total, 82 AMF species were detected. AMF species richness varied between 36 and 51, with the highest richness found in the area transitioning between Cerrado and Caatinga, followed by areas of Cerrado close to Caatinga and typical Cerrado forest. The types of Cerrado vegetation and the areas transitioning to the Caatinga shared the highest numbers of AMF species (32-38). Vegetation, along with chemical and physical soil parameters, affected the AMF communities, which may also result from seasonal rainfall patterns. The Cerrado has a great AMF diversity and is, consequently, a natural refuge for AMF. The plant and microbial communities as well as the diversity of habitats require urgent protection within the Cerrado, as it represents a key AMF hotspot.


Assuntos
Microbiota , Micorrizas , Micorrizas/genética , Brasil , Florestas , Floresta Úmida , Solo
2.
Microb Ecol ; 82(1): 122-134, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33410937

RESUMO

Arbuscular mycorrhizal fungi (AMF) play an important role in the dynamic of plant community in the south American Atlantic Rainforest biome. Even in protected areas, this biome is under several anthropic impacts, which can cause shifts in the soil microbiota, including AMF. This study aimed to determine the structure and composition of AMF community in areas of native Atlantic Forest and in natural regeneration and to identify which abiotic factors are influencing this community in these areas. Soil samples were collected at Monte Pascoal National and Historical Park, in Southern Bahia, in native and natural regeneration areas of Atlantic Forest in two seasons (rainy and dry). Greater number of glomerospores and richness and diversity of AMF were found in the area under regeneration, with differences between seasons being observed only for the number of glomerospores. Seventy-seven species of AMF were recorded, considering all areas and seasons, with Acaulospora and Glomus being the most representative genera. Greater abundance of species of the genera Acaulospora, Claroideoglomus, and Septoglomus was found in the regeneration area. The AMF community differed between the study areas, but not between seasons, with soil attributes (pH, K, Al, Mg, m, and clay) structuring factors for this difference in the AMF community. Atlantic Forest areas in natural regeneration and the soil edaphic factors provide changes in the structure and composition of the AMF community, increasing the richness and diversity of these fungi in conservation units.


Assuntos
Micorrizas , Biodiversidade , Florestas , Raízes de Plantas , Microbiologia do Solo
3.
Microb Ecol ; 78(4): 904-913, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30976842

RESUMO

Changes in relief in montane areas, with increasing altitude, provide different biotic and abiotic conditions, acting on the species of arbuscular mycorrhizal fungi (AMF). The objective of this work was to determine the influence of altitude, edaphic factors, and vegetation on the AMF species in a mountainous area. The list of AMF species was obtained from morphological identification of the spores, with 72 species recovered from field samples and trap cultures. Lower levels of Shannon's diversity occurred only at lower altitude; however, there was no difference in AMF richness. The structure of the AMF assembly between the two highest altitudes was similar and differed in relation to the lower altitude. There was variation in the distribution of AMF species, which was related to soil texture and chemical factors along the altitude gradient. Some species, genera, and families were indicative of a certain altitude, showing the preference of fungi for certain environmental conditions, which may aid in decisions to conserve montane ecosystems.


Assuntos
Micobioma/fisiologia , Micorrizas/isolamento & purificação , Microbiologia do Solo , Altitude , Brasil , Micorrizas/classificação , Micorrizas/fisiologia , Clima Tropical
4.
Microb Ecol ; 74(3): 654-669, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28401262

RESUMO

Although sandy coastal plains are important buffer zones to protect the coast line and maintain biological diversity and ecosystem services, these ecosystems have been endangered by anthropogenic activities. Thus, information on coastal biodiversity and forces shaping coastal biological diversity are extremely important for effective conservation strategies. In this study, we aimed to compare arbuscular mycorrhizal (AM) fungal communities from soil samples collected on the mainland and nearby islands located in Brazilian sandy coastal plain ecosystems (Restingas) to get information about AM fungal biogeography and identify factors shaping these communities. Soil samples were collected in 2013 and 2014 on the beachfront of the tropical sandy coastal plain at six sites (three island and three mainland locations) across the northeast, southeast, and south regions of Brazil. Overall, we recorded 53 AM fungal species from field and trap culture samples. The richness and diversity of AM fungal species did not differ between mainland and island locations, but AM fungal community assemblages were different between mainland and island environments and among most sites sampled. Glomeromycota communities registered from island samples showed higher heterogeneity than communities from mainland samples. Sandy coastal plains harbor diverse AM fungal communities structured by climatic, edaphic, and spatial factors, while the distance from the colonizing source (mainland environments) does not strongly affect the AM fungal communities in Brazilian coastal environments.


Assuntos
Glomeromycota/fisiologia , Microbiota , Micorrizas , Microbiologia do Solo , Brasil , Ilhas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa