Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Phys Chem A ; 115(7): 1257-63, 2011 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-21268625

RESUMO

Aqueous complexation, adsorption, and redox chemistry of actinide species at mineral surfaces have a significant impact on their transport and reactive behavior in chemically and physically heterogeneous environments. The adsorption configurations and energies of microsolvated uranyl dication species, UO(2)(H(2)O)(n)(2+), were determined on fully hydroxylated and proton-deficient α-alumina(0001)-like finite cluster models. The significant size of the models provides faithful representations of features that have emerged from periodic calculations, but most importantly, they afford us a systematic study of the adsorption mechanism, the effect of secondary solvation shells and an explicit treatment of the total charge. Based on this cluster representation, the energetics computed from the difference between the optimized structures and the appropriate reference states point to a preference for an inner-sphere type complex.

2.
J Chem Phys ; 127(14): 144105, 2007 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-17935384

RESUMO

Coupled-cluster theory with single and double excitations is applied to the calculation of optical properties of large polyaromatic hydrocarbons. Dipole polarizabilities are reported for benzene, pyrene, and the oligoacenes sequence n=2-6. Dynamic polarizabilities were calculated on polyacences as large as pentacene for a single frequency and for benzene and pyrene at many frequencies. The basis set effect was studied for benzene using a variety of basis sets in the Pople [Theor. Chim. Acta 28, 213 (1973)] and Dunning [J. Chem. Phys. 90, 1007 (1989)] families up to aug-cc-pVQZ and the Sadlej pVTZ basis [Collect. Czech. Chem. Commun. 53, 1995 (1998)], which was used exclusively for the largest molecules. Geometries were optimized using HF, B3LYP, PBE0, and MP2 and compared to experiment to measure method dependence and the possible role of bond-length alternation. Finally, the polarizability results were compared to four common density functionals (B3LYP, BLYP, PBE0, PBE).

3.
J Am Chem Soc ; 129(32): 9976-85, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17658801

RESUMO

A direct dynamics simulation at the B3LYP/6-311+G(d,p) level of theory was used to study the F- + CH3OOH reaction dynamics. The simulations are in excellent agreement with a previous experimental study (J. Am. Chem. Soc. 2002, 124, 3196). Two product channels, HF + CH2O + OH- and HF + CH3OO-, are observed. The former dominates and occurs via an ECO2 mechanism in which F- attacks the CH3- group, abstracting a proton. Concertedly, a carbon-oxygen double bond is formed and OH- is eliminated. Somewhat surprisingly this is not the reaction path, predicted by the intrinsic reaction coordinate (IRC), which leads to a deep potential energy minimum for the CH2(OH)2...F- complex followed by dissociation to HF + CH2(OH)O-. None of the direct dynamics trajectories followed this path, which has an energy release of -63 kcal/mol and is considerably more exothermic than the ECO2 path whose energy release is -27 kcal/mol. Other product channels not observed, and which have a lower energy than that for the ECO2 path, are F- + CO + H2 + H2O (-43 kcal/mol), F- + CH2O + H2O (-51 kcal/mol), and F- + CH2(OH)2 (-60 kcal/mol). Formation of the CH3OOH...F- complex, with randomization of its internal energy, is important, and this complex dissociates via the ECO2 mechanism. Trajectories which form HF + CH3OO- are nonstatistical events and, for the 4 ps direct dynamics simulation, are not mediated by the CH3OOH...F- complex. Dissociation of this complex to form HF + CH3OO- may occur on longer time scales.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa