Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Radiology ; 298(1): E18-E28, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32729810

RESUMO

Background The coronavirus disease 2019 (COVID-19) pandemic has spread across the globe with alarming speed, morbidity, and mortality. Immediate triage of patients with chest infections suspected to be caused by COVID-19 using chest CT may be of assistance when results from definitive viral testing are delayed. Purpose To develop and validate an artificial intelligence (AI) system to score the likelihood and extent of pulmonary COVID-19 on chest CT scans using the COVID-19 Reporting and Data System (CO-RADS) and CT severity scoring systems. Materials and Methods The CO-RADS AI system consists of three deep-learning algorithms that automatically segment the five pulmonary lobes, assign a CO-RADS score for the suspicion of COVID-19, and assign a CT severity score for the degree of parenchymal involvement per lobe. This study retrospectively included patients who underwent a nonenhanced chest CT examination because of clinical suspicion of COVID-19 at two medical centers. The system was trained, validated, and tested with data from one of the centers. Data from the second center served as an external test set. Diagnostic performance and agreement with scores assigned by eight independent observers were measured using receiver operating characteristic analysis, linearly weighted κ values, and classification accuracy. Results A total of 105 patients (mean age, 62 years ± 16 [standard deviation]; 61 men) and 262 patients (mean age, 64 years ± 16; 154 men) were evaluated in the internal and external test sets, respectively. The system discriminated between patients with COVID-19 and those without COVID-19, with areas under the receiver operating characteristic curve of 0.95 (95% CI: 0.91, 0.98) and 0.88 (95% CI: 0.84, 0.93), for the internal and external test sets, respectively. Agreement with the eight human observers was moderate to substantial, with mean linearly weighted κ values of 0.60 ± 0.01 for CO-RADS scores and 0.54 ± 0.01 for CT severity scores. Conclusion With high diagnostic performance, the CO-RADS AI system correctly identified patients with COVID-19 using chest CT scans and assigned standardized CO-RADS and CT severity scores that demonstrated good agreement with findings from eight independent observers and generalized well to external data. © RSNA, 2020 Supplemental material is available for this article.


Assuntos
Inteligência Artificial , COVID-19/diagnóstico por imagem , Índice de Gravidade de Doença , Tórax/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Idoso , Sistemas de Dados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos de Pesquisa , Estudos Retrospectivos
2.
Med Image Anal ; 97: 103259, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38959721

RESUMO

Deep learning classification models for medical image analysis often perform well on data from scanners that were used to acquire the training data. However, when these models are applied to data from different vendors, their performance tends to drop substantially. Artifacts that only occur within scans from specific scanners are major causes of this poor generalizability. We aimed to enhance the reliability of deep learning classification models using a novel method called Uncertainty-Based Instance eXclusion (UBIX). UBIX is an inference-time module that can be employed in multiple-instance learning (MIL) settings. MIL is a paradigm in which instances (generally crops or slices) of a bag (generally an image) contribute towards a bag-level output. Instead of assuming equal contribution of all instances to the bag-level output, UBIX detects instances corrupted due to local artifacts on-the-fly using uncertainty estimation, reducing or fully ignoring their contributions before MIL pooling. In our experiments, instances are 2D slices and bags are volumetric images, but alternative definitions are also possible. Although UBIX is generally applicable to diverse classification tasks, we focused on the staging of age-related macular degeneration in optical coherence tomography. Our models were trained on data from a single scanner and tested on external datasets from different vendors, which included vendor-specific artifacts. UBIX showed reliable behavior, with a slight decrease in performance (a decrease of the quadratic weighted kappa (κw) from 0.861 to 0.708), when applied to images from different vendors containing artifacts; while a state-of-the-art 3D neural network without UBIX suffered from a significant detriment of performance (κw from 0.852 to 0.084) on the same test set. We showed that instances with unseen artifacts can be identified with OOD detection. UBIX can reduce their contribution to the bag-level predictions, improving reliability without retraining on new data. This potentially increases the applicability of artificial intelligence models to data from other scanners than the ones for which they were developed. The source code for UBIX, including trained model weights, is publicly available through https://github.com/qurAI-amsterdam/ubix-for-reliable-classification.


Assuntos
Aprendizado Profundo , Tomografia de Coerência Óptica , Tomografia de Coerência Óptica/métodos , Humanos , Incerteza , Reprodutibilidade dos Testes , Artefatos , Processamento de Imagem Assistida por Computador/métodos , Degeneração Macular/diagnóstico por imagem , Algoritmos
3.
Transl Vis Sci Technol ; 13(9): 11, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39235402

RESUMO

Purpose: The purpose of this study was to develop a deep learning algorithm for detecting and quantifying incomplete retinal pigment epithelium and outer retinal atrophy (iRORA) and complete retinal pigment epithelium and outer retinal atrophy (cRORA) in optical coherence tomography (OCT) that generalizes well to data from different devices and to validate in an intermediate age-related macular degeneration (iAMD) cohort. Methods: The algorithm comprised a domain adaptation (DA) model, promoting generalization across devices, and a segmentation model for detecting granular biomarkers defining iRORA/cRORA, which are combined into iRORA/cRORA segmentations. Manual annotations of iRORA/cRORA in OCTs from different devices in the MACUSTAR study (168 patients with iAMD) were compared to the algorithm's output. Eye level classification metrics included sensitivity, specificity, and quadratic weighted Cohen's κ score (κw). Segmentation performance was assessed quantitatively using Bland-Altman plots and qualitatively. Results: For ZEISS OCTs, sensitivity and specificity for iRORA/cRORA classification were 38.5% and 93.1%, respectively, and 60.0% and 96.4% for cRORA. For Spectralis OCTs, these were 84.0% and 93.7% for iRORA/cRORA, and 62.5% and 97.4% for cRORA. The κw scores for 3-way classification (none, iRORA, and cRORA) were 0.37 and 0.73 for ZEISS and Spectralis, respectively. Removing DA reduced κw from 0.73 to 0.63 for Spectralis. Conclusions: The DA-enabled iRORA/cRORA segmentation algorithm showed superior consistency compared to human annotations, and good generalization across OCT devices. Translational Relevance: The application of this algorithm may help toward precise and automated tracking of iAMD-related lesion changes, which is crucial in clinical settings and multicenter longitudinal studies on iAMD.


Assuntos
Aprendizado Profundo , Degeneração Macular , Epitélio Pigmentado da Retina , Tomografia de Coerência Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/diagnóstico por imagem , Feminino , Degeneração Macular/patologia , Degeneração Macular/diagnóstico , Degeneração Macular/diagnóstico por imagem , Masculino , Idoso , Atrofia/patologia , Algoritmos , Idoso de 80 Anos ou mais
4.
IEEE Trans Med Imaging ; 43(1): 542-557, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37713220

RESUMO

The early detection of glaucoma is essential in preventing visual impairment. Artificial intelligence (AI) can be used to analyze color fundus photographs (CFPs) in a cost-effective manner, making glaucoma screening more accessible. While AI models for glaucoma screening from CFPs have shown promising results in laboratory settings, their performance decreases significantly in real-world scenarios due to the presence of out-of-distribution and low-quality images. To address this issue, we propose the Artificial Intelligence for Robust Glaucoma Screening (AIROGS) challenge. This challenge includes a large dataset of around 113,000 images from about 60,000 patients and 500 different screening centers, and encourages the development of algorithms that are robust to ungradable and unexpected input data. We evaluated solutions from 14 teams in this paper and found that the best teams performed similarly to a set of 20 expert ophthalmologists and optometrists. The highest-scoring team achieved an area under the receiver operating characteristic curve of 0.99 (95% CI: 0.98-0.99) for detecting ungradable images on-the-fly. Additionally, many of the algorithms showed robust performance when tested on three other publicly available datasets. These results demonstrate the feasibility of robust AI-enabled glaucoma screening.


Assuntos
Inteligência Artificial , Glaucoma , Humanos , Glaucoma/diagnóstico por imagem , Fundo de Olho , Técnicas de Diagnóstico Oftalmológico , Algoritmos
5.
IEEE Trans Artif Intell ; 3(2): 129-138, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35582210

RESUMO

Amidst the ongoing pandemic, the assessment of computed tomography (CT) images for COVID-19 presence can exceed the workload capacity of radiologists. Several studies addressed this issue by automating COVID-19 classification and grading from CT images with convolutional neural networks (CNNs). Many of these studies reported initial results of algorithms that were assembled from commonly used components. However, the choice of the components of these algorithms was often pragmatic rather than systematic and systems were not compared to each other across papers in a fair manner. We systematically investigated the effectiveness of using 3-D CNNs instead of 2-D CNNs for seven commonly used architectures, including DenseNet, Inception, and ResNet variants. For the architecture that performed best, we furthermore investigated the effect of initializing the network with pretrained weights, providing automatically computed lesion maps as additional network input, and predicting a continuous instead of a categorical output. A 3-D DenseNet-201 with these components achieved an area under the receiver operating characteristic curve of 0.930 on our test set of 105 CT scans and an AUC of 0.919 on a publicly available set of 742 CT scans, a substantial improvement in comparison with a previously published 2-D CNN. This article provides insights into the performance benefits of various components for COVID-19 classification and grading systems. We have created a challenge on grand-challenge.org to allow for a fair comparison between the results of this and future research.

6.
Transl Vis Sci Technol ; 11(12): 3, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36458946

RESUMO

Purpose: The purpose of this study was to develop and validate a deep learning (DL) framework for the detection and quantification of reticular pseudodrusen (RPD) and drusen on optical coherence tomography (OCT) scans. Methods: A DL framework was developed consisting of a classification model and an out-of-distribution (OOD) detection model for the identification of ungradable scans; a classification model to identify scans with drusen or RPD; and an image segmentation model to independently segment lesions as RPD or drusen. Data were obtained from 1284 participants in the UK Biobank (UKBB) with a self-reported diagnosis of age-related macular degeneration (AMD) and 250 UKBB controls. Drusen and RPD were manually delineated by five retina specialists. The main outcome measures were sensitivity, specificity, area under the receiver operating characteristic (ROC) curve (AUC), kappa, accuracy, intraclass correlation coefficient (ICC), and free-response receiver operating characteristic (FROC) curves. Results: The classification models performed strongly at their respective tasks (0.95, 0.93, and 0.99 AUC, respectively, for the ungradable scans classifier, the OOD model, and the drusen and RPD classification models). The mean ICC for the drusen and RPD area versus graders was 0.74 and 0.61, respectively, compared with 0.69 and 0.68 for intergrader agreement. FROC curves showed that the model's sensitivity was close to human performance. Conclusions: The models achieved high classification and segmentation performance, similar to human performance. Translational Relevance: Application of this robust framework will further our understanding of RPD as a separate entity from drusen in both research and clinical settings.


Assuntos
Aprendizado Profundo , Degeneração Macular , Drusas Retinianas , Humanos , Tomografia de Coerência Óptica , Drusas Retinianas/diagnóstico por imagem , Retina , Degeneração Macular/diagnóstico por imagem
7.
Med Image Anal ; 67: 101832, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166776

RESUMO

Segmentation of medical images, particularly late gadolinium-enhanced magnetic resonance imaging (LGE-MRI) used for visualizing diseased atrial structures, is a crucial first step for ablation treatment of atrial fibrillation. However, direct segmentation of LGE-MRIs is challenging due to the varying intensities caused by contrast agents. Since most clinical studies have relied on manual, labor-intensive approaches, automatic methods are of high interest, particularly optimized machine learning approaches. To address this, we organized the 2018 Left Atrium Segmentation Challenge using 154 3D LGE-MRIs, currently the world's largest atrial LGE-MRI dataset, and associated labels of the left atrium segmented by three medical experts, ultimately attracting the participation of 27 international teams. In this paper, extensive analysis of the submitted algorithms using technical and biological metrics was performed by undergoing subgroup analysis and conducting hyper-parameter analysis, offering an overall picture of the major design choices of convolutional neural networks (CNNs) and practical considerations for achieving state-of-the-art left atrium segmentation. Results show that the top method achieved a Dice score of 93.2% and a mean surface to surface distance of 0.7 mm, significantly outperforming prior state-of-the-art. Particularly, our analysis demonstrated that double sequentially used CNNs, in which a first CNN is used for automatic region-of-interest localization and a subsequent CNN is used for refined regional segmentation, achieved superior results than traditional methods and machine learning approaches containing single CNNs. This large-scale benchmarking study makes a significant step towards much-improved segmentation methods for atrial LGE-MRIs, and will serve as an important benchmark for evaluating and comparing the future works in the field. Furthermore, the findings from this study can potentially be extended to other imaging datasets and modalities, having an impact on the wider medical imaging community.


Assuntos
Benchmarking , Gadolínio , Algoritmos , Átrios do Coração/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa