Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 44(20)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38538141

RESUMO

The human hand possesses both consolidated motor skills and remarkable flexibility in adapting to ongoing task demands. However, the underlying mechanisms by which the brain balances stability and flexibility remain unknown. In the absence of external input or behavior, spontaneous (intrinsic) brain connectivity is thought to represent a prior of stored memories. In this study, we investigated how manual dexterity modulates spontaneous functional connectivity in the motor cortex during hand movement. Using magnetoencephalography, in 47 human participants (both sexes), we examined connectivity modulations in the α and ß frequency bands at rest and during two motor tasks (i.e., finger tapping or toe squeezing). The flexibility and stability of such modulations allowed us to identify two groups of participants with different levels of performance (high and low performers) on the nine-hole peg test, a test of manual dexterity. In the α band, participants with higher manual dexterity showed distributed decreases of connectivity, specifically in the motor cortex, increased segregation, and reduced nodal centrality. Participants with lower manual dexterity showed an opposite pattern. Notably, these patterns from the brain to behavior are mirrored by results from behavior to the brain. Indeed, when participants were divided using the median split of the dexterity score, we found the same connectivity patterns. In summary, this experiment shows that a long-term motor skill-manual dexterity-influences the way the motor systems respond during movements.


Assuntos
Magnetoencefalografia , Córtex Motor , Destreza Motora , Humanos , Masculino , Feminino , Adulto , Córtex Motor/fisiologia , Destreza Motora/fisiologia , Adulto Jovem , Magnetoencefalografia/métodos , Ritmo alfa/fisiologia , Mãos/fisiologia , Desempenho Psicomotor/fisiologia , Movimento/fisiologia , Vias Neurais/fisiologia
2.
Hum Brain Mapp ; 41(4): 1084-1111, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31713304

RESUMO

To plan movements toward objects our brain must recognize whether retinal displacement is due to self-motion and/or to object-motion. Here, we aimed to test whether motion areas are able to segregate these types of motion. We combined an event-related functional magnetic resonance imaging experiment, brain mapping techniques, and wide-field stimulation to study the responsivity of motion-sensitive areas to pure and combined self- and object-motion conditions during virtual movies of a train running within a realistic landscape. We observed a selective response in MT to the pure object-motion condition, and in medial (PEc, pCi, CSv, and CMA) and lateral (PIC and LOR) areas to the pure self-motion condition. Some other regions (like V6) responded more to complex visual stimulation where both object- and self-motion were present. Among all, we found that some motion regions (V3A, LOR, MT, V6, and IPSmot) could extract object-motion information from the overall motion, recognizing the real movement of the train even when the images remain still (on the screen), or moved, because of self-movements. We propose that these motion areas might be good candidates for the "flow parsing mechanism," that is the capability to extract object-motion information from retinal motion signals by subtracting out the optic flow components.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Cinestesia/fisiologia , Percepção de Movimento/fisiologia , Rede Nervosa/fisiologia , Fluxo Óptico/fisiologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Realidade Virtual , Adulto Jovem
3.
J Neurosci ; 38(15): 3858-3871, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29555851

RESUMO

Networks hubs represent points of convergence for the integration of information across many different nodes and systems. Although a great deal is known on the topology of hub regions in the human brain, little is known about their temporal dynamics. Here, we examine the static and dynamic centrality of hub regions when measured in the absence of a task (rest) or during the observation of natural or synthetic visual stimuli. We used Magnetoencephalography (MEG) in humans (both sexes) to measure static and transient regional and network-level interaction in α- and ß-band limited power (BLP) in three conditions: visual fixation (rest), viewing of movie clips (natural vision), and time-scrambled versions of the same clips (scrambled vision). Compared with rest, we observed in both movie conditions a robust decrement of α-BLP connectivity. Moreover, both movie conditions caused a significant reorganization of connections in the α band, especially between networks. In contrast, ß-BLP connectivity was remarkably similar between rest and natural vision. Not only the topology did not change, but the joint dynamics of hubs in a core network during natural vision was predicted by similar fluctuations in the resting state. We interpret these findings by suggesting that slow-varying fluctuations of integration occurring in higher-order regions in the ß band may be a mechanism to anticipate and predict slow-varying temporal patterns of the visual environment.SIGNIFICANCE STATEMENT A fundamental question in neuroscience concerns the function of spontaneous brain connectivity. Here, we tested the hypothesis that topology of intrinsic brain connectivity and its dynamics might predict those observed during natural vision. Using MEG, we tracked the static and time-varying brain functional connectivity when observers were either fixating or watching different movie clips. The spatial distribution of connections and the dynamics of centrality of a set of regions were similar during rest and movie in the ß band, but not in the α band. These results support the hypothesis that the intrinsic ß-rhythm integration occurs with a similar temporal structure during natural vision, possibly providing advanced information about incoming stimuli.


Assuntos
Ritmo beta , Encéfalo/fisiologia , Percepção Visual , Adulto , Ritmo alfa , Movimentos Oculares , Feminino , Humanos , Magnetoencefalografia , Masculino , Visão Ocular
4.
Hum Brain Mapp ; 38(10): 5141-5160, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28681960

RESUMO

Cortical hubs play a fundamental role in the functional architecture of brain connectivity at rest. However, the anatomical scaffold underlying their centrality is still under debate. Certainly, the brain function and anatomy are significantly entwined through synaptogenesis and pruning mechanisms that continuously reshape structural and functional connections. Thus, if hubs are expected to exhibit a large number of direct anatomical connections with the rest of the brain, such a dense wiring is extremely inefficient in energetic terms. In this work, we investigate these aspects on fMRI and DTI data from a set of know resting-state networks, starting from the hypothesis that to promote integration, functional, and anatomical connections link different areas at different scales or hierarchies. Thus, we focused on the role of functional hubs in this hierarchical organization of functional and anatomical architectures. We found that these regions, from a structural point of view, are first linked to each other and successively to the rest of the brain. Thus, functionally central nodes seem to show few strong anatomical connections. These findings suggest an efficient strategy of the investigated cortical hubs in exploiting few direct anatomical connections to link functional hubs among each other that eventually reach the rest of the considered nodes through local indirect tracts. Hum Brain Mapp 38:5141-5160, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Imagem de Tensor de Difusão , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/anatomia & histologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Descanso
5.
Neuroimage ; 102 Pt 2: 717-28, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25175536

RESUMO

Several neuroimaging studies reported that a common set of regions is recruited during action observation and execution and it has been proposed that the modulation of the µ rhythm, in terms of oscillations in the alpha and beta bands might represent the electrophysiological correlate of the underlying brain mechanisms. However, the specific functional role of these bands within the µ rhythm is still unclear. Here, we used magnetoencephalography (MEG) to analyze the spectral and temporal properties of the alpha and beta bands in healthy subjects during an action observation and execution task. We associated the modulation of the alpha and beta power to a broad action observation network comprising several parieto-frontal areas previously detected in fMRI studies. Of note, we observed a dissociation between alpha and beta bands with a slow-down of beta oscillations compared to alpha during action observation. We hypothesize that this segregation is linked to a different sequence of information processing and we interpret these modulations in terms of internal models (forward and inverse). In fact, these processes showed opposite temporal sequences of occurrence: anterior-posterior during action (both in alpha and beta bands) and roughly posterior-anterior during observation (in the alpha band). The observed differentiation between alpha and beta suggests that these two bands might pursue different functions in the action observation and execution processes.


Assuntos
Córtex Cerebral/fisiologia , Função Executiva/fisiologia , Magnetoencefalografia , Adulto , Ondas Encefálicas/fisiologia , Feminino , Humanos , Masculino , Observação , Adulto Jovem
6.
Neural Netw ; 170: 72-93, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37977091

RESUMO

The architecture of communication within the brain, represented by the human connectome, has gained a paramount role in the neuroscience community. Several features of this communication, e.g., the frequency content, spatial topology, and temporal dynamics are currently well established. However, identifying generative models providing the underlying patterns of inhibition/excitation is very challenging. To address this issue, we present a novel generative model to estimate large-scale effective connectivity from MEG. The dynamic evolution of this model is determined by a recurrent Hopfield neural network with asymmetric connections, and thus denoted Recurrent Hopfield Mass Model (RHoMM). Since RHoMM must be applied to binary neurons, it is suitable for analyzing Band Limited Power (BLP) dynamics following a binarization process. We trained RHoMM to predict the MEG dynamics through a gradient descent minimization and we validated it in two steps. First, we showed a significant agreement between the similarity of the effective connectivity patterns and that of the interregional BLP correlation, demonstrating RHoMM's ability to capture individual variability of BLP dynamics. Second, we showed that the simulated BLP correlation connectomes, obtained from RHoMM evolutions of BLP, preserved some important topological features, e.g, the centrality of the real data, assuring the reliability of RHoMM. Compared to other biophysical models, RHoMM is based on recurrent Hopfield neural networks, thus, it has the advantage of being data-driven, less demanding in terms of hyperparameters and scalable to encompass large-scale system interactions. These features are promising for investigating the dynamics of inhibition/excitation at different spatial scales.


Assuntos
Conectoma , Magnetoencefalografia , Humanos , Reprodutibilidade dos Testes , Encéfalo/fisiologia , Redes Neurais de Computação , Rede Nervosa/fisiologia
7.
Neuroimage ; 69: 51-61, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23220493

RESUMO

The principles of functional specialization and integration in the resting brain are implemented in a complex system of specialized networks that share some degree of interaction. Recent studies have identified wider functional modules compared to previously defined networks and reported a small-world architecture of brain activity in which central nodes balance the pressure to evolve segregated pathways with the integration of local systems. The accurate identification of such central nodes is crucial but might be challenging for several reasons, e.g. inter-subject variability and physiological/pathological network plasticity, and recent works reported partially inconsistent results concerning the properties of these cortical hubs. Here, we applied a whole-brain data-driven approach to extract cortical functional cores and examined their connectivity from a resting state fMRI experiment on healthy subjects. Two main statistically significant cores, centered on the posterior cingulate cortex and the supplementary motor area, were extracted and their functional connectivity maps, thresholded at three statistical levels, revealed the presence of two complex systems. One system is consistent with the default mode network (DMN) and gradually connects to visual regions, the other centered on motor regions and gradually connects to more sensory-specific portions of cortex. These two large scale networks eventually converged to regions belonging to the medial aspect of the DMN, potentially allowing inter-network interactions.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Vias Neurais/fisiologia , Descanso/fisiologia , Adulto , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino
8.
Neuroimage ; 80: 360-78, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23707587

RESUMO

The brain must dynamically integrate, coordinate, and respond to internal and external stimuli across multiple time scales. Non-invasive measurements of brain activity with fMRI have greatly advanced our understanding of the large-scale functional organization supporting these fundamental features of brain function. Conclusions from previous resting-state fMRI investigations were based upon static descriptions of functional connectivity (FC), and only recently studies have begun to capitalize on the wealth of information contained within the temporal features of spontaneous BOLD FC. Emerging evidence suggests that dynamic FC metrics may index changes in macroscopic neural activity patterns underlying critical aspects of cognition and behavior, though limitations with regard to analysis and interpretation remain. Here, we review recent findings, methodological considerations, neural and behavioral correlates, and future directions in the emerging field of dynamic FC investigations.


Assuntos
Encéfalo/fisiologia , Circulação Cerebrovascular/fisiologia , Conectoma/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Transmissão Sináptica/fisiologia , Animais , Velocidade do Fluxo Sanguíneo/fisiologia , Encéfalo/irrigação sanguínea , Humanos , Modelos Anatômicos , Modelos Neurológicos , Rede Nervosa/irrigação sanguínea
9.
J Magn Reson Imaging ; 37(1): 85-91, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22987315

RESUMO

PURPOSE: To investigate white matter heterogeneity using a multichannel segmentation of a large sample of structural and diffusion magnetic resonance imaging (MRI) data. MATERIALS AND METHODS: A sample of 50 subjects was segmented using channels comprising exclusively structural (longitudinal and transverse relaxation times T1 and T2 and transverse relaxation rate R2*) and diffusion-based MRI indices (mean diffusivity and fractional anisotropy). These data were analyzed using a data driven approach in which no prior information was used. RESULTS: The analysis revealed the splitting of white matter into two subclasses in which the longitudinal fasciculi were distinguished from inferior/superior ones. The distribution of the adopted indices in the obtained clusters showed that R2* was mainly responsible for this splitting. CONCLUSION: This result supports the observation, previously hypothesized in the literature, that R2* is influenced by the fiber orientation.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Fibras Nervosas Mielinizadas/patologia , Adulto , Idoso , Anisotropia , Análise por Conglomerados , Diagnóstico por Imagem/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Análise Multivariada
10.
Proc Natl Acad Sci U S A ; 107(13): 6040-5, 2010 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-20304792

RESUMO

Functional MRI (fMRI) studies have shown that low-frequency (<0.1 Hz) spontaneous fluctuations of the blood oxygenation level dependent (BOLD) signal during restful wakefulness are coherent within distributed large-scale cortical and subcortical networks (resting state networks, RSNs). The neuronal mechanisms underlying RSNs remain poorly understood. Here, we describe magnetoencephalographic correspondents of two well-characterized RSNs: the dorsal attention and the default mode networks. Seed-based correlation mapping was performed using time-dependent MEG power reconstructed at each voxel within the brain. The topography of RSNs computed on the basis of extended (5 min) epochs was similar to that observed with fMRI but confined to the same hemisphere as the seed region. Analyses taking into account the nonstationarity of MEG activity showed transient formation of more complete RSNs, including nodes in the contralateral hemisphere. Spectral analysis indicated that RSNs manifest in MEG as synchronous modulation of band-limited power primarily within the theta, alpha, and beta bands-that is, in frequencies slower than those associated with the local electrophysiological correlates of event-related BOLD responses.


Assuntos
Encéfalo/fisiologia , Magnetoencefalografia , Rede Nervosa/fisiologia , Adulto , Atenção/fisiologia , Encéfalo/anatomia & histologia , Feminino , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Modelos Neurológicos , Rede Nervosa/anatomia & histologia , Oxigênio/sangue , Adulto Jovem
11.
Sci Rep ; 13(1): 9451, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296243

RESUMO

In everyday activities, humans move alike to manipulate objects. Prior works suggest that hand movements are built by a limited set of basic building blocks consisting of a set of common postures. However, how the low dimensionality of hand movements supports the adaptability and flexibility of natural behavior is unknown. Through a sensorized glove, we collected kinematics data from thirty-six participants preparing and having breakfast in naturalistic conditions. By means of an unbiased analysis, we identified a repertoire of hand states. Then, we tracked their transitions over time. We found that manual behavior can be described in space through a complex organization of basic configurations. These, even in an unconstrained experiment, recurred across subjects. A specific temporal structure, highly consistent within the sample, seems to integrate such identified hand shapes to realize skilled movements. These findings suggest that the simplification of the motor commands unravels in the temporal dimension more than in the spatial one.


Assuntos
Mãos , Desempenho Psicomotor , Humanos , Movimento , Postura , Fenômenos Biomecânicos
12.
Brain Connect ; 13(8): 473-486, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-34269620

RESUMO

Background/Purpose: To identify brain hubs that are behaviorally relevant for neglect after stroke as well as to characterize their functional architecture of communication. Methods: Twenty acute right hemisphere damaged patients underwent neuropsychological and resting-state functional magnetic resonance imaging sessions. Spatial neglect was assessed by means of the Center of Cancellation on the Bells Cancellation Test. For each patient, resting-state functional connectivity matrices were derived by adopting a brain parcellation scheme consisting of 153 nodes. For every node, we extracted its betweenness centrality (BC) defined as the portion of all shortest paths in the connectome involving such node. Then, neglect hubs were identified as those regions showing a high correlation between their BC and neglect scores. Results: A first set of neglect hubs was identified in multiple systems including dorsal attention and ventral attention, default mode, and frontoparietal executive-control networks within the damaged hemisphere as well as in the posterior and anterior cingulate cortex. Such cortical regions exhibited a loss of BC and increased (i.e., less efficient) weighted shortest path length (WSPL) related to severe neglect. Conversely, a second group of neglect hubs found in visual and motor networks, in the undamaged hemisphere, exhibited a pathological increase of BC and reduction of WSPL associated with severe neglect. Conclusion: The topological reorganization of the brain in neglect patients might reflect a maladaptive shift in processing spatial information from higher level associative-control systems to lower level visual and sensory-motor processing areas after a right hemisphere lesion.


Assuntos
Conectoma , Transtornos da Percepção , Acidente Vascular Cerebral , Humanos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Transtornos da Percepção/etiologia , Transtornos da Percepção/complicações , Mapeamento Encefálico
13.
Brain Connect ; 13(8): 464-472, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36128806

RESUMO

Background/Purpose: To investigate the association between the degree of spatial neglect and the changes of brain system segregation (SyS; i.e., the ratio of the extent to which brain networks interact internally and with each other) after stroke. Methods: A cohort of 20 patients with right hemisphere lesion was submitted to neuropsychological assessment as well as to resting-state functional magnetic resonance imaging session at acute stage after stroke. The severity of spatial neglect was quantified using the Center of Cancellation (CoC) scores of the Bells cancellation test. For each patient, resting-state functional connectivity (FC) matrices were assessed by implementing a brain parcellation of nine networks that included the visual network, dorsal attention network (DAN), ventral attention network (VAN), sensorimotor network (SMN), auditory network, cingulo-opercular network, language network, frontoparietal network, and default mode network (DMN). For each patient and each network, we then computed the SyS derived by subtracting the between-network FC from the within-network FC (normalized by the within-network FC). Finally, for each network, the CoC scores were correlated with the SyS. Results: The correlational analyses indicated a negative association between CoC and SyS in the DAN, VAN, SMN, and DMN (q < 0.05 false discovery rate [FDR]-corrected). Patients with more severe spatial neglect exhibited lower SyS and vice versa. Conclusion: The loss of segregation in multiple and specific networks provides a functional framework for the deficits in spatial and nonspatial attention and motor/exploratory ability observed in neglect patients.

14.
Front Syst Neurosci ; 17: 1163147, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37205053

RESUMO

Previous studies indicated that spatial neglect is characterized by widespread alteration of resting-state functional connectivity and changes in the functional topology of large-scale brain systems. However, whether such network modulations exhibit temporal fluctuations related to spatial neglect is still largely unknown. This study investigated the association between brain states and spatial neglect after the onset of focal brain lesions. A cohort of right-hemisphere stroke patients (n = 20) underwent neuropsychological assessment of neglect as well as structural and resting-state functional MRI sessions within 2 weeks from stroke onset. Brain states were identified using dynamic functional connectivity as estimated by the sliding window approach followed by clustering of seven resting state networks. The networks included visual, dorsal attention, sensorimotor, cingulo-opercular, language, fronto-parietal, and default mode networks. The analyses on the whole cohort of patients, i.e., with and without neglect, identified two distinct brain states characterized by different degrees of brain modularity and system segregation. Compared to non-neglect patients, neglect subjects spent more time in less modular and segregated state characterized by weak intra-network coupling and sparse inter-network interactions. By contrast, patients without neglect dwelt mainly in more modular and segregated states, which displayed robust intra-network connectivity and anti-correlations among task-positive and task-negative systems. Notably, correlational analyses indicated that patients exhibiting more severe neglect spent more time and dwelt more often in the state featuring low brain modularity and system segregation and vice versa. Furthermore, separate analyses on neglect vs. non-neglect patients yielded two distinct brain states for each sub-cohort. A state featuring widespread strong connections within and between networks and low modularity and system segregation was detected only in the neglect group. Such a connectivity profile blurred the distinction among functional systems. Finally, a state exhibiting a clear separation among modules with strong positive intra-network and negative inter-network connectivity was found only in the non-neglect group. Overall, our results indicate that stroke yielding spatial attention deficits affects the time-varying properties of functional interactions among large-scale networks. These findings provide further insights into the pathophysiology of spatial neglect and its treatment.

15.
Neuroimage ; 62(3): 1912-23, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22634861

RESUMO

Independent component analysis (ICA) is typically applied on functional magnetic resonance imaging, electroencephalographic and magnetoencephalographic (MEG) data due to its data-driven nature. In these applications, ICA needs to be extended from single to multi-session and multi-subject studies for interpreting and assigning a statistical significance at the group level. Here a novel strategy for analyzing MEG independent components (ICs) is presented, Multivariate Algorithm for Grouping MEG Independent Components K-means based (MAGMICK). The proposed approach is able to capture spatio-temporal dynamics of brain activity in MEG studies by running ICA at subject level and then clustering the ICs across sessions and subjects. Distinctive features of MAGMICK are: i) the implementation of an efficient set of "MEG fingerprints" designed to summarize properties of MEG ICs as they are built on spatial, temporal and spectral parameters; ii) the implementation of a modified version of the standard K-means procedure to improve its data-driven character. This algorithm groups the obtained ICs automatically estimating the number of clusters through an adaptive weighting of the parameters and a constraint on the ICs independence, i.e. components coming from the same session (at subject level) or subject (at group level) cannot be grouped together. The performances of MAGMICK are illustrated by analyzing two sets of MEG data obtained during a finger tapping task and median nerve stimulation. The results demonstrate that the method can extract consistent patterns of spatial topography and spectral properties across sessions and subjects that are in good agreement with the literature. In addition, these results are compared to those from a modified version of affinity propagation clustering method. The comparison, evaluated in terms of different clustering validity indices, shows that our methodology often outperforms the clustering algorithm. Eventually, these results are confirmed by a comparison with a MEG tailored version of the self-organizing group ICA, which is largely used for fMRI IC clustering.


Assuntos
Algoritmos , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Processamento de Sinais Assistido por Computador , Análise por Conglomerados , Humanos , Magnetoencefalografia
16.
PLoS One ; 17(10): e0261484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36206292

RESUMO

High field MRI is an advanced technique for diagnostic and research purposes on animal models, such as the Beagle dog. In this context, studies on neuroscience applications, e.g. aging and neuro-pathologies, are currently increasing. This led to a need for reference values, in terms of volumetric assessment, for the structures typically involved. Nowadays, several canine brain MRI atlases have been provided. However, no reports are available regarding the measurements' reproducibility and little is known about the effect of formalin on MRI segmentation. Here, we assessed the segmentation variability of selected structures among operators (two operators segmented the same data) in a sample of 11 Beagle dogs. Then, we analyzed, for one Beagle dog, the longitudinal volumetric changes of these structures. We considered four conditions: in vivo, post mortem (after euthanasia), ex vivo (brain extracted and studied after 1 month in formalin, and after 12 months). The MRI data were collected with a 3 T scanner. Our findings suggest that the segmentation procedure was overall reproducible since only slight statistical differences were detected. In the post mortem/ ex vivo comparison, most structures showed a higher contrast, thereby leading to greater reproducibility between operators. We observed a net increase in the volume of the studied structures. This could be justified by the intrinsic relaxation time changes observed because of the formalin fixation. This led to an improvement in brain structure visualization and segmentation. To conclude, MRI-based segmentation seems to be a useful and accurate tool that allows longitudinal studies on formalin-fixed brains.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Animais , Autopsia , Encéfalo/diagnóstico por imagem , Cães , Formaldeído , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes
17.
Front Vet Sci ; 9: 802272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711807

RESUMO

Magnetic resonance relaxometry is a quantitative technique that estimates T1/T2 tissue relaxation times. This has been proven to increase MRI diagnostic accuracy of brain disorders in human medicine. However, literature in the veterinary field is scarce. In this work, a T1 and T2-based relaxometry approach has been developed. The aim is to investigate its performance in characterizing subtle brain lesions obtained with autologous blood injections in rabbits. This study was performed with a low-field scanner, typically present in veterinary clinics. The approach consisted of a semi-automatic hierarchical classification of different regions, selected from a T2 map. The classification was driven according to the relaxometry properties extracted from a set of regions selected by the radiologist to compare the suspected lesion with the healthy parenchyma. Histopathological analyses were performed to estimate the performance of the proposed classifier through receiver operating characteristic curve analyses. The classifier resulted in moderate accuracy in terms of lesion characterization.

18.
Animals (Basel) ; 12(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36290176

RESUMO

Kinematic MRI (kMRI) is a novel human imaging technique that couples the excellent soft tissue contrast and multiplanar capabilities of traditional MRI with kinematic potential. The study's goals are: (1) testing the feasibility of spinal cord and joints real-time kMRI; and (2) evaluating the quality of these kinematic studies as a new diagnostic option in veterinary medicine. Standard and real-time kinematic MRI were performed on cervical spine, elbow, and stifle joints of seven cadavers. Studies were repeated after a surgical insult aimed to create a certain degree of joint instability. A total of 56 MRI were performed-7 cervical spinal tracts, 3 elbow joints, and 4 stifle joints were examined. The technique was feasible in all the three regions examined. The images were considered of excellent quality for the stifle joint, good to fair for the cervical spine, whereas two of three elbow studies were considered to have unacceptable image quality. Additionally, real-time kMRI provided good to excellent information about stifle instability. Therefore we consider kMRI a promising technique in veterinary medicine. Further studies and an in vivo setting are needed to increase the quality of the kMRI images, and to fully evaluate clinical usefulness.

19.
Neuroimage ; 58(3): 885-94, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21763429

RESUMO

We recently suggested that serotonin 7 (5-Ht7) receptors may play a role in ADHD-like symptoms, at least in animal models. A mixed 5-Ht(1a/7) agonist, 8-OH-DPAT, counteracted the augmented levels of basal impulsivity, observed after treatment with a selective 5-Ht7 antagonist, SB269970 (Leo et al., 2009). In the present study, these serotonergic compounds were investigated by pharmacological magnetic resonance imaging (phMRI) at 4.7 T in adult isoflurane-anaesthetized rats. Axial echo-planar images were collected from the prefrontal cortex (PFC), ventral (nucleus accumbens, NAcc) and dorsal (dStr) striata, the hippocampus and the thalamus. After consecutive image collection for 30 min (50 baseline images), adult rats received either SB269970 (3mg/kg), 8-OH-DPAT (0.06 mg/kg) or saline intra-peritoneally (i.p.) via a remote cannula; the images were then collected for further 30 min (50 post-treatment images). Data were analysed 1) through an activation map generated on brain templates, obtained by using animals from each experimental group; 2) by a two-way ANOVA for the evaluation of temporal profiles, extracted within selected ROIs of each animal. Both compounds increased the BOLD signal in the areas of interest: SB269970, the selective 5-Ht7 antagonist, induced a significant effect in the PFC, particularly the orbital (oPFC) region, and in the NAcc. This effect started 6 to 12 min after drug administration, reached a maximum (+2.8%/+2.3%) at 12 to 18 min, and then moved to the dorsal thalamic nuclei. In contrast, the effects of 8-OH-DPAT were first observed in midline thalamic nuclei, and later appeared in forebrain regions: its effects were modest and transient within the NAcc and oPFC (+1.7% at 18 to 24 min after injection), whereas they were higher and long-lasting in the dStr and PFC, specifically the medial (mPFC) region (+3.1%/+4.0% from 15 min after drug administration onwards). The brain BOLD changes, reported as a consequence of selective 5-Ht7 antagonist administration, seemed restricted to the oPFC, NAcc and dorso-thalamic circuits, whereas the non-selective blockade of serotonergic receptors affected the mPFC, dStr and mid(line)-thalamic circuitry. The present findings revealed two differential serotonergic sub-pathways, as evidenced by the detection of physiological vascular feedback and/or neuronal activation.


Assuntos
Mapeamento Encefálico/métodos , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/metabolismo , Receptores de Serotonina/metabolismo , Serotoninérgicos/farmacologia , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Animais , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Ratos , Ratos Sprague-Dawley
20.
Neuroscientist ; 27(2): 184-201, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32538310

RESUMO

The regularity of the physical world and the biomechanics of the human body movements generate distributions of highly probable states that are internalized by the brain in the course of a lifetime. In Bayesian terms, the brain exploits prior knowledge, especially under conditions when sensory input is unavailable or uncertain, to predictively anticipate the most likely outcome of upcoming stimuli and movements. These internal models, formed during development, yet still malleable in adults, continuously adapt through the learning of novel stimuli and movements.Traditionally, neural beta (ß) oscillations are considered essential for maintaining sensorimotor and cognitive representations, and for temporal coding of expectations. However, recent findings show that fluctuations of ß band power in the resting state strongly correlate between cortical association regions. Moreover, central (hub) regions form strong interactions over time with different brain regions/networks (dynamic core). ß band centrality fluctuations of regions of the dynamic core predict global efficiency peaks suggesting a mechanism for network integration. Furthermore, this temporal architecture is surprisingly stable, both in topology and dynamics, during the observation of ecological natural visual scenes, whereas synthetic temporally scrambled stimuli modify it. We propose that spontaneous ß rhythms may function as a long-term "prior" of frequent environmental stimuli and behaviors.


Assuntos
Ritmo beta/fisiologia , Córtex Cerebral/fisiologia , Cognição/fisiologia , Movimento/fisiologia , Rede Nervosa/fisiologia , Desempenho Psicomotor/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Previsões , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa