Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Mol Ecol ; 29(7): 1267-1283, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32147876

RESUMO

Aerobic anoxygenic phototrophic (AAP) bacteria are a phylogenetically diverse and ubiquitous group of prokaryotes that use organic matter but can harvest light using bacteriochlorophyll a. Although the factors regulating AAP ecology have long been investigated through field surveys, the few available experimental studies have considered AAPs as a group, thus disregarding the potential differential responses between taxonomically distinct AAP assemblages. Here, we used sequencing of the pufM gene to describe the diversity of AAPs in 10 environmentally distinct temperate lakes, and to investigate the taxonomic responses of AAP communities in these lakes when subjected to similar experimental manipulations of light and predator removal. The studied communities were clearly dominated by Limnohabitans AAP but presented a clear taxonomic segregation between lakes presumably driven by local conditions, which was maintained after experimental manipulations. Predation reduction (but not light exposure) caused significant compositional shifts across most assemblages, but the magnitude of these changes could not be clearly related to changes in bulk AAP abundances or taxonomic richness of AAP assemblages during experiments. Only a few operational taxonomic units, which differed taxonomically between lakes, were found to respond positively during experimental treatments. Our results highlight that different freshwater AAP communities respond differently to similar control mechanisms, highlighting that in-depth knowledge on AAP diversity is essential to understand the ecology and potential role of these photoheterotrophs.


Assuntos
Bactérias/classificação , Cadeia Alimentar , Lagos/microbiologia , Luz , Processos Fototróficos , Filogenia , Bactérias/efeitos da radiação , Genes Bacterianos , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota , Quebeque
2.
Biol Lett ; 16(2): 20190694, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32097596

RESUMO

The transit of organic matter (OM) through the aquatic compartment of its global cycle has been intensively studied, traditionally with a focus on the processing and degradation of its dissolved fraction (dissolved organic matter, DOM). Because this is so intimately related to oxidation, the notion tenaciously persists that where oxygen is absent, DOM turnover is markedly slowed. In this Opinion Piece, we outline how diverse processes shape, transform and degrade DOM also in anoxic aquatic environments, and we focus here on inland waters as a particular case study. A suite of biogeochemical DOM functions that have received comparatively little attention may only be expressed in anoxic conditions and may result in enhanced biogeochemical roles of these deoxygenated habitats on a network scale.


Assuntos
Ecossistema
3.
Nature ; 507(7493): 488-91, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24670769

RESUMO

Methane (CH4) is an important greenhouse gas because it has 25 times the global warming potential of carbon dioxide (CO2) by mass over a century. Recent calculations suggest that atmospheric CH4 emissions have been responsible for approximately 20% of Earth's warming since pre-industrial times. Understanding how CH4 emissions from ecosystems will respond to expected increases in global temperature is therefore fundamental to predicting whether the carbon cycle will mitigate or accelerate climate change. Methanogenesis is the terminal step in the remineralization of organic matter and is carried out by strictly anaerobic Archaea. Like most other forms of metabolism, methanogenesis is temperature-dependent. However, it is not yet known how this physiological response combines with other biotic processes (for example, methanotrophy, substrate supply, microbial community composition) and abiotic processes (for example, water-table depth) to determine the temperature dependence of ecosystem-level CH4 emissions. It is also not known whether CH4 emissions at the ecosystem level have a fundamentally different temperature dependence than other key fluxes in the carbon cycle, such as photosynthesis and respiration. Here we use meta-analyses to show that seasonal variations in CH4 emissions from a wide range of ecosystems exhibit an average temperature dependence similar to that of CH4 production derived from pure cultures of methanogens and anaerobic microbial communities. This average temperature dependence (0.96 electron volts (eV)), which corresponds to a 57-fold increase between 0 and 30°C, is considerably higher than previously observed for respiration (approximately 0.65 eV) and photosynthesis (approximately 0.3 eV). As a result, we show that both the emission of CH4 and the ratio of CH4 to CO2 emissions increase markedly with seasonal increases in temperature. Our findings suggest that global warming may have a large impact on the relative contributions of CO2 and CH4 to total greenhouse gas emissions from aquatic ecosystems, terrestrial wetlands and rice paddies.


Assuntos
Archaea/metabolismo , Ecossistema , Aquecimento Global , Metano/metabolismo , Temperatura , Anaerobiose , Organismos Aquáticos/metabolismo , Atmosfera/química , Ciclo do Carbono , Dióxido de Carbono/análise , Respiração Celular , Sedimentos Geológicos/microbiologia , Efeito Estufa , Metano/análise , Oryza/metabolismo , Fotossíntese , Estações do Ano , Áreas Alagadas
4.
Mol Ecol ; 28(18): 4181-4196, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31479544

RESUMO

Aerobic methanotrophic bacteria (methanotrophs) use methane as a source of carbon and energy, thereby mitigating net methane emissions from natural sources. Methanotrophs represent a widespread and phylogenetically complex guild, yet the biogeography of this functional group and the factors that explain the taxonomic structure of the methanotrophic assemblage are still poorly understood. Here, we used high-throughput sequencing of the 16S rRNA gene of the bacterial community to study the methanotrophic community composition and the environmental factors that influence their distribution and relative abundance in a wide range of freshwater habitats, including lakes, streams and rivers across the boreal landscape. Within one region, soil and soil water samples were additionally taken from the surrounding watersheds in order to cover the full terrestrial-aquatic continuum. The composition of methanotrophic communities across the boreal landscape showed only a modest degree of regional differentiation but a strong structuring along the hydrologic continuum from soil to lake communities, regardless of regions. This pattern along the hydrologic continuum was mostly explained by a clear niche differentiation between type I and type II methanotrophs along environmental gradients in pH, and methane concentrations. Our results suggest very different roles of type I and type II methanotrophs within inland waters, the latter likely having a terrestrial source and reflecting passive transport and dilution along the aquatic networks, but this is an unresolved issue that requires further investigation.


Assuntos
Bactérias/classificação , Meio Ambiente , Metano/metabolismo , Filogeografia , Microbiologia da Água , Sequência de Bases , Geografia , Concentração de Íons de Hidrogênio , Nitrogênio/análise , Oxigênio/análise , Fósforo/análise , Filogenia , Análise de Componente Principal , Quebeque , RNA Ribossômico 16S/genética , Temperatura
5.
Nature ; 487(7408): 472-6, 2012 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-22722862

RESUMO

Ecosystem respiration is the biotic conversion of organic carbon to carbon dioxide by all of the organisms in an ecosystem, including both consumers and primary producers. Respiration exhibits an exponential temperature dependence at the subcellular and individual levels, but at the ecosystem level respiration can be modified by many variables including community abundance and biomass, which vary substantially among ecosystems. Despite its importance for predicting the responses of the biosphere to climate change, it is as yet unknown whether the temperature dependence of ecosystem respiration varies systematically between aquatic and terrestrial environments. Here we use the largest database of respiratory measurements yet compiled to show that the sensitivity of ecosystem respiration to seasonal changes in temperature is remarkably similar for diverse environments encompassing lakes, rivers, estuaries, the open ocean and forested and non-forested terrestrial ecosystems, with an average activation energy similar to that of the respiratory complex (approximately 0.65 electronvolts (eV)). By contrast, annual ecosystem respiration shows a substantially greater temperature dependence across aquatic (approximately 0.65 eV) versus terrestrial ecosystems (approximately 0.32 eV) that span broad geographic gradients in temperature. Using a model derived from metabolic theory, these findings can be reconciled by similarities in the biochemical kinetics of metabolism at the subcellular level, and fundamental differences in the importance of other variables besides temperature­such as primary productivity and allochthonous carbon inputs­on the structure of aquatic and terrestrial biota at the community level.


Assuntos
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Ecossistema , Aquecimento Global , Consumo de Oxigênio , Temperatura , Animais , Biomassa , Biota , Respiração Celular , Coleta de Dados , Humanos , Cinética , Lagos , Biologia Marinha , Fotossíntese , Rios , Estações do Ano , Água do Mar , Fatores de Tempo , Árvores/metabolismo
6.
Ecol Lett ; 20(11): 1395-1404, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29044973

RESUMO

Recent experimental evidence suggests that changes in the partial pressure of CO2 (pCO2 ), in concert with nutrient fertilisation, may result in increased primary production and shifted phytoplankton community composition that favours species lacking adaptations to low CO2 environments. It is not clear whether these results apply in ambient freshwaters, which are already often supersaturated in CO2 , and where phytoplankton structure and activity are under complex control of diverse local and regional factors. Here, we use a large-scale comparative study of 69 boreal lakes to explore the influence of existing CO2 gradients (c. 50-2300 µatm) on phytoplankton community composition and biomass production. While community composition did not respond to pCO2 gradients, gross primary production was enhanced, but only in lakes already supersaturated in CO2 , demonstrating that environmental context is key in determining pCO2 -phytoplankton interactions. We further argue that increased atmospheric CO2 is unlikely to influence phytoplanktonic composition and production in northern lakes.


Assuntos
Biomassa , Dióxido de Carbono/metabolismo , Lagos/química , Fitoplâncton/crescimento & desenvolvimento , Água/química , Fitoplâncton/metabolismo
7.
Ecol Lett ; 19(12): 1506-1515, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27882701

RESUMO

Aquatic bacterial communities harbour thousands of coexisting taxa. To meet the challenge of discriminating between a 'core' and a sporadically occurring 'random' component of these communities, we explored the spatial abundance distribution of individual bacterioplankton taxa across 198 boreal lakes and their associated fluvial networks (188 rivers). We found that all taxa could be grouped into four distinct categories based on model statistical distributions (normal like, bimodal, logistic and lognormal). The distribution patterns across lakes and their associated river networks showed that lake communities are composed of a core of taxa whose distribution appears to be linked to in-lake environmental sorting (normal-like and bimodal categories), and a large fraction of mostly rare bacteria (94% of all taxa) whose presence appears to be largely random and linked to downstream transport in aquatic networks (logistic and lognormal categories). These rare taxa are thus likely to reflect species sorting at upstream locations, providing a perspective of the conditions prevailing in entire aquatic networks rather than only in lakes.


Assuntos
Bactérias/classificação , Ecossistema , Lagos , Plâncton/classificação , Plâncton/microbiologia , Bactérias/genética , DNA Bacteriano/genética , Monitoramento Ambiental , Plâncton/fisiologia , Rios , Microbiologia da Água
8.
Ecol Lett ; 18(11): 1198-1206, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26306742

RESUMO

Bacteria inhabiting boreal freshwaters are part of metacommunities where local assemblages are often linked by the flow of water in the landscape, yet the resulting spatial structure and the boundaries of the network metacommunity have never been explored. Here, we reconstruct the spatial structure of the bacterial metacommunity in a complex boreal aquatic network by determining the taxonomic composition of bacterial communities along the entire terrestrial/aquatic continuum, including soil and soilwaters, headwater streams, large rivers and lakes. We show that the network metacommunity has a directional spatial structure driven by a common terrestrial origin of aquatic communities, which are numerically dominated by taxa recruited from soils. Local community assembly is driven by variations along the hydrological continuum in the balance between mass effects and species sorting of terrestrial taxa, and seems further influenced by priority effects related to the spatial sequence of entry of soil bacteria into the network.

9.
Glob Chang Biol ; 21(3): 1124-39, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25220765

RESUMO

Lakes are a major component of boreal landscapes, and whereas lake CO2 emissions are recognized as a major component of regional C budgets, there is still much uncertainty associated to lake CH4 fluxes. Here, we present a large-scale study of the magnitude and regulation of boreal lake summer diffusive CH4 fluxes, and their contribution to total lake carbon (C) emissions, based on in situ measurements of concentration and fluxes of CH4 and CO2 in 224 lakes across a wide range of lake type and environmental gradients in Québec. The diffusive CH4 flux was highly variable (mean 11.6 ± 26.4 SD mg m(-2)  d(-1) ), and it was positively correlated with temperature and lake nutrient status, and negatively correlated with lake area and colored dissolved organic matter (CDOM). The relationship between CH4 and CO2 concentrations fluxes was weak, suggesting major differences in their respective sources and/or regulation. For example, increasing water temperature leads to higher CH4 flux but does not significantly affect CO2 flux, whereas increasing CDOM concentration leads to higher CO2 flux but lower CH4 flux. CH4 contributed to 8 ± 23% to the total lake C emissions (CH4  + CO2 ), but 18 ± 25% to the total flux in terms of atmospheric warming potential, expressed as CO2 -equivalents. The incorporation of ebullition and plant-mediated CH4 fluxes would further increase the importance of lake CH4 . The average Q10 of CH4 flux was 3.7, once other covarying factors were accounted for, but this apparent Q10 varied with lake morphometry and was higher for shallow lakes. We conclude that global climate change and the resulting shifts in temperature will strongly influence lake CH4 fluxes across the boreal biome, but these climate effects may be altered by regional patterns in lake morphometry, nutrient status, and browning.


Assuntos
Carbono/análise , Mudança Climática , Lagos/análise , Metano/análise , Efeito Estufa , Quebeque , Estações do Ano , Temperatura
10.
Glob Chang Biol ; 21(12): 4425-35, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26150108

RESUMO

Freshwater ecosystems are strongly influenced by both climate and the surrounding landscape, yet the specific pathways connecting climatic and landscape drivers to the functioning of lake ecosystems are poorly understood. Here, we hypothesize that the links that exist between spatial patterns in climate and landscape properties and the spatial variation in lake carbon (C) cycling at regional scales are at least partly mediated by the movement of terrestrial dissolved organic carbon (DOC) in the aquatic component of the landscape. We assembled a set of indicators of lake C cycling (bacterial respiration and production, chlorophyll a, production to respiration ratio, and partial pressure of CO2 ), DOC concentration and composition, and landscape and climate characteristics for 239 temperate and boreal lakes spanning large environmental and geographic gradients across seven regions. There were various degrees of spatial structure in climate and landscape features that were coherent with the regionally structured patterns observed in lake DOC and indicators of C cycling. These different regions aligned well, albeit nonlinearly along a mean annual temperature gradient; whereas there was a considerable statistical effect of climate and landscape properties on lake C cycling, the direct effect was small and the overall effect was almost entirely overlapping with that of DOC concentration and composition. Our results suggest that key climatic and landscape signals are conveyed to lakes in part via the movement of terrestrial DOC to lakes and that DOC acts both as a driver of lake C cycling and as a proxy for other external signals.


Assuntos
Ciclo do Carbono , Clima , Substâncias Húmicas/análise , Lagos/análise , Mudança Climática , Ecossistema , Modelos Teóricos , Análise Espacial
11.
Proc Natl Acad Sci U S A ; 109(42): 16963-8, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-23027957

RESUMO

Northern rivers and lakes process large quantities of organic and inorganic carbon from the surrounding terrestrial ecosystems. These external carbon inputs fuel widespread CO(2) supersaturation in continental waters, and the resulting CO(2) emissions from lakes and rivers are now recognized as a globally significant loss of terrestrial production to the atmosphere. Whereas the magnitude of emissions has received much attention, the pathways of C delivery and processing that generate these emissions are still not well-understood. CO(2) outgassing in aquatic systems has been unequivocally linked to microbial degradation and respiration of terrestrial organic carbon (OC), but the nature (i.e., age and source) of this OC respired in surface waters is largely unknown. We present direct radiocarbon measurements of OC respired by bacteria in freshwater aquatic systems, specifically temperate lakes and streams in Québec. Terrestrial OC fuels much of the respiration in these systems, and our results show that a significant fraction of the respired terrestrial OC is old (in the range of 1,000-3,000 y B.P.). Because the bulk OC pools in these lakes is relatively young, our results also suggest selective removal of an old but highly bioreactive terrestrial OC pool and its conversion to CO(2) by bacteria. The respiration of ancient (14)C-depleted terrestrial C in northern lakes and rivers provides a biological link between contemporary aquatic carbon biogeochemistry and paleo-conditions in the watershed, and it implies the aquatic-mediated return to the atmosphere of C putatively considered permanently stored, thus challenging current models of long-term C storage in terrestrial reservoirs.


Assuntos
Bactérias/metabolismo , Ciclo do Carbono/fisiologia , Dióxido de Carbono/metabolismo , Lagos/química , Consumo de Oxigênio/fisiologia , Rios/química , Radioisótopos de Carbono/análise , Quebeque , Fatores de Tempo
12.
Ecology ; 95(7): 1947-59, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25163126

RESUMO

The importance of terrestrial-derived organic matter for lake zooplankton communities remains debated, partly because little is known about the basic pathways by which allochthonous carbon is transferred to zooplankton, and whether these vary among the major taxonomic and functional groups. We quantified allochthony of three zooplankton groups (Cladocera, Calanoida, and Cyclopoida) across 18 lakes in Quebec, spanning broad gradients of dissolved organic matter (DOM) and lake trophy, using a multi-isotope (delta2H + delta13C), multi-source (terrestrial, phytoplanktonic, benthic) approach. All three zooplankton groups had significant levels of allochthony, but differed greatly in their respective patterns across lakes. Allochthony in Calanoida and Cyclopoida was linked to detrital food chains based on particulate organic matter (POM) and on DOM, respectively, whereas in Cladocera it appeared related to both pathways; not surprisingly this latter group had the highest mean allochthony (0.31; compared to 0.18 in Cyclopoida and 0.16 in Calanoida). This study highlights the complexity of the pathways of delivery and transfer of terrestrial organic matter in freshwaters, and underscores the role that microbial food webs play in this transfer.


Assuntos
Crustáceos/classificação , Crustáceos/fisiologia , Lagos , Zooplâncton/classificação , Zooplâncton/fisiologia , Animais , Isótopos de Carbono , Clima , Deutério , Ecossistema , Monitoramento Ambiental , Água/química
13.
Glob Chang Biol ; 20(4): 1075-88, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24273093

RESUMO

It is now widely accepted that boreal rivers and streams are regionally significant sources of carbon dioxide (CO2), yet their role as methane (CH4) emitters, as well as the sensitivity of these greenhouse gas (GHG) emissions to climate change, are still largely undefined. In this study, we explore the large-scale patterns of fluvial CO2 and CH4 partial pressure (pCO2 , pCH4) and gas exchange (k) relative to a set of key, climate-sensitive river variables across 46 streams and rivers in two distinct boreal landscapes of Northern Québec. We use the resulting models to determine the direction and magnitude of C-gas emissions from these boreal fluvial networks under scenarios of climate change. River pCO2 and pCH4 were positively correlated, although the latter was two orders of magnitude more variable. We provide evidence that in-stream metabolism strongly influences the dynamics of surface water pCO2 and pCH4 , but whereas pCO2 is not influenced by temperature in the surveyed streams and rivers, pCH4 appears to be strongly temperature-dependent. The major predictors of ambient gas concentrations and exchange were water temperature, velocity, and DOC, and the resulting models indicate that total GHG emissions (C-CO2 equivalent) from the entire network may increase between by 13 to 68% under plausible scenarios of climate change over the next 50 years. These predicted increases in fluvial GHG emissions are mostly driven by a steep increase in the contribution of CH4 (from 36 to over 50% of total CO2 -equivalents). The current role of boreal fluvial networks as major landscape sources of C is thus likely to expand, mainly driven by large increases in fluvial CH4 emissions.


Assuntos
Dióxido de Carbono/análise , Metano/análise , Modelos Teóricos , Rios , Carbono/análise , Mudança Climática , Ecossistema , Gases/análise , Efeito Estufa , Quebeque , Análise de Regressão , Temperatura
14.
Proc Natl Acad Sci U S A ; 108(25): 10225-30, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21646531

RESUMO

Jellyfish blooms occur in many estuarine and coastal regions and may be increasing in their magnitude and extent worldwide. Voracious jellyfish predation impacts food webs by converting large quantities of carbon (C), fixed by primary producers and consumed by secondary producers, into gelatinous biomass, which restricts C transfer to higher trophic levels because jellyfish are not readily consumed by other predators. In addition, jellyfish release colloidal and dissolved organic matter (jelly-DOM), and could further influence the functioning of coastal systems by altering microbial nutrient and DOM pathways, yet the links between jellyfish and bacterioplankton metabolism and community structure are unknown. Here we report that jellyfish released substantial quantities of extremely labile C-rich DOM, relative to nitrogen (25.6 ± 31.6 C:1N), which was quickly metabolized by bacterioplankton at uptake rates two to six times that of bulk DOM pools. When jelly-DOM was consumed it was shunted toward bacterial respiration rather than production, significantly reducing bacterial growth efficiencies by 10% to 15%. Jelly-DOM also favored the rapid growth and dominance of specific bacterial phylogenetic groups (primarily γ-proteobacteria) that were rare in ambient waters, implying that jelly-DOM was channeled through a small component of the in situ microbial assemblage and thus induced large changes in community composition. Our findings suggest major shifts in microbial structure and function associated with jellyfish blooms, and a large detour of C toward bacterial CO(2) production and away from higher trophic levels. These results further suggest fundamental transformations in the biogeochemical functioning and biological structure of food webs associated with jellyfish blooms.


Assuntos
Bactérias/metabolismo , Carbono/metabolismo , Ctenóforos/metabolismo , Ecossistema , Cifozoários/metabolismo , Água do Mar/química , Água do Mar/microbiologia , Animais , Biomassa , Cadeia Alimentar , Nitrogênio/metabolismo , Microbiologia da Água
15.
Sci Rep ; 14(1): 3831, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360896

RESUMO

The aquatic networks that connect soils with oceans receive each year 5.1 Pg of terrestrial carbon to transport, bury and process. Stagnant sections of aquatic networks often become anoxic. Mineral surfaces attract specific components of organic carbon, which are released under anoxic conditions to the pool of dissolved organic matter (DOM). The impact of the anoxic release on DOM molecular composition and reactivity in inland waters is unknown. Here, we report concurrent release of iron and DOM in anoxic bottom waters of northern lakes, removing DOM from the protection of iron oxides and remobilizing previously buried carbon to the water column. The deprotected DOM appears to be highly reactive, terrestrially derived and molecularly distinct, generating an ambient DOM pool that relieves energetic constraints that are often assumed to limit carbon turnover in anoxic waters. The Fe-to-C stoichiometry during anoxic mobilization differs from that after oxic precipitation, suggesting that up to 21% of buried OM escapes a lake-internal release-precipitation cycle, and can instead be exported downstream. Although anoxic habitats are transient and comprise relatively small volumes of water on the landscape scale, our results show that they may play a major role in structuring the reactivity and molecular composition of DOM transiting through aquatic networks and reaching the oceans.

16.
Sci Total Environ ; 873: 162308, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801415

RESUMO

Boreal rivers transport and process large amounts of organic and inorganic materials derived from their catchments, yet quantitative estimates and patterns of carbon (C) transport and emissions in these large rivers are scarce relative to those of high-latitude lakes and headwater streams. Here, we present the results of a large-scale survey of 23 major rivers in northern Québec sampled during the summer period of 2010, which aimed to determine the magnitude and spatial variability of different C species (carbon dioxide - CO2, methane - CH4, total carbon - TC, dissolved organic carbon - DOC and inorganic carbon - DIC), as well as to identify their main drivers. In addition, we constructed a first order mass balance of total riverine C emissions to the atmosphere (outgassing from the main river channel) and export to the ocean over summer. All rivers were supersaturated in pCO2 and pCH4 (partial pressure of CO2 and CH4), and the resulting fluxes varied widely among rivers, especially the CH4. There was a positive relationship between DOC and gas concentrations, suggesting a common watershed source of these C species. DOC concentrations declined as a function of % land surface covered by water (lentic + lotic systems) in the watershed, suggesting that lentic systems may act as a net sink of organic matter in the landscape. The C balance suggests that the export component is higher than atmospheric C emissions in the river channel. However, for heavily dammed rivers, C emissions to the atmosphere approaches the C export component. Such studies are highly important for the overall efforts to effectively quantify and incorporate major boreal rivers into whole-landscape C budgets, to determine the net role of these ecosystems as C sinks or sources, and to predict how these might shift under anthropogenic pressures and dynamic climate conditions.

17.
Nat Commun ; 14(1): 1571, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944700

RESUMO

In this Perspective, we put forward an integrative framework to improve estimates of land-atmosphere carbon exchange based on the accumulation of carbon in the landscape as constrained by its lateral export through rivers. The framework uses the watershed as the fundamental spatial unit and integrates all terrestrial and aquatic ecosystems as well as their hydrologic carbon exchanges. Application of the framework should help bridge the existing gap between land and atmosphere-based approaches and offers a platform to increase communication and synergy among the terrestrial, aquatic, and atmospheric research communities that is paramount to advance landscape carbon budget assessments.

18.
Environ Microbiol ; 14(5): 1296-307, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22429301

RESUMO

The organic carbon consumed by aquatic bacteria (BCC) is partitioned between bacterial production (BP) and respiration (BR), but the factors that determine BCC and its partition into BP and BR are not well understood. We explored the coupling between BR, BR and BCC, and their links to dissolved organic carbon (DOC) and nutrient availability in natural and restored tidal marshes and in the adjoining waters of Delaware Bay estuary. Labile DOC (LDOC) ranged from 3% to 22% of the DOC pool, and explained more of the variance in both BR and BCC than did bulk DOC. Bacterial growth efficiency (BGE) was highly variable (0.09-0.58), and natural Spartina alterniflora marshes had consistently higher BGE than both restoration marshes and tidal floodwaters. BGE was negatively related to the ratio of LDOC to total dissolved phosphorous, which was highest in natural marshes. The enhancement of BP observed in the marshes relative to the estuarine floodwaters had different origins: In natural marshes it was mostly due to increases in BGE, whereas in restored marshes it followed increased BCC. These results highlight the importance of P in regulating microbial metabolism in coastal areas, and the need to understand the pathways that lead to BP in these systems.


Assuntos
Bactérias/metabolismo , Carbono/metabolismo , Ecossistema , Fósforo/metabolismo , Microbiologia da Água , Áreas Alagadas , Bactérias/crescimento & desenvolvimento , Delaware , Poaceae/metabolismo , Água do Mar/microbiologia
19.
Environ Microbiol ; 14(6): 1432-43, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22429445

RESUMO

Recent evidence suggests a key role of bacterioplankton in shaping the composition of the dissolved organic matter (DOM) pool in aquatic systems, not only through consumption but also through production of specific compounds, but the latter process is still not well understood. We used a bioassay approach to assess the patterns in bacterial production and consumption of five fluorescent DOM pools in seven lakes and two streams in Southeastern Québec, Canada, and the links these patterns may have with key aspects of bacterial metabolism, DOM origin and nutrients availability. Total dissolved organic C declined by 3-15% during these incubations, whereas the specific DOM pools had very different dynamics: Two humic-like fractions accumulated in all incubations, with rates of production increasing as a function of bacterial growth efficiency, which itself increased with phosphorus concentrations. In contrast, two protein-like fractions and a third humic-like fraction either increased or declined over the course of the experiments. The net production or consumption of these pools appeared to be a function of the contribution of terrestrial C to bulk DOM (derived from δ(13) C of the DOM) and of total bacterial activity. Our results suggest that lake bacterioplankton play a dual role in DOM dynamics, as consumers and also producers, and that the interplay between DOM origin and nutrient availability appears to determine the net outcome of bacterial DOM processing, thus influencing the bulk DOM composition and its fate in these aquatic systems.


Assuntos
Bactérias/metabolismo , Substâncias Húmicas/análise , Lagos/microbiologia , Plâncton/metabolismo , Organismos Aquáticos , Bactérias/crescimento & desenvolvimento , Fluorescência , Humanos , Lagos/química , Nitrogênio/análise , Nitrogênio/metabolismo , Fósforo/análise , Fósforo/metabolismo , Plâncton/fisiologia , Quebeque , Rios/microbiologia
20.
ISME J ; 16(4): 937-947, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34725445

RESUMO

During transit from soils to the ocean, microbial communities are modified and re-assembled, generating complex patterns of ecological succession. The potential effect of upstream assembly on downstream microbial community composition is seldom considered within aquatic networks. Here, we reconstructed the microbial succession along a land-freshwater-estuary continuum within La Romaine river watershed in Northeastern Canada. We captured hydrological seasonality and differentiated the total and reactive community by sequencing both 16 S rRNA genes and transcripts. By examining how DNA- and RNA-based assemblages diverge and converge along the continuum, we inferred temporal shifts in the relative importance of assembly processes, with mass effects dominant in spring, and species selection becoming stronger in summer. The location of strongest selection within the network differed between seasons, suggesting that selection hotspots shift depending on hydrological conditions. The unreactive fraction (no/minor RNA contribution) was composed of taxa with diverse potential origins along the whole aquatic network, while the majority of the reactive pool (major RNA contribution) could be traced to soil/soilwater-derived taxa, which were distributed along the entire rank-abundance curve. Overall, our findings highlight the importance of considering upstream history, hydrological seasonality and the reactive microbial fraction to fully understand microbial community assembly on a network scale.


Assuntos
Bactérias , Microbiota , Bactérias/genética , Hidrologia , RNA , RNA Ribossômico 16S/genética , Rios , Solo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa