Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Monit Comput ; 37(5): 1193-1205, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36745316

RESUMO

Acute kidney injury (AKI) is frequently seen in patients with hemorrhagic shock due to hypotension, tissue hypoxia, and inflammation despite adequate resuscitation. There is a lack of information concerning the alteration of renal microcirculation and perfusion during shock and resuscitation. The aim of this study was to investigate the possible role of renal microcirculatory alterations on development of renal dysfunction in a pig model of non-traumatic hemorrhagic shock (HS) induced AKI.Fully instrumented female pigs were divided into the two groups as Control (n = 6) and HS (n = 11). HS was achieved by withdrawing blood until mean arterial pressure (MAP) reached around 50 mmHg. After an hour cessation period, fluid resuscitation with balanced crystalloid was started for the duration of 1 h. The systemic and renal hemodynamics, renal microcirculatory perfusion (contrast-enhanced ultrasound (CEUS)) and the sublingual microcirculation were measured.CEUS peak enhancement was significantly increased in HS during shock, early-, and late resuscitation indicating perfusion defects in the renal cortex (p < 0.05 vs. baseline, BL) despite a stable renal blood flow (RBF) and urine output. Following normalization of systemic hemodynamics, we observed persistent hypoxia (high lactate) and high red blood cell (RBC) velocity just after initiation of resuscitation resulting in further endothelial and renal damage as shown by increased plasma sialic acid (p < 0.05 vs. BL) and NGAL levels. We also showed that total vessel density (TVD) and functional capillary density (FCD) were depleted during resuscitation (p < 0.05).In this study, we showed that the correction of systemic hemodynamic variables may not be accompanied with the improvement of renal cortical perfusion, intra-renal blood volume and renal damage following fluid resuscitation. We suggest that the measurement of renal injury biomarkers, systemic and renal microcirculation can be used for guiding to the optimization of fluid therapies.


Assuntos
Injúria Renal Aguda , Choque Hemorrágico , Humanos , Feminino , Animais , Suínos , Choque Hemorrágico/terapia , Microcirculação , Rim , Hidratação/métodos , Hipóxia , Ressuscitação/métodos , Hemodinâmica
2.
Cardiovasc Ultrasound ; 20(1): 11, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35473581

RESUMO

BACKGROUND: Echo-Particle Image Velocimetry (echoPIV) tracks speckle patterns from ultrasound contrast agent(UCA), being less angle-sensitive than colour Doppler. High frame rate (HFR) echoPIV enables tracking of high velocity flow in the left ventricle (LV). We aimed to demonstrate the potential clinical use of HFR echoPIV and investigate the feasibility and accuracy in patients. METHODS: Nineteen patients admitted for heart failure were included. HFR contrast images were acquired from an apical long axis view (ALAX), using a fully-programmable ultrasound system. A clinical UCA was continuously infused with a dedicated pump. Additionally, echocardiographic images were obtained using a clinical system, including LV contrast-enhanced images and pulsed-wave (PW) Doppler of the LV inflow and outflow in ALAX. 11 patients underwent CMR and 4 cardiac CT as clinically indicated. These CMR and CT images were used as reference. In 10 patients with good echoPIV tracking and reference imaging, the intracavitary flow was compared between echoPIV, conventional and UCA echocardiography. RESULTS: EchoPIV tracking quality was good in 12/19 (63%), moderate in 2/19 (10%) and poor in 5/19 (26%) subjects. EchoPIV could determine inflow velocity in 17/19 (89%), and outflow in 14/19 (74%) patients. The correlation of echoPIV and PW Doppler was good for the inflow (R2 = 0.77 to PW peak; R2 = 0.80 PW mean velocity) and moderate for the outflow (R2 = 0.54 to PW peak; R2 = 0.44 to PW mean velocity), with a tendency for echoPIV to underestimate PW velocities. In selected patients, echoPIV was able in a single acquisition to demonstrate flow patterns which required multiple interrogations with classical echocardiography. Those flow patterns could also be linked to anatomical abnormalities as seen in CMR or CT. CONCLUSION: HFR echoPIV tracks multidirectional and complex flow patterns which are unapparent with conventional echocardiography, while having comparable feasibility. EchoPIV tends to underestimate flow velocities as compared to PW Doppler. It has the potential to provide in one acquisition all the functional information obtained by conventional imaging, overcoming the angle dependency of Doppler and low frame rate of classical contrast imaging.


Assuntos
Ecocardiografia , Ventrículos do Coração , Velocidade do Fluxo Sanguíneo , Ecocardiografia/métodos , Ventrículos do Coração/diagnóstico por imagem , Humanos , Imagens de Fantasmas , Reologia/métodos
3.
J Acoust Soc Am ; 151(5): 3316, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35649942

RESUMO

Over the last 15 years, literature on nondestructive testing has shown that the generation of higher harmonics and nonlinear mixing of waves could be used to obtain the nonlinearity parameters of an elastic medium and thereby gather information about its state, e.g., aging and fatigue. To design ultrasound measurement setups based on these phenomena, efficient numerical modeling tools are needed. In this paper, the iterative nonlinear contrast source method for numerical modeling of nonlinear acoustic waves is extended to the one-dimensional elastic case. In particular, nonlinear mixing of two collinear bulk waves (one compressional, one shear) in a homogeneous, isotropic medium is considered, taking into account its third-order elastic constants ( A, B, and C). The obtained results for nonlinear propagation are in good agreement with a benchmark solution based on the modified Burgers equation. The results for the resonant waves that are caused by the one-way and two-way mixing of primary waves are in quantitative agreement with the results in the literature [Chen, Tang, Zhao, Jacobs, and Qu, J. Acoust. Soc. Am. 136(5), 2389-2404 (2014)]. The contrast source approach allows the identification of the propagating and evanescent components of the scattered wavefield in the wavenumber-frequency domain, which provides physical insight into the mixing process and explains the propagation direction of the resonant wave.

4.
J Acoust Soc Am ; 151(6): 3993, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35778226

RESUMO

Ultrasound (US) contrast agents consist of microbubbles ranging from 1 to 10 µm in size. The acoustical response of individual microbubbles can be studied with high-frame-rate optics or an "acoustical camera" (AC). The AC measures the relative microbubble oscillation while the optical camera measures the absolute oscillation. In this article, the capabilities of the AC are extended to measure the absolute oscillations. In the AC setup, microbubbles are insonified with a high- (25 MHz) and low-frequency US wave (1-2.5 MHz). Other than the amplitude modulation (AM) from the relative size change of the microbubble (employed in Renaud, Bosch, van der Steen, and de Jong (2012a). "An 'acoustical camera' for in vitro characterization of contrast agent microbubble vibrations," Appl. Phys. Lett. 100(10), 101911, the high-frequency response from individual vibrating microbubbles contains a phase modulation (PM) from the microbubble wall displacement, which is the extension described here. The ratio of PM and AM is used to determine the absolute radius, R0. To test this sizing, the size distributions of two monodisperse microbubble populations ( R = 2.1 and 3.5 µm) acquired with the AC were matched to the distribution acquired with a Coulter counter. As a result of measuring the absolute size of the microbubbles, this "extended AC" can capture the full radial dynamics of single freely floating microbubbles with a throughput of hundreds of microbubbles per hour.


Assuntos
Microbolhas , Rádio (Anatomia) , Meios de Contraste , Ultrassonografia
5.
Sensors (Basel) ; 22(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36560168

RESUMO

High frame rate three-dimensional (3D) ultrasound imaging would offer excellent possibilities for the accurate assessment of carotid artery diseases. This calls for a matrix transducer with a large aperture and a vast number of elements. Such a matrix transducer should be interfaced with an application-specific integrated circuit (ASIC) for channel reduction. However, the fabrication of such a transducer integrated with one very large ASIC is very challenging and expensive. In this study, we develop a prototype matrix transducer mounted on top of multiple identical ASICs in a tiled configuration. The matrix was designed to have 7680 piezoelectric elements with a pitch of 300 µm × 150 µm integrated with an array of 8 × 1 tiled ASICs. The performance of the prototype is characterized by a series of measurements. The transducer exhibits a uniform behavior with the majority of the elements working within the -6 dB sensitivity range. In transmit, the individual elements show a center frequency of 7.5 MHz, a -6 dB bandwidth of 45%, and a transmit efficiency of 30 Pa/V at 200 mm. In receive, the dynamic range is 81 dB, and the minimum detectable pressure is 60 Pa per element. To demonstrate the imaging capabilities, we acquired 3D images using a commercial wire phantom.


Assuntos
Imageamento Tridimensional , Transdutores , Desenho de Equipamento , Ultrassonografia/métodos , Imageamento Tridimensional/métodos , Imagens de Fantasmas , Artérias Carótidas/diagnóstico por imagem
6.
Cardiovasc Ultrasound ; 18(1): 40, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32993683

RESUMO

BACKGROUND: Shear waves are generated by the closure of the heart valves. Significant differences in shear wave velocity have been found recently between normal myocardium and disease models of diffusely increased muscle stiffness. In this study we correlate in vivo myocardial shear wave imaging (SWI) with presence of scarred tissue, as model for local increase of stiffness. Stiffness variation is hypothesized to appear as velocity variation. METHODS: Ten healthy volunteers (group 1), 10 hypertrophic cardiomyopathy (HCM) patients without any cardiac intervention (group 2), and 10 HCM patients with prior septal reduction therapy (group 3) underwent high frame rate tissue Doppler echocardiography. The SW in the interventricular septum after aortic valve closure was mapped along two M-mode lines, in the inner and outer layer. RESULTS: We compared SWI to 3D echocardiography and strain imaging. In groups 1 and 2, no change in velocity was detected. In group 3, 8/10 patients showed a variation in SW velocity. All three patients having transmural scar showed a simultaneous velocity variation in both layers. Out of six patients with endocardial scar, five showed variations in the inner layer. CONCLUSION: Local variations in stiffness, with myocardial remodeling post septal reduction therapy as model, can be detected by a local variation in the propagation velocity of naturally occurring shear waves.


Assuntos
Cardiomiopatia Hipertrófica/diagnóstico por imagem , Cardiomiopatia Hipertrófica/fisiopatologia , Ecocardiografia Doppler/métodos , Ecocardiografia Tridimensional/métodos , Adolescente , Adulto , Cardiomiopatia Hipertrófica/cirurgia , Cicatriz/diagnóstico por imagem , Cicatriz/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas
7.
Sensors (Basel) ; 21(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383681

RESUMO

This paper presents an ultrasound transceiver application-specific integrated circuit (ASIC) directly integrated with an array of 12 × 80 piezoelectric transducer elements to enable next-generation ultrasound probes for 3D carotid artery imaging. The ASIC, implemented in a 0.18 µm high-voltage Bipolar-CMOS-DMOS (HV BCD) process, adopted a programmable switch matrix that allowed selected transducer elements in each row to be connected to a transmit and receive channel of an imaging system. This made the probe operate like an electronically translatable linear array, allowing large-aperture matrix arrays to be interfaced with a manageable number of system channels. This paper presents a second-generation ASIC that employed an improved switch design to minimize clock feedthrough and charge-injection effects of high-voltage metal-oxide-semiconductor field-effect transistors (HV MOSFETs), which in the first-generation ASIC caused parasitic transmissions and associated imaging artifacts. The proposed switch controller, implemented with cascaded non-overlapping clock generators, generated control signals with improved timing to mitigate the effects of these non-idealities. Both simulation results and electrical measurements showed a 20 dB reduction of the switching artifacts. In addition, an acoustic pulse-echo measurement successfully demonstrated a 20 dB reduction of imaging artifacts.


Assuntos
Artefatos , Artérias Carótidas/diagnóstico por imagem , Transdutores , Ultrassonografia , Desenho de Equipamento , Imageamento Tridimensional
8.
Neuroimage ; 183: 469-477, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30118869

RESUMO

Recent advances in ultrasound Doppler imaging have facilitated the technique of functional ultrasound (fUS) which enables visualization of brain-activity due to neurovascular coupling. As of yet, this technique has been applied to rodents as well as to human subjects during awake craniotomy surgery and human newborns. Here we demonstrate the first successful fUS studies on awake pigeons subjected to auditory and visual stimulation. To allow successful fUS on pigeons we improved the temporal resolution of fUS up to 20,000 frames per second with real-time visualization and continuous recording. We show that this gain in temporal resolution significantly increases the sensitivity for detecting small fluctuations in cerebral blood flow and volume which may reflect increased local neural activity. Through this increased sensitivity we were able to capture the elaborate 3D neural activity pattern evoked by a complex stimulation pattern, such as a moving light source. By pushing the limits of fUS further, we have reaffirmed the enormous potential of this technique as a new standard in functional brain imaging with the capacity to unravel unknown, stimulus related hemodynamics with excellent spatiotemporal resolution with a wide field of view.


Assuntos
Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Columbidae/fisiologia , Neuroimagem Funcional/métodos , Imageamento Tridimensional/métodos , Acoplamento Neurovascular/fisiologia , Ultrassonografia Doppler/métodos , Percepção Visual/fisiologia , Animais , Encéfalo/diagnóstico por imagem , Feminino , Processamento de Imagem Assistida por Computador/métodos , Masculino
9.
Radiology ; 289(1): 119-125, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30015586

RESUMO

Purpose To study the feasibility of high-frame-rate (HFR) contrast material-enhanced (CE) ultrasound particle image velocimetry (PIV), or echo PIV, in the abdominal aorta. Materials and Methods Fifteen healthy participants (six men; median age, 23 years [age range, 18-34 years]; median body mass index, 20.3 kg/m2 [range, 17.3-24.9 kg/m2]) underwent HFR CE US. US microbubbles were injected at incremental doses (0.25, 0.5, 0.75, and 1.5 mL), with each dose followed by US measurement to determine the optimal dosage. Different US mechanical index values were evaluated (0.09, 0.06, 0.03, and 0.01) in a diverging wave acquisition scheme. PIV analysis was performed via pairwise cross-correlation of all captured images. Participants also underwent phase-contrast MRI. The echo PIV and phase-contrast MRI velocity profiles were compared via calculation of similarity index and relative difference in peak velocity. Results Visualization of the aortic bifurcation with HFR CE US was successful in all participants. Optimal echo PIV results were achieved with the lowest contrast agent dose of 0.25 mL in combination with the lowest mechanical indexes (0.01 or 0.03). Substantial bubble destruction occurred at higher mechanical indexes (≥0.06). Flow patterns were qualitatively similar in the echo PIV and MR images. The echo PIV and MRI velocity profiles showed good agreement (similarity index, 0.98 and 0.99; difference in peak velocity, 8.5% and 17.0% in temporal and spatial profiles, respectively). Conclusion Quantification of blood flow in the human abdominal aorta with US particle image velocimetry (echo PIV) is feasible. Use of echo PIV has potential in the clinical evaluation of aortic disease. © RSNA, 2018 Online supplemental material is available for this article.


Assuntos
Aorta Abdominal/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Reologia/métodos , Ultrassonografia/métodos , Adolescente , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
10.
Crit Care Med ; 46(8): 1284-1292, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29771701

RESUMO

OBJECTIVES: We developed quantitative methods to analyze microbubble kinetics based on renal contrast-enhanced ultrasound imaging combined with measurements of sublingual microcirculation on a fixed area to quantify early microvascular alterations in sepsis-induced acute kidney injury. DESIGN: Prospective controlled animal experiment study. SETTING: Hospital-affiliated animal research institution. SUBJECTS: Fifteen female pigs. INTERVENTIONS: The animals were instrumented with a renal artery flow probe after surgically exposing the kidney. Nine animals were given IV infusion of lipopolysaccharide to induce septic shock, and six were used as controls. MEASUREMENTS AND MAIN RESULTS: Contrast-enhanced ultrasound imaging was performed on the kidney before, during, and after having induced shock. Sublingual microcirculation was measured continuously using the Cytocam on the same spot. Contrast-enhanced ultrasound effectively allowed us to develop new analytical methods to measure dynamic variations in renal microvascular perfusion during shock and resuscitation. Renal microvascular hypoperfusion was quantified by decreased peak enhancement and an increased ratio of the final plateau intensity to peak enhancement. Reduced intrarenal blood flow could be estimated by measuring the microbubble transit times between the interlobar arteries and capillary vessels in the renal cortex. Sublingual microcirculation measured using the Cytocam in a fixed area showed decreased functional capillary density associated with plugged sublingual capillary vessels that persisted during and after fluid resuscitation. CONCLUSIONS: In our lipopolysaccharide model, with resuscitation targeted at blood pressure, contrast-enhanced ultrasound imaging can identify renal microvascular alterations by showing prolonged contrast enhancement in microcirculation during shock, worsened by resuscitation with fluids. Concomitant analysis of sublingual microcirculation mirrored those observed in the renal microcirculation.


Assuntos
Injúria Renal Aguda/diagnóstico por imagem , Injúria Renal Aguda/etiologia , Microcirculação/fisiologia , Sepse/complicações , Ultrassonografia/métodos , Animais , Modelos Animais de Doenças , Feminino , Hemodinâmica , Humanos , Rim/irrigação sanguínea , Rim/diagnóstico por imagem , Lipopolissacarídeos/farmacologia , Estudos Prospectivos , Sepse/induzido quimicamente , Suínos
11.
Biophys J ; 112(9): 1894-1907, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28494960

RESUMO

Polymeric microcapsules with a light-absorbing dye incorporated in their shell can generate vapor microbubbles that can be spatiotemporally controlled by pulsed laser irradiation. These contrast agents of 6-8 µm in diameter can circulate through the vasculature, offering possibilities for ultrasound (molecular) imaging and targeted therapies. Here, we study the impact of such vapor bubbles on human endothelial cells in terms of cell poration and cell viability to establish the imaging and therapeutic windows. Two capsule formulations were used: the first one consisted of a high boiling point oil (hexadecane), whereas the second was loaded with a low boiling point oil (perfluoropentane). Poration probability was already 40% for the smallest bubbles that were formed (<7.5 µm diameter), and reached 100% for the larger bubbles. The hexadecane-loaded capsules also produced bubbles while their shell remained intact. These encapsulated bubbles could therefore be used for noninvasive ultrasound imaging after laser activation without inducing any cell damage. The controlled and localized cell destruction achieved by activation of both capsule formulations may provide an innovative approach for specifically inducing cell death in vivo, e.g., for cancer therapy.


Assuntos
Meios de Contraste , Lasers , Microbolhas , Imagem Molecular , Ultrassonografia , Alcanos , Cápsulas , Permeabilidade da Membrana Celular , Sobrevivência Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Estudos de Viabilidade , Fluorocarbonos , Células Endoteliais da Veia Umbilical Humana , Humanos , Ácido Láctico , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros , Polimetil Metacrilato , Volatilização
12.
Cytotherapy ; 19(1): 131-140, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27856230

RESUMO

BACKGROUND: Adipose-derived stromal cells (ASCs) are a promising new therapeutic option for patients with acute myocardial infarction (AMI). Previously, we found that ASCs coupled to antibody-targeted microbubbles (StemBells [StBs]) improved cardiac function when administered intravenously 7 days post-AMI in rats. In this study, we compared the efficacy of intravenous StB administration at different administration time points following AMI in rats. METHODS: AMI, followed by reperfusion, was induced in four groups of male Wistar rats, which subsequently received an intravenous 1 × 106 StB bolus 1 day post-AMI (StB1; n = 8), 7 days post-AMI (StB7; n = 9), at both time points (StB1+7; n = 7) or neither (Control; n = 7). The effect onrdiac function was determined using echocardiography prior to AMI, 7 days post-AMI and 42 days post-AMI. The effect on infarct size and macrophages in the infarct core were determined (immuno)histochemically 42 days post-AMI. RESULTS: At 42 days post-AMI, all three StB groups had a significantly improved fractional shortening compared with the control group. Between the StB-treated groups, the effects did not differ significantly at 42 days post-AMI. At 7 days post-AMI, the StB1 group had a significantly improved fractional shortening compared with the control and StB7 groups. No significant changes in infarct size or macrophage numbers were found compared with the control group for any StB group. CONCLUSIONS: StB administration resulted in long-term improvement of cardiac function, independent of the time point of administration. When administered at 1 day post-AMI, this improvement was already evident at 7 days post-AMI.


Assuntos
Tecido Adiposo/citologia , Infarto do Miocárdio/terapia , Administração Intravenosa , Animais , Células Cultivadas , Ecocardiografia , Masculino , Microbolhas , Infarto do Miocárdio/diagnóstico por imagem , Ratos Wistar , Células Estromais/transplante , Fatores de Tempo
13.
Proc Natl Acad Sci U S A ; 111(5): 1697-702, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24449879

RESUMO

Acoustically sensitive emulsion droplets composed of a liquid perfluorocarbon have the potential to be a highly efficient system for local drug delivery, embolotherapy, or for tumor imaging. The physical mechanisms underlying the acoustic activation of these phase-change emulsions into a bubbly dispersion, termed acoustic droplet vaporization, have not been well understood. The droplets have a very high activation threshold; its frequency dependence does not comply with homogeneous nucleation theory and localized nucleation spots have been observed. Here we show that acoustic droplet vaporization is initiated by a combination of two phenomena: highly nonlinear distortion of the acoustic wave before it hits the droplet and focusing of the distorted wave by the droplet itself. At high excitation pressures, nonlinear distortion causes significant superharmonics with wavelengths of the order of the droplet size. These superharmonics strongly contribute to the focusing effect; therefore, the proposed mechanism also explains the observed pressure thresholding effect. Our interpretation is validated with experimental data captured with an ultrahigh-speed camera on the positions of the nucleation spots, where we find excellent agreement with the theoretical prediction. Moreover, the presented mechanism explains the hitherto counterintuitive dependence of the nucleation threshold on the ultrasound frequency. The physical insight allows for the optimization of acoustic droplet vaporization for therapeutic applications, in particular with respect to the acoustic pressures required for activation, thereby minimizing the negative bioeffects associated with the use of high-intensity ultrasound.


Assuntos
Acústica , Fluorocarbonos/química , Dinâmica não Linear , Fenômenos Ópticos , Pressão , Volatilização
14.
J Acoust Soc Am ; 141(4): 2727, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28464648

RESUMO

Microbubbles are used to enhance the contrast in ultrasound imaging. When coated with an optically absorbing material, these bubbles can also provide contrast in photoacoustic imaging. This multimodal aspect is of pronounced interest to the field of medical imaging. The aim of this paper is to provide a theoretical framework to describe the physical phenomena underlying the photoacoustic response. This article presents a model for a spherical gas microbubble suspended in an aqueous environment and coated with an oil layer containing an optically absorbing dye. The model includes heat transfer between the gas core and the surrounding liquids. This framework is suitable for the investigation of both continuous wave and pulsed laser excitation. This work utilizes a combination of finite difference simulations and numerical integration to determine the dependancy on the physical properties, including composition and thickness of the oil layer on the microbubble response. A normalization scheme for a linearized version of the model was derived to facilitate comparison with experimental measurements. The results show that viscosity and thickness of the oil layer determine whether or not microbubble resonance can be excited. This work also examines the use of non-sinusoidal excitation to promote harmonic imaging techniques to further improve the imaging sensitivity.

15.
J Acoust Soc Am ; 141(6): 4832, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28679262

RESUMO

Photoacoustic (PA) imaging offers several attractive features as a biomedical imaging modality, including excellent spatial resolution and functional information such as tissue oxygenation. A key limitation, however, is the contrast to noise ratio that can be obtained from tissue depths greater than 1-2 mm. Microbubbles coated with an optically absorbing shell have been proposed as a possible contrast agent for PA imaging, offering greater signal amplification and improved biocompatibility compared to metallic nanoparticles. A theoretical description of the dynamics of a coated microbubble subject to laser irradiation has been developed previously. The aim of this study was to test the predictions of the model. Two different types of oil-coated microbubbles were fabricated and then exposed to both pulsed and continuous wave (CW) laser irradiation. Their response was characterized using ultra high-speed imaging. Although there was considerable variability across the population, good agreement was found between the experimental results and theoretical predictions in terms of the frequency and amplitude of microbubble oscillation following pulsed excitation. Under CW irradiation, highly nonlinear behavior was observed which may be of considerable interest for developing different PA imaging techniques with greatly improved contrast enhancement.

17.
Langmuir ; 32(16): 3937-44, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27006083

RESUMO

Monodisperse microbubble ultrasound contrast agents may dramatically increase the sensitivity and efficiency in ultrasound imaging and therapy. They can be produced directly in a microfluidic flow-focusing device, but questions remain as to the interfacial chemistry, such as the formation and development of the phospholipid monolayer coating over time. Here, we demonstrate the synthesis of monodisperse bubbles with radii of 2-10 µm at production rates ranging from 10(4) to 10(6) bubbles/s. All bubbles were found to dissolve to a stable final radius 2.55 times smaller than their initial radius, independent of the nozzle size and shear rate, indicating that the monolayer self-assembles prior to leaving the nozzle. The corresponding decrease in surface area by a factor 6.6 reveals that lipid molecules are adsorbed to the gas-liquid interface in the disordered expanded state, and they become mechanically compressed by Laplace pressure-driven bubble dissolution to a more ordered condensed state with near zero surface tension. Acoustic characterization of the stabilized microbubbles revealed that their shell stiffness gradually increased from 0.8 to 2.5 N/m with increasing number of insonations through the selective loss of the more soluble lipopolymer molecules. This work therefore demonstrates high-throughput production of clinically relevant monodisperse contrast microbubbles with excellent control over phospholipid monolayer elasticity and microbubble resonance.

18.
Adv Exp Med Biol ; 880: 157-74, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26486337

RESUMO

The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics.


Assuntos
Meios de Contraste , Microbolhas , Ultrassom , Ablação por Ultrassom Focalizado de Alta Intensidade , Humanos
19.
J Acoust Soc Am ; 140(4): 2506, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27794344

RESUMO

The sensitivity and efficiency in contrast-enhanced ultrasound imaging and therapy can potentially be increased by the use of resonant monodisperse bubbles. However, bubbles of the same size may respond differently to ultrasound due to differences in their phospholipid shell. In an acoustic bubble sorting chip, resonant bubbles can be separated from the polydisperse agent. Here, a sample of acoustically sorted bubbles is characterized by measuring scattering and attenuation simultaneously using narrowband acoustic pulses at peak negative pressures of 10, 25, and 50 kPa over a 0.7-5.5 MHz frequency range. A second sample is characterized by attenuation measurements at acoustic pressures ranging from 5 to 75 kPa in steps of 2.5 kPa. Scattering and attenuation coefficients were modeled by integration over the pressure and frequency dependent response of all bubbles located within the non-uniform acoustic characterization beam. For all driving pressures and frequencies employed here, the coefficients could be modeled using a single and unique set of shell parameters confirming that acoustically sorted bubbles provide a uniform acoustic response. Moreover, it is shown that it is crucial to include the pressure distribution of the acoustic characterization beam in the modeling to accurately determine shell parameters of non-linearly oscillating bubbles.

20.
Int J Hyperthermia ; 31(2): 90-106, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25707815

RESUMO

Ultrasound contrast agents (UCAs) are used routinely in the clinic to enhance contrast in ultrasonography. More recently, UCAs have been functionalised by conjugating ligands to their surface to target specific biomarkers of a disease or a disease process. These targeted UCAs (tUCAs) are used for a wide range of pre-clinical applications including diagnosis, monitoring of drug treatment, and therapy. In this review, recent achievements with tUCAs in the field of molecular imaging, evaluation of therapy, drug delivery, and therapeutic applications are discussed. We present the different coating materials and aspects that have to be considered when manufacturing tUCAs. Next to tUCA design and the choice of ligands for specific biomarkers, additional techniques are discussed that are applied to improve binding of the tUCAs to their target and to quantify the strength of this bond. As imaging techniques rely on the specific behaviour of tUCAs in an ultrasound field, it is crucial to understand the characteristics of both free and adhered tUCAs. To image and quantify the adhered tUCAs, the state-of-the-art techniques used for ultrasound molecular imaging and quantification are presented. This review concludes with the potential of tUCAs for drug delivery and therapeutic applications.


Assuntos
Meios de Contraste/administração & dosagem , Aumento da Imagem/métodos , Imagem Molecular/métodos , Terapia por Ultrassom , Ultrassonografia , Sistemas de Liberação de Medicamentos , Humanos , Microbolhas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa