RESUMO
Dendritic cells (DCs) play a critical role in the immune response to viral infection through the facilitation of cell-intrinsic antiviral activity and the activation of adaptive immunity. HIV-1 infection of DCs triggers an IRF3-dependent innate immune response, which requires the activity of cyclic GAMP synthase (cGAS). We report the results of a targeted RNAi screen utilizing primary human monocyte-derived DCs (MDDCs) to identify immune regulators that directly interface with HIV-1-encoded features to initiate this innate response. Polyglutamine binding protein 1 (PQBP1) emerged as a strong candidate through this analysis. We found that PQBP1 directly binds to reverse-transcribed HIV-1 DNA and interacts with cGAS to initiate an IRF3-dependent innate response. MDDCs derived from Renpenning syndrome patients, who harbor mutations in the PQBP1 locus, possess a severely attenuated innate immune response to HIV-1 challenge, underscoring the role of PQBP1 as a proximal innate sensor of a HIV-1 infection.
Assuntos
Proteínas de Transporte/metabolismo , HIV-1/imunologia , Imunidade Inata , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/metabolismo , Sequência de Bases , Linhagem Celular , Paralisia Cerebral/imunologia , DNA Viral/genética , Proteínas de Ligação a DNA , HIV-1/fisiologia , Humanos , Deficiência Intelectual Ligada ao Cromossomo X/imunologia , Dados de Sequência MolecularRESUMO
The Aristaless-related homeobox (ARX) gene is located on the X chromosome and encodes a transcription factor that is essential for brain development. While the clinical spectrum of ARX-related disorders is well described in males, from X linked lissencephaly with abnormal genitalia syndrome to syndromic and non-syndromic intellectual disability (ID), its phenotypic delineation in females is incomplete. Carrier females in ARX families are usually asymptomatic, but ID has been reported in some of them, as well as in others with de novo variants. In this study, we collected the clinical and molecular data of 10 unpublished female patients with de novo ARX pathogenic variants and reviewed the data of 63 females from the literature with either de novo variants (n=10), inherited variants (n=33) or variants of unknown inheritance (n=20). Altogether, the clinical spectrum of females with heterozygous pathogenic ARX variants is broad: 42.5% are asymptomatic, 16.4% have isolated agenesis of the corpus callosum (ACC) or mild symptoms (learning disabilities, autism spectrum disorder, drug-responsive epilepsy) without ID, whereas 41% present with a severe phenotype (ie, ID or developmental and epileptic encephalopathy (DEE)). The ID/DEE phenotype was significantly more prevalent in females carrying de novo variants (75%, n=15/20) versus in those carrying inherited variants (27.3%, n=9/33). ACC was observed in 66.7% (n=24/36) of females who underwent a brain MRI. By refining the clinical spectrum of females carrying ARX pathogenic variants, we show that ID is a frequent sign in females with this X linked condition.
Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Masculino , Humanos , Feminino , Genes Homeobox , Proteínas de Homeodomínio/genética , Transtorno do Espectro Autista/genética , Mutação/genética , Fatores de Transcrição/genética , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Fenótipo , Agenesia do Corpo Caloso/genéticaRESUMO
PURPOSE: In this study, we describe the phenotype and genotype of the largest cohort of patients with Joubert syndrome (JS) carrying pathogenic variants on one of the most frequent causative genes, CC2D2A. METHODS: We selected 53 patients with pathogenic variants on CC2D2A, compiled and analysed their clinical, neuroimaging and genetic information and compared it to previous literature. RESULTS: Developmental delay (motor and language) was nearly constant but patients had normal intellectual efficiency in 74% of cases (20/27 patients) and 68% followed mainstream schooling despite learning difficulties. Epilepsy was found in only 13% of cases. Only three patients had kidney cysts, only three had genuine retinal dystrophy and no subject had liver fibrosis or polydactyly. Brain MRIs showed typical signs of JS with rare additional features. Genotype-phenotype correlation findings demonstrate a homozygous truncating variant p.Arg950* linked to a more severe phenotype. CONCLUSION: This study contradicts previous literature stating an association between CC2D2A-related JS and ventriculomegaly. Our study implies that CC2D2A-related JS is linked to positive neurodevelopmental outcome and low rate of other organ defects except for homozygous pathogenic variant p.Arg950*. This information will help modulate patient follow-up and provide families with accurate genetic counselling.
Assuntos
Anormalidades Múltiplas , Anormalidades do Olho , Doenças Renais Císticas , Humanos , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Doenças Renais Císticas/diagnóstico , Doenças Renais Císticas/genética , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Retina/diagnóstico por imagem , Retina/patologia , Proteínas do CitoesqueletoRESUMO
OBJECTIVE: N-methyl-d-aspartate (NMDA) receptors are expressed at synaptic sites, where they mediate fast excitatory neurotransmission. NMDA receptors are critical to brain development and cognitive function. Natural variants to the GRIN1 gene, which encodes the obligatory GluN1 subunit of the NMDA receptor, are associated with severe neurological disorders that include epilepsy, intellectual disability, and developmental delay. Here, we investigated the pathogenicity of three missense variants to the GRIN1 gene, p. Ile148Val (GluN1-3b[I481V]), p.Ala666Ser (GluN1-3b[A666S]), and p.Tyr668His (GluN1-3b[Y668H]). METHODS: Wild-type and variant-containing NMDA receptors were expressed in HEK293 cells and primary hippocampal neurons. Patch-clamp electrophysiology and pharmacology were used to profile the functional properties of the receptors. Receptor surface expression was evaluated using fluorescently tagged receptors and microscopy. RESULTS: Our data demonstrate that the GluN1(I481V) variant is inhibited by the open pore blockers ketamine and memantine with reduce potency but otherwise has little effect on receptor function. By contrast, the other two variants exhibit gain-of-function molecular phenotypes. Glycine sensitivity was enhanced in receptors containing the GluN1(A666S) variant and the potency of pore block by memantine and ketamine was reduced, whereas that for MK-801 was increased. The most pronounced functional deficits, however, were found in receptors containing the GluN1(Y668H) variant. GluN1(Y668H)/2A receptors showed impaired surface expression, were more sensitive to glycine and glutamate by an order of magnitude, and exhibited impaired block by extracellular magnesium ions, memantine, ketamine, and MK-801. These variant receptors were also activated by either glutamate or glycine alone. Single-receptor recordings revealed that this receptor variant opened to several conductance levels and activated more frequently than wild-type GluN1/2A receptors. SIGNIFICANCE: Our study reveals a critical functional locus of the receptor (GluN1[Y668]) that couples receptor gating to ion channel conductance, which when mutated may be associated with neurological disorder.
Assuntos
Ketamina , Transtornos do Neurodesenvolvimento , Humanos , Memantina/farmacologia , Maleato de Dizocilpina/farmacologia , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Células HEK293 , Glutamatos , Transtornos do Neurodesenvolvimento/genética , Glicina , Proteínas do Tecido Nervoso/metabolismoRESUMO
OBJECTIVE: Epilepsy is common in patients with PIGN diseases due to biallelic variants; however, limited epilepsy phenotyping data have been reported. We describe the epileptology of PIGN encephalopathy. METHODS: We recruited patients with epilepsy due to biallelic PIGN variants and obtained clinical data regarding age at seizure onset/offset and semiology, development, medical history, examination, electroencephalogram, neuroimaging, and treatment. Seizure and epilepsy types were classified. RESULTS: Twenty six patients (13 female) from 26 families were identified, with mean age 7 years (range = 1 month to 21 years; three deceased). Abnormal development at seizure onset was present in 25 of 26. Developmental outcome was most frequently profound (14/26) or severe (11/26). Patients presented with focal motor (12/26), unknown onset motor (5/26), focal impaired awareness (1/26), absence (2/26), myoclonic (2/26), myoclonic-atonic (1/26), and generalized tonic-clonic (2/26) seizures. Twenty of 26 were classified as developmental and epileptic encephalopathy (DEE): 55% (11/20) focal DEE, 30% (6/20) generalized DEE, and 15% (3/20) combined DEE. Six had intellectual disability and epilepsy (ID+E): two generalized and four focal epilepsy. Mean age at seizure onset was 13 months (birth to 10 years), with a lower mean onset in DEE (7 months) compared with ID+E (33 months). Patients with DEE had drug-resistant epilepsy, compared to 4/6 ID+E patients, who were seizure-free. Hyperkinetic movement disorder occurred in 13 of 26 patients. Twenty-seven of 34 variants were novel. Variants were truncating (n = 7), intronic and predicted to affect splicing (n = 7), and missense or inframe indels (n = 20, of which 11 were predicted to affect splicing). Seven variants were recurrent, including p.Leu311Trp in 10 unrelated patients, nine with generalized seizures, accounting for nine of the 11 patients in this cohort with generalized seizures. SIGNIFICANCE: PIGN encephalopathy is a complex autosomal recessive disorder associated with a wide spectrum of epilepsy phenotypes, typically with substantial profound to severe developmental impairment.
Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Deficiência Intelectual , Eletroencefalografia , Epilepsia/diagnóstico por imagem , Epilepsia/genética , Feminino , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/genética , Fenótipo , Convulsões/genéticaRESUMO
OBJECTIVES: Our goal was to provide a better understanding of isolated short corpus callosum (SCC) regarding prenatal diagnosis and postnatal outcome. METHODS: We retrospectively reviewed prenatal and postnatal imaging, clinical, and biological data from 42 cases with isolated SCC. RESULTS: Prenatal imaging showed SCC in all cases (n = 42). SCC was limited to rostrum and/or genu and/or splenium in 21 cases, involved body in 16 cases, and was more extensive in 5 cases. Indirect imaging features included typical buffalo horn ventricles (n = 14), septal dysmorphism (n = 14), parallel lateral ventricles (n = 12), and ventriculomegaly (n = 4), as well as atypical features in 5 cases. SCC was associated with interhemispheric cysts and pericallosal lipomas in 3 and 6 cases, respectively. Aneuploidy was found in 2 cases. Normal psychomotor development, mild developmental disorders, and global developmental delay were found in 70, 15, and 15% of our cases, respectively. CONCLUSIONS: SCC should be investigated to look for pericallosal lipoma and typical versus atypical indirect features of corpus callosum agenesis (CCA). Prenatal counselling should be guided by imaging as well as clinical and genetic context. Outcome of patients with SCC was similar to the one presenting with complete CCA.
Assuntos
Corpo Caloso , Ultrassonografia Pré-Natal , Agenesia do Corpo Caloso/diagnóstico por imagem , Corpo Caloso/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Gravidez , Estudos RetrospectivosRESUMO
Epilepsy of infancy with migrating focal seizures was first described in 1995. Fifteen years later, KCNT1 gene mutations were identified as the major disease-causing gene of this disease. Currently, the data on epilepsy of infancy with migrating focal seizures associated with KCNT1 mutations are heterogeneous and many questions remain unanswered including the prognosis and the long-term outcome especially regarding epilepsy, neurological and developmental status and the presence of microcephaly. The aim of this study was to assess data from patients with epilepsy in infancy with migrating focal seizures with KCNT1 mutations to refine the phenotype spectrum and the outcome. We used mind maps based on medical reports of children followed in the network of the French reference centre for rare epilepsies and we developed family surveys to assess the long-term outcome. Seventeen patients were included [age: median (25th-75th percentile): 4 (2-15) years, sex ratio: 1.4, length of follow-up: 4 (2-15) years]. Seventy-one per cent started at 6 (1-52) days with sporadic motor seizures (n = 12), increasing up to a stormy phase with long lasting migrating seizures at 57 (30-89) days. The others entered this stormy phase directly at 1 (1-23) day. Ten patients entered a consecutive phase at 1.3 (1-2.8) years where seizures persisted at least daily (n = 8), but presented different semiology: brief and hypertonic with a nocturnal (n = 6) and clustered (n = 6) aspects. Suppression interictal patterns were identified on the EEG in 71% of patients (n = 12) sometimes from the first EEG (n = 6). Three patients received quinidine without reported efficacy. Long-term outcome was poor with neurological sequelae and active epilepsy except for one patient who had an early and long-lasting seizure-free period. Extracerebral symptoms probably linked with KCNT1 mutation were present, including arteriovenous fistula, dilated cardiomyopathy and precocious puberty. Eight patients (47%) had died at 3 (1.5-15.4) years including three from suspected sudden unexpected death in epilepsy. Refining the electro-clinical characteristics and the temporal sequence of epilepsy in infancy with migrating focal seizures should help diagnosis of this epilepsy. A better knowledge of the outcome allows one to advise families and to define the appropriate follow-up and therapies. Extracerebral involvement should be investigated, in particular the cardiac system, as it may be involved in the high prevalence of sudden unexpected death in epilepsy in these cases.
Assuntos
Epilepsias Parciais/genética , Mutação , Proteínas do Tecido Nervoso/genética , Canais de Potássio Ativados por Sódio/genética , Morte Súbita Inesperada na Epilepsia , Adolescente , Mapeamento Encefálico/métodos , Criança , Pré-Escolar , Eletroencefalografia/métodos , Epilepsias Parciais/metabolismo , Feminino , Humanos , Estudos Longitudinais , Masculino , Proteínas do Tecido Nervoso/metabolismo , Fenótipo , Canais de Potássio/genética , Canais de Potássio/metabolismo , Canais de Potássio Ativados por Sódio/metabolismoRESUMO
OBJECTIVE: Cut homeodomain transcription factor CUX2 plays an important role in dendrite branching, spine development, and synapse formation in layer II to III neurons of the cerebral cortex. We identify a recurrent de novo CUX2 p.Glu590Lys as a novel genetic cause for developmental and epileptic encephalopathy (DEE). METHODS: The de novo p.Glu590Lys variant was identified by whole-exome sequencing (n = 5) or targeted gene panel (n = 4). We performed electroclinical and imaging phenotyping on all patients. RESULTS: The cohort comprised 7 males and 2 females. Mean age at study was 13 years (0.5-21.0). Median age at seizure onset was 6 months (2 months to 9 years). Seizure types at onset were myoclonic, atypical absence with myoclonic components, and focal seizures. Epileptiform activity on electroencephalogram was seen in 8 cases: generalized polyspike-wave (6) or multifocal discharges (2). Seizures were drug resistant in 7 or controlled with valproate (2). Six patients had a DEE: myoclonic DEE (3), Lennox-Gastaut syndrome (2), and West syndrome (1). Two had a static encephalopathy and genetic generalized epilepsy, including absence epilepsy in 1. One infant had multifocal epilepsy. Eight had severe cognitive impairment, with autistic features in 6. The p.Glu590Lys variant affects a highly conserved glutamine residue in the CUT domain predicted to interfere with CUX2 binding to DNA targets during neuronal development. INTERPRETATION: Patients with CUX2 p.Glu590Lys display a distinctive phenotypic spectrum, which is predominantly generalized epilepsy, with infantile-onset myoclonic DEE at the severe end and generalized epilepsy with severe static developmental encephalopathy at the milder end of the spectrum. Ann Neurol 2018;83:926-934.
Assuntos
Epilepsias Mioclônicas/genética , Proteínas de Homeodomínio/genética , Fenótipo , Convulsões/genética , Adolescente , Criança , Proteínas de Ligação a DNA/genética , Bases de Dados Genéticas , Eletroencefalografia/métodos , Epilepsia Tipo Ausência/genética , Feminino , Humanos , Lactente , Masculino , Adulto JovemRESUMO
The aim of the study was to redefine the phenotype of Allan-Herndon-Dudley syndrome (AHDS), which is caused by mutations in the SLC16A2 gene that encodes the brain transporter of thyroid hormones. Clinical phenotypes, brain imaging, thyroid hormone profiles, and genetic data were compared to the existing literature. Twenty-four males aged 11 months to 29 years had a mutation in SLC16A2, including 12 novel mutations and five previously described mutations. Sixteen patients presented with profound developmental delay, three had severe intellectual disability with poor language and walking with an aid, four had moderate intellectual disability with language and walking abilities, and one had mild intellectual disability with hypotonia. Overall, eight had learned to walk, all had hypotonia, 17 had spasticity, 18 had dystonia, 12 had choreoathetosis, 19 had hypomyelination, and 10 had brain atrophy. Kyphoscoliosis (n=12), seizures (n=7), and pneumopathies (n=5) were the most severe complications. This study extends the phenotypic spectrum of AHDS to a mild intellectual disability with hypotonia. Developmental delay, hypotonia, hypomyelination, and thyroid hormone profile help to diagnose patients. Clinical course depends on initial severity, with stable acquisition after infancy; this may be adversely affected by neuro-orthopaedic, pulmonary, and epileptic complications. WHAT THIS PAPER ADDS: Mild intellectual disability is associated with SLC16A2 mutations. A thyroid hormone profile with a free T3 /T4 ratio higher than 0.75 can help diagnose patients. Patients with SLC16A2 mutations present a broad spectrum of neurological phenotypes that are also observed in other hypomyelinating disorders. Axial hypotonia is a consistent feature of Allan-Herndon-Dudley syndrome and leads to specific complications.
Assuntos
Deficiência Intelectual , Deficiência Intelectual Ligada ao Cromossomo X , Transportadores de Ácidos Monocarboxílicos/genética , Hipotonia Muscular , Atrofia Muscular , Simportadores/genética , Hormônios Tireóideos/sangue , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Deficiências do Desenvolvimento/sangue , Deficiências do Desenvolvimento/etiologia , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/fisiopatologia , Humanos , Lactente , Deficiência Intelectual/sangue , Deficiência Intelectual/etiologia , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Transtornos do Desenvolvimento da Linguagem , Imageamento por Ressonância Magnética , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/sangue , Deficiência Intelectual Ligada ao Cromossomo X/complicações , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/fisiopatologia , Hipotonia Muscular/sangue , Hipotonia Muscular/complicações , Hipotonia Muscular/etiologia , Hipotonia Muscular/genética , Hipotonia Muscular/fisiopatologia , Atrofia Muscular/sangue , Atrofia Muscular/complicações , Atrofia Muscular/genética , Atrofia Muscular/fisiopatologia , Fenótipo , Adulto JovemRESUMO
OBJECTIVE: To examine the outcome of pregnancy with fetal transverse cerebellar diameter (TCD) below the fifth percentile based on routine second- or third-trimester ultrasonography. METHODS: We retrospectively analyzed the outcomes of 12 344 women according to TCD Z scores based on systematic second- or third-trimester ultrasound examination between 2007 and 2015. Information on major malformations, chromosomal anomalies, intrauterine or neonatal demise, and other abnormal findings were collected. RESULTS: In total, 408 fetuses with small prenatal TCD underwent clinical investigation; 160 major malformations were noted, consisting mainly of neurological or cardiac anomalies (39,2%%). Chromosomal anomalies were reported in 39 (9.5%) and intrauterine or neonatal demise in 41 cases (10%). Major malformations and chromosomal anomalies were found in 46.4% and 10% of fetuses with extremely small TCD (Z score < -2.5), respectively, 31.3% and 12.7% of fetuses with small TCD (Z score between -2.0 and -1.645), and 39.6 % and 7.7% of fetuses with subnormal TCD (Z score between -2.0 and -1.645). Intrauterine or neonatal demise was noted in 22%, 8.8%, and 4.8% of fetuses with extremely small, small, and subnormal TCD, respectively (P < .05). Among intrauterine growth-restricted fetuses, fetal demise or neonatal adverse outcome was reported in 75%, 81.8%, and 18.5%, respectively. Of all the fetuses, 2.2% were lost to follow-up. CONCLUSION: A small cerebellar diameter below the fifth percentile is a relevant marker to detect associated anomalies during routine ultrasound examination in the second or third trimester. This is related to a high rate of fetal malformations, chromosomal anomalies, and genetic disorders, regardless of the severity of the cerebellar small size. Small TCD seems to be a prognostic factor for fetal growth restriction. Therefore, when facing a TCD below the fifth percentile, patients should be referred for further sonography and fetal karyotyping.
Assuntos
Cerebelo/anormalidades , Retardo do Crescimento Fetal/diagnóstico , Retardo do Crescimento Fetal/epidemiologia , Malformações do Sistema Nervoso/diagnóstico , Malformações do Sistema Nervoso/epidemiologia , Resultado da Gravidez/epidemiologia , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/epidemiologia , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/epidemiologia , Feminino , Morte Fetal/etiologia , Desenvolvimento Fetal/fisiologia , Doenças Fetais/diagnóstico , Doenças Fetais/epidemiologia , Retardo do Crescimento Fetal/patologia , Feto/diagnóstico por imagem , Feto/patologia , Idade Gestacional , Humanos , Lactente , Mortalidade Infantil , Recém-Nascido , Doenças do Recém-Nascido/diagnóstico , Doenças do Recém-Nascido/epidemiologia , Recém-Nascido Pequeno para a Idade Gestacional , Gravidez , Segundo Trimestre da Gravidez , Terceiro Trimestre da Gravidez , Prognóstico , Estudos Retrospectivos , Ultrassonografia Pré-NatalRESUMO
De novo mutations of the TRIM8 gene, which codes for a tripartite motif protein, have been identified using whole exome sequencing (WES) in two patients with epileptic encephalopathy (EE), but these reports were not sufficient to conclude that TRIM8 was a novel gene responsible for EE. Here we report four additional patients presenting with EE and de novo truncating mutations of TRIM8 detected by WES, and give further details of the patient previously reported by the Epi4K consortium. Epilepsy of variable severity was diagnosed in children aged 2 months to 3.5 years of age. All patients had developmental delay of variable severity with no or very limited language, often associated with behavioral anomalies and unspecific facial features or MRI brain abnormalities. The phenotypic variability observed in these patients appeared related to the severity of the epilepsy. One patient presented pharmacoresistant EE with regression, recurrent infections and nephrotic syndrome, compatible with the brain and kidney expression of TRIM8. Interestingly, all mutations were located at the highly conserved C-terminus section of TRIM8. This collaborative study confirms that TRIM8 is a novel gene responsible for EE, possibly associated with nephrotic syndrome. This report brings new evidence on the pathogenicity of TRIM8 mutations and highlights the value of data-sharing to delineate the phenotypic characteristics and biological basis of extremely rare disorders.
Assuntos
Proteínas de Transporte/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Adolescente , Sequência de Aminoácidos , Proteínas de Transporte/química , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Proteínas do Tecido Nervoso/químicaRESUMO
OBJECTIVE: To evaluate the role that chromosomal micro-rearrangements play in patients with both corpus callosum abnormality and intellectual disability, we analyzed copy number variations (CNVs) in patients with corpus callosum abnormality/intellectual disability STUDY DESIGN: We screened 149 patients with corpus callosum abnormality/intellectual disability using Illumina SNP arrays. RESULTS: In 20 patients (13%), we have identified at least 1 CNV that likely contributes to corpus callosum abnormality/intellectual disability phenotype. We confirmed that the most common rearrangement in corpus callosum abnormality/intellectual disability is inverted duplication with terminal deletion of the 8p chromosome (3.2%). In addition to the identification of known recurrent CNVs, such as deletions 6qter, 18q21 (including TCF4), 1q43q44, 17p13.3, 14q12, 3q13, 3p26, and 3q26 (including SOX2), our analysis allowed us to refine the 2 known critical regions associated with 8q21.1 deletion and 19p13.1 duplication relevant for corpus callosum abnormality; report a novel 10p12 deletion including ZEB1 recently implicated in corpus callosum abnormality with corneal dystrophy; and) report a novel pathogenic 7q36 duplication encompassing SHH. In addition, 66 variants of unknown significance were identified in 57 patients encompassed candidate genes. CONCLUSIONS: Our results confirm the relevance of using microarray analysis as first line test in patients with corpus callosum abnormality/intellectual disability.
Assuntos
Agenesia do Corpo Caloso/genética , Variações do Número de Cópias de DNA , Deficiência Intelectual/genética , Adolescente , Adulto , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Ciclo Celular/genética , Criança , Pré-Escolar , Deleção Cromossômica , Duplicação Cromossômica , Cromossomos Humanos Par 10 , Cromossomos Humanos Par 19 , Cromossomos Humanos Par 3 , Cromossomos Humanos Par 7 , Cromossomos Humanos Par 8 , Feminino , Proteínas Hedgehog/genética , Humanos , Masculino , Análise em Microsséries , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Adulto Jovem , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genéticaRESUMO
OBJECTIVES: The aim of this study was to report the prenatal imaging findings of expanding porencephalic cyst, which have not been previously described in the prenatal period, and to underline that these lesions can involve the cerebellum and not exclusively the supratentorial structures. MATERIALS AND METHODS: This is a retrospective observational study of five cases with a prenatal diagnosis of expanding porencephalic cyst. RESULTS: The cystic lesion was located in the supra- and infratentorial space in 2 cases, respectively, or in both in one case. The lesion expanded into the pericerebral space or communicated with the ventricular system in 4 and 1 cases, respectively. Differential diagnosis included tumoural lesion in 2 cases because of internal echogenic components related to haemorrhagic changes, which were identified using foetal MRI, and arachnoid cyst in 2 cases because of expansion into the pericerebral space. In the last case, communication within the ventricular system mimicked a unilateral ventriculomegaly. CONCLUSION: Differential diagnosis of any cystic lesion with extra-axial component should include expanding porencephalic cyst. Foetal MRI is helpful to differentiate this entity from extra-axial lesions such as arachnoid cysts but also from rare tumours.
Assuntos
Encefalopatias/diagnóstico por imagem , Cistos/diagnóstico por imagem , Ultrassonografia Pré-Natal/métodos , Encefalopatias/complicações , Cistos/complicações , Diagnóstico Diferencial , Feminino , Humanos , Gravidez , Diagnóstico Pré-Natal/métodos , Estudos RetrospectivosRESUMO
OBJECTIVE: Rasmussen's encephalitis (RE) is a severe chronic inflammatory brain disease affecting one cerebral hemisphere and leading to drug-resistant epilepsy, progressive neurologic deficit, and unilateral brain atrophy. Hemispherotomy remains the gold standard treatment but causes permanent functional impairment. No standardized medical treatment protocol currently exists for patients prior to indication of hemispherotomy, although some immunotherapies have shown partial efficacy with functional preservation but poor antiseizure effect. Some studies suggest a role for tumor necrosis factor alpha (TNF-α) in RE pathophysiology. METHODS: We report an open-label study evaluating the efficacy and the safety of anti-TNF-α therapy (adalimumab) in 11 patients with RE. The primary outcome criterion was the decrease of seizure frequency. The secondary outcome criteria were neurologic and cognitive outcomes and existence of side effects. RESULTS: Adalimumab was introduced with a median delay of 31 months after seizure onset (range 1 month to 16 years), and follow-up was for a median period of 18 months (range 9-54 months). There was a significant seizure frequency decrease after adalimumab administration (from a median of 360 to a median of 32 seizures per quarter, p ≤ 0.01). Statistical analysis showed that adalimumab had a significant intrinsic effect (p < 0.005) independent from disease fluctuations. Five patients (45%) were found to have sustained improvement over consecutive quarters in seizure frequency (decrease of 50%) on adalimumab. Three of these five patients also had no further neurocognitive deterioration. Adalimumab was well tolerated. SIGNIFICANCE: Our study reports efficacy of adalimumab in terms of seizure frequency control. In addition, stabilization of functional decline occurred in three patients. This efficacy might be particularly relevant for atypical slowly progressive forms of RE, in which hemispherotomy is not clearly indicated. Due to our study limitations, further studies are mandatory to confirm these preliminary results.
Assuntos
Adalimumab/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Encefalite/tratamento farmacológico , Fator de Necrose Tumoral alfa/imunologia , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Eletroencefalografia , Feminino , Humanos , Lactente , Masculino , Testes Neuropsicológicos , Projetos Piloto , Estatísticas não Paramétricas , Resultado do Tratamento , Gravação em Vídeo , Adulto JovemRESUMO
Supernumerary ring chromosomes (SRC) are usually derived from regions adjacent to the centromere. Their identification may be challenging, particularly in case of low mosaicism. Here, we report on a patient who was referred for major in utero growth retardation, severe developmental delay, facial dysmorphism, cleft palate, and hypospadias. The karyotype showed a small SRC in mosaic. The combination of FISH, M-FISH and array-CGH was necessary for a complete characterization of this SRC. M-FISH revealed that the SRC originated from chromosome 7. Array-CGH performed with a 400K oligonucleotide array showed a gain in region 7q22.1q31.1 present in low mosaic. This result was confirmed by FISH using BAC probes specific for chromosome 7. The SRC was a neocentric ring derived from 7q22.1q31.1 and was found in only 8% of the cells. This is the first patient carrying a mosaic neocentric SRC derived from the long arm of chromosome 7. Our study emphasizes the need to combine different techniques and to use adapted bioinformatic tools for low-mosaicism marker identification. It also contributes to the delineation of the partial trisomy 7q phenotype.
Assuntos
Anormalidades Múltiplas/genética , Cromossomos Humanos Par 7/genética , Mosaicismo , Cromossomos em Anel , Centrômero/genética , Criança , Pré-Escolar , Bandeamento Cromossômico , Hibridização Genômica Comparativa , Deficiências do Desenvolvimento , Face/anormalidades , Retardo do Crescimento Fetal , Seguimentos , Humanos , Hibridização in Situ Fluorescente , Lactente , Recém-Nascido , Cariotipagem , MasculinoRESUMO
BACKGROUND: Heterozygous dominant mutations of PRRT2 have been associated with various types of paroxysmal neurological manifestations, including benign familial infantile convulsions and paroxysmal kinesigenic dyskinesia. The phenotype associated with biallelic mutations is not well understood as few cases have been reported. METHODS: PRRT2 screening was performed by Sanger sequencing and quantitative multiplex PCR of short fluorescent fragments. A CGH array was used to characterise the size of the deletion at the 16p11.2 locus. RESULTS: Five patients with homozygous or compound heterozygous deleterious PRRT2 gene mutations are described. These patients differ from those with a single mutation by their overall increased severity: (1) the combination of at least three different forms of paroxysmal neurological disorders within the same patient and persistence of paroxysmal attacks; (2) the occurrence of uncommon prolonged episodes of ataxia; and (3) the association of permanent neurological disorders including learning difficulties in four patients and cerebellar atrophy in 2. CONCLUSIONS: Our observations expand the phenotype related to PRRT2 insufficiency, and highlight the complexity of the phenotype associated with biallelic mutations, which represents a severe neurological disease with various paroxysmal disorders and frequent developmental disabilities.
Assuntos
Proteínas de Membrana/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Adolescente , Adulto , Fatores Etários , Alelos , Ataxia/genética , Atrofia/genética , Encefalopatias/genética , Criança , Pré-Escolar , Coreia/genética , Cromossomos Humanos Par 16/genética , Feminino , Deleção de Genes , Genes/genética , Humanos , Lactente , Deficiências da Aprendizagem/genética , Masculino , Reação em Cadeia da Polimerase Multiplex , Fenótipo , Adulto JovemRESUMO
Mutations of the CDKL5 gene cause early epileptic encephalopathy. Patients manifest refractory epilepsy, beginning before the age of 3 months, which is associated with severe psychomotor delay and features that overlap with Rett syndrome. We report here a patient with mosaicism for CDKL5 exonic deletion, with the presence of two mutant alleles. The affected 4-year-old girl presented with infantile spasms, beginning at the age of 9 months, but subsequent progression of the disease was consistent with the classical CDKL5-related phenotype. A deletion of exons 17 and 18 was suspected on the basis of Multiplex Ligation Probe Amplification analysis, but unexpected results for cDNA analysis, which showed the presence of an abnormal transcript with the deletion of exon 18 only, led us to suspect that two distinct events might have occurred. We used custom array-CGH to determine the size and breakpoints of these deletions. Exon 18 was deleted from one of the abnormal alleles, and exon 17 was deleted from the other. A Fork Stalling and Template Switching (FoSTeS) mechanism was proposed to explain the two events, given the presence of regions of microhomology at the breakpoints. We propose here an original involvement of the FoSTeS mechanism to explain the co-occurrence of these two events in the CDKL5 gene in a single patient. This patient highlights the difficulties involved in the detection of such abnormalities, particularly when they occur in a mosaic state and involve two distinct mutational events in a single gene.
Assuntos
Alelos , Deleção de Genes , Mosaicismo , Mutação , Proteínas Serina-Treonina Quinases/genética , Pré-Escolar , Pontos de Quebra do Cromossomo , Hibridização Genômica Comparativa , Análise Mutacional de DNA , Éxons , Feminino , Duplicação Gênica , Estudos de Associação Genética , Humanos , Lactente , Recém-Nascido , Síndrome de Rett/diagnóstico , Síndrome de Rett/genética , Espasmos Infantis/diagnóstico , Espasmos Infantis/genética , Inativação do Cromossomo XRESUMO
BACKGROUND: Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder due to a mutation in NF1 gene, resulting in phenotypically heterogeneous systemic manifestations. Patients with NF1 are prone to develop neoplasms of the central nervous system (CNS) and are particularly at risk for optic pathway gliomas (OPG). Epilepsy is another recognized neurologic complication in patients with NF1, with a prevalence estimated between 4% and 14%. Several case reports and early phase clinical trials have demonstrated that the mitogen-activated protein kinase inhibitors (MEKi) are effective in NF1-low-grade gliomas (LGGs), but their influence on seizure activity in humans has not been established. CASE STUDY: Here, we report a patient with NF1 and developmental and epileptic encephalopathy (DEE) harboring pharmacoresistant tonic seizures, and progressive optic pathway glioma (OPG). By using a MEKi therapy for her OPG, we observed an end to epileptic seizures as well as a significant improvement of interictal EEG abnormalities, despite a lack of tumor reduction. CONCLUSION: MEK inhibitor therapy should be considered for patients with NF1 and refractory epilepsy.
Assuntos
Epilepsia Generalizada , Epilepsia , Neurofibromatose 1 , Glioma do Nervo Óptico , Criança , Feminino , Humanos , Neurofibromatose 1/complicações , Neurofibromatose 1/tratamento farmacológico , Neurofibromatose 1/metabolismo , Glioma do Nervo Óptico/complicações , Glioma do Nervo Óptico/tratamento farmacológico , Glioma do Nervo Óptico/genética , Epilepsia/tratamento farmacológico , Epilepsia/complicações , Epilepsia Generalizada/complicações , Convulsões/complicações , Quinases de Proteína Quinase Ativadas por MitógenoRESUMO
BACKGROUND AND OBJECTIVES: Creatine transporter deficiency (CTD) is a rare X-linked genetic disorder characterized by intellectual disability (ID). We evaluated the clinical characteristics and trajectory of patients with CTD and the impact of the disease on caregivers to identify relevant endpoints for future therapeutic trials. METHODS: As part of a French National Research Program, patients with CTD were included based on (1) a pathogenic SLC6A8 variant and (2) ID and/or autism spectrum disorder. Families and patients were referred by the physician who ordered the genetic analysis through Reference Centers of ID from rare causes and inherited metabolic diseases. After we informed the patients and their parents/guardians about the study, all of them gave written consent and were included. A control group of age-matched and sex-matched patients with Fragile X syndrome was also included. Physical examination, neuropsychological assessments, and caregiver impact were assessed. All data were analyzed using R software. RESULTS: Thirty-one patients (27 male, 4 female) were included (25/31 aged 18 years or younger). Most of the patients (71%) had symptoms at <24 months of age. The mean age at diagnosis was 6.5 years. Epilepsy occurred in 45% (mean age at onset: 8 years). Early-onset behavioral disorder occurred in 82%. Developmental trajectory was consistently delayed (fine and gross motor skills, language, and communication/sociability). Half of the patients with CTD had axial hypotonia during the first year of life. All patients were able to walk without help, but 7/31 had ataxia and only 14/31 could walk tandem gait. Most of them had abnormal fine motor skills (27/31), and most of them had language impairment (30/31), but 12/23 male patients (52.2%) completed the Peabody Picture Vocabulary Test. Approximately half (14/31) had slender build. Most of them needed nursing care (20/31), generally 1-4 h/d. Adaptive assessment (Vineland) confirmed that male patients with CTD had moderate-to-severe ID. Most caregivers (79%) were at risk of burnout, as shown by Caregiver Burden Inventory (CBI) > 36 (significantly higher than for patients with Fragile X syndrome) with a high burden of time dependence. DISCUSSION: In addition to clinical endpoints, such as the assessment of epilepsy and the developmental trajectory of the patient, the Vineland scale, PPVT5, and CBI are of particular interest as outcome measures for future trials. TRIAL REGISTRATION INFORMATION: ANSM Registration Number 2010-A00327-32.
Assuntos
Transtorno do Espectro Autista , Encefalopatias Metabólicas Congênitas , Creatina/deficiência , Epilepsia , Síndrome do Cromossomo X Frágil , Deficiência Intelectual , Deficiência Intelectual Ligada ao Cromossomo X , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiência , Humanos , Masculino , Feminino , Criança , Sobrecarga do Cuidador , Proteínas do Tecido NervosoRESUMO
SLC 16A2, the gene for the second member of the solute carrier family 16 (monocarboxylic acid transporter), located on chromosome Xq13.2, encodes a very efficient thyroid hormone transporter: monocarboxylate transporter 8, MCT8. Its loss of function is responsible in males for a continuum of psychomotor retardation ranging from severe (no motor acquisition, no speech) to mild (ability to walk with help and a few words of speech). Triiodothyronine uptake measurement in transfected cells and, more recently, patient fibroblasts, has been described to study the functional consequences of MCT8 mutations. Here, we describe three novel MCT8 mutations, including one missense variation not clearly predicted to be damaging but found in a severely affected patient. Functional studies in fibroblasts and JEG3 cells demonstrate the usefulness of both cellular models in validating the deleterious effects of a new MCT8 mutation if there is still a doubt as to its pathogenicity. Moreover, the screening of fibroblasts from a large number of patient fibroblasts and of transfected mutations has allowed us to demonstrate that JEG3 transfected cells are more relevant than fibroblasts in revealing a genotype-phenotype correlation.