Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-26540209

RESUMO

The efficiency of cork waste in adsorbing aqueous polycyclic aromatic hydrocarbons (PAHs) has been previously reported. Biodegradation of contaminated cork using filamentous fungi could be a good alternative for detoxifying cork to facilitate its final processing. For this purpose, the degradation efficiency of anthracene by three ligninolytic white-rot fungi (Phanerochaete chrysosporium, Irpex lacteus and Pleurotus ostreatus) and three non-ligninolytic fungi which are found in the cork itself (Aspergillus niger, Penicillium simplicissimum and Mucor racemosus) are compared. Anthracene degradation by all fungi was examined in solid-phase cultures after 0, 16, 30 and 61 days. The degradation products of anthracene by P. simplicissimum and I. lacteus were also identified by GC-MS and a metabolic pathway was proposed for P. simplicissimum. Results show that all the fungi tested degraded anthracene. After 61 days of incubation, approximately 86%, 40%, and 38% of the initial concentration of anthracene (i.e., 100 µM) was degraded by P. simplicissimum, P. chrysosporium and I. lacteus, respectively. The rest of the fungi degraded anthracene to a lesser extent (<30%). As a final remark, the results obtained in this study indicate that P. simplicissimum, a non-ligninolytic fungi characteristic of cork itself, could be used as an efficient degrader of PAH-contaminated cork.


Assuntos
Antracenos/análise , Antracenos/metabolismo , Aspergillus niger/metabolismo , Mucor/metabolismo , Penicillium/metabolismo , Phanerochaete/metabolismo , Pleurotus/metabolismo , Biodegradação Ambiental , Substâncias Perigosas/análise , Substâncias Perigosas/metabolismo , Quercus , Espanha
2.
PLoS One ; 19(8): e0308051, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39093890

RESUMO

Preclinical models that replicate patient tumours as closely as possible are crucial for translational cancer research. While in vitro cancer models have many advantages in assessing tumour response therapy, in vivo systems are essential to enable evaluation of the role of the tumour cell extrinsic factors, such as the tumour microenvironment and host immune system. The requirement for a functional immune system is particularly important given the current focus on immunotherapies. Therefore, we set out to generate an immunocompetent, transplantable model of colorectal cancer suitable for in vivo assessment of immune-based therapeutic approaches. Intestinal tumours from a genetically engineered mouse model, driven by expression of a Pik3ca mutation and loss of Apc, were transplanted into wild type C57BL/6 host mice and subsequently passaged to form a novel syngeneic transplant model of colorectal cancer. Our work confirms the potential to develop a panel of mouse syngeneic grafts, akin to human PDX panels, from different genetically engineered, or carcinogen-induced, mouse models. Such panels would allow the in vivo testing of new pharmaceutical and immunotherapeutic treatment approaches across a range of tumours with a variety of genetic driver mutations.


Assuntos
Adenocarcinoma , Classe I de Fosfatidilinositol 3-Quinases , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Animais , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Camundongos , Adenocarcinoma/genética , Adenocarcinoma/patologia , Neoplasias Intestinais/genética , Neoplasias Intestinais/patologia , Proteína da Polipose Adenomatosa do Colo/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transplante Isogênico , Mutação , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa