Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901846

RESUMO

Previous studies have reported an association between ABO type blood group and cardiovascular (CV) events and outcomes. The precise mechanisms underpinning this striking observation remain unknown, although differences in von Willebrand factor (VWF) plasma levels have been proposed as an explanation. Recently, galectin-3 was identified as an endogenous ligand of VWF and red blood cells (RBCs) and, therefore, we aimed to explore the role of galectin-3 in different blood groups. Two in vitro assays were used to assess the binding capacity of galectin-3 to RBCs and VWF in different blood groups. Additionally, plasma levels of galectin-3 were measured in different blood groups in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study (2571 patients hospitalized for coronary angiography) and validated in a community-based cohort of the Prevention of Renal and Vascular End-stage Disease (PREVEND) study (3552 participants). To determine the prognostic value of galectin-3 in different blood groups, logistic regression and cox regression models were used with all-cause mortality as the primary outcome. First, we demonstrated that galectin-3 has a higher binding capacity for RBCs and VWF in non-O blood groups, compared to blood group O. Additionally, LURIC patients with non-O blood groups had substantially lower plasma levels of galectin-3 (15.0, 14.9, and 14.0 µg/L in blood groups A, B, and AB, respectively, compared to 17.1 µg/L in blood group O, p < 0.0001). Finally, the independent prognostic value of galectin-3 for all-cause mortality showed a non-significant trend towards higher mortality in non-O blood groups. Although plasma galectin-3 levels are lower in non-O blood groups, the prognostic value of galectin-3 is also present in subjects with a non-O blood group. We conclude that physical interaction between galectin-3 and blood group epitopes may modulate galectin-3, which may affect its performance as a biomarker and its biological activity.


Assuntos
Galectina 3 , Fator de von Willebrand , Humanos , Fator de von Willebrand/metabolismo , Prognóstico , Sistema ABO de Grupos Sanguíneos , Rim/metabolismo
2.
J Biol Chem ; 290(47): 28465-28476, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26432637

RESUMO

PLOD2 (procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2) hydroxylates lysine residues in collagen telopeptides and is essential for collagen pyridinoline cross-link formation. PLOD2 expression and subsequent pyridinoline cross-links are increased in fibrotic pathologies by transforming growth factor ß-1 (TGFß1). In this report we examined the molecular processes underlying TGFß1-induced PLOD2 expression. We found that binding of the TGFß1 pathway related transcription factors SMAD3 and SP1-mediated TGFß1 enhanced PLOD2 expression and could be correlated to an increase of acetylated histone H3 and H4 at the PLOD2 promoter. Interestingly, the classical co-activators of SMAD3 complexes, p300 and CBP, were not responsible for the enhanced H3 and H4 acetylation. Depletion of SMAD3 reduced PLOD2 acetylated H3 and H4, indicating that another as of yet unidentified histone acetyltransferase binds to SMAD3 at PLOD2. Assessing histone methylation marks at the PLOD2 promoter depicted an increase of the active histone mark H3K79me2, a decrease of the repressive H4K20me3 mark, but no role for the generally strong transcription-related modifications: H3K4me3, H3K9me3 and H3K27me3. Collectively, our findings reveal that TGFß1 induces a SP1- and SMAD3-dependent recruitment of histone modifying enzymes to the PLOD2 promoter other than the currently known TGFß1 downstream co-activators and epigenetic modifications. This also suggests that additional activation strategies are used downstream of the TGFß1 pathway, and hence their unraveling could be of great importance to fully understand TGFß1 activation of genes.


Assuntos
Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Acetilação , Células Cultivadas , Histonas/metabolismo , Humanos , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteína Smad3/metabolismo , Fator de Transcrição Sp1/metabolismo
3.
Am J Pathol ; 185(12): 3326-37, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26458763

RESUMO

Dupuytren disease is a fibrotic disorder characterized by contraction of myofibroblast-rich cords and nodules in the hands. The Hippo member Yes-associated protein 1 (YAP1) is activated by tissue stiffness and the profibrotic transforming growth factor-ß1, but its role in cell fibrogenesis is yet unclear. We hypothesized that YAP1 regulates the differentiation of dermal fibroblasts into highly contractile myofibroblasts and that YAP1 governs the maintenance of a myofibroblast phenotype in primary Dupuytren cells. Knockdown of YAP1 in transforming growth factor-ß1-stimulated dermal fibroblasts decreased the formation of contractile smooth muscle α-actin stress fibers and the deposition of collagen type I, which are hallmark features of myofibroblasts. Translating our findings to a clinically relevant model, we found that YAP1 deficiency in Dupuytren disease myofibroblasts resulted in decreased expression of ACTA2, COL1A1, and CCN2 mRNA, but this did not result in decreased protein levels. YAP1-deficient Dupuytren myofibroblasts showed decreased contraction of a collagen hydrogel. Finally, we showed that YAP1 levels and nuclear localization were elevated in affected Dupuytren disease tissue compared with matched control tissue and partly co-localized with smooth muscle α-actin-positive cells. In conclusion, our data show that YAP1 is a regulator of myofibroblast differentiation and contributes to the maintenance of a synthetic and contractile phenotype, in both transforming growth factor-ß1-induced myofibroblast differentiation and primary Dupuytren myofibroblasts.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Contratura de Dupuytren/patologia , Miofibroblastos/patologia , Fosfoproteínas/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , Colágeno/metabolismo , Contratura de Dupuytren/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Miofibroblastos/efeitos dos fármacos , Fosfoproteínas/genética , Fatores de Transcrição , Fator de Crescimento Transformador beta1/farmacologia , Proteínas de Sinalização YAP
4.
Exp Cell Res ; 319(19): 3000-9, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23906925

RESUMO

The hallmark of fibrosis is an accumulation of fibrillar collagens, especially of collagen type I. There is considerable debate whether in vivo type II epithelial-to-mesenchymal transition (EMT) is involved in organ fibrosis. Lineage tracing experiments by various groups show opposing data concerning the relative contribution of epithelial cells to the pool of myofibroblasts. We hypothesized that EMT-derived cells might directly contribute to collagen deposition. To study this, EMT was induced in human epithelial lung and renal cell lines in vitro by means of TGF-ß1 stimulation, and we compared the collagen type I (COL1A1) expression levels of transdifferentiated cells with that of myofibroblasts obtained by TGF-ß1 stimulation of human dermal and lung fibroblasts. COL1A1 expression levels of transdifferentiated epithelial cells appeared to be at least one to two orders of magnitude lower than that of myofibroblasts. This was confirmed at immunohistochemical level: in contrast to myofibroblasts, collagen type I deposition by EMT-derived cells was not or hardly detectable. We postulate that, even when type II EMT occurs in vivo, the direct contribution of EMT-derived cells to collagen accumulation is rather limited.


Assuntos
Colágeno Tipo I/metabolismo , Células Epiteliais/citologia , Transição Epitelial-Mesenquimal/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , Colágeno Tipo I/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Fibroblastos/citologia , Fibrose/metabolismo , Humanos , Fator de Crescimento Transformador beta1/farmacologia , Regulação para Cima
5.
Cell Commun Signal ; 11(1): 29, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23601247

RESUMO

BACKGROUND: Macrophages and fibroblasts are two major players in tissue repair and fibrosis. Despite the relevance of macrophages and fibroblasts in tissue homeostasis, remarkably little is known whether macrophages are able to influence the properties of fibroblasts. Here we investigated the role of paracrine factors secreted by classically activated (M1) and alternatively activated (M2) human macrophages on human dermal fibroblasts (HDFs). RESULTS: HDFs stimulated with paracrine factors from M1 macrophages showed a 10 to > 100-fold increase in the expression of the inflammatory cytokines IL6, CCL2 and CCL7 and the matrix metalloproteinases MMP1 and MMP3. This indicates that factors produced by M1 macrophages induce a fibroblast phenotype with pro-inflammatory and extracellular matrix (ECM) degrading properties. HDFs stimulated with paracrine factors secreted by M2 macrophages displayed an increased proliferation rate. Interestingly, the M1-activated pro-inflammatory fibroblasts downregulated, after exposure to paracrine factors produced by M2 macrophages or non-conditioned media, the inflammatory markers as well as MMPs and upregulated their collagen production. CONCLUSIONS: Paracrine factors of M1 or M2 polarized macrophages induced different phenotypes of HDFs and the HDF phenotypes can in turn be reversed, pointing to a high dynamic plasticity of fibroblasts in the different phases of tissue repair.

6.
Physiol Rep ; 5(17)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28904079

RESUMO

l-Ascorbic acid (AA), generally known as vitamin C, is a crucial cofactor for a variety of enzymes, including prolyl-3-hydroxylase (P3H), prolyl-4-hydroxylase (P4H), and lysyl hydroxylase (LH)-mediated collagen maturation. Here, we investigated whether AA has additional functions in the regulation of the myofibroblast phenotype, besides its function in collagen biosynthesis. We found that AA positively influences TGFß1-induced expression of COL1A1, ACTA2, and COL4A1 Moreover, we demonstrated that AA promotes αSMA stress fiber formation as well as the synthesis and deposition of collagens type I and IV Additionally, AA amplified the contractile phenotype of the myofibroblasts, as seen by increased contraction of a 3D collagen lattice. Moreover, AA increased the expression of several TGFß1-induced genes, including DDR1 and CCN2 Finally, we demonstrated that the mechanism of AA action seems independent of Smad2/3 signaling.


Assuntos
Ácido Ascórbico/farmacologia , Miofibroblastos/efeitos dos fármacos , Fenótipo , Vitaminas/farmacologia , Actinas/genética , Actinas/metabolismo , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Receptor com Domínio Discoidina 1/genética , Receptor com Domínio Discoidina 1/metabolismo , Humanos , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa