Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38624246

RESUMO

Neuronal activity requires a large amount of ATP, leading to a rapid collapse of brain function when aerobic respiration fails. Here, we summarize how rhythmic motor circuits in the brainstem of adult frogs, which normally have high metabolic demands, transform to produce proper output during severe hypoxia associated with emergence from hibernation. We suggest that general principles underlying plasticity in brain bioenergetics may be uncovered by studying non-mammalian models that face extreme environments, yielding new insights to combat neurological disorders involving dysfunctional energy metabolism.

2.
J Exp Biol ; 225(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35098314

RESUMO

The febrile response to resist a pathogen is energetically expensive, while regulated hypothermia seems to preserve energy for vital functions. We hypothesized here that immune-challenged birds facing metabolic trade-offs (reduced energy supply/increased energy demand) favor a regulated hypothermic response at the expense of fever. To test this hypothesis, we compared 5 day old broiler chicks exposed to fasting, cold (25°C), and fasting combined with cold with a control group fed under thermoneutral conditions (30°C). The chicks were injected with saline or with a high dose of endotoxin known to induce a biphasic thermal response composed of a drop in body temperature (Tb) followed by fever. Then Tb, oxygen consumption (metabolic rate), peripheral vasomotion (cutaneous heat exchange), breathing frequency (respiratory heat exchange) and huddling behavior (heat conservation indicator) were analyzed. Irrespective of metabolic trade-offs, chicks presented a transient regulated hypothermia in the first hour, which relied on a suppressed metabolic rate for all groups, increased breathing frequency for chicks fed/fasted at 30°C, and peripheral vasodilation in chicks fed/fasted at 25°C. Fever was observed only in chicks kept at thermoneutrality and was supported by peripheral vasoconstriction and huddling behavior. Fed and fasted chicks at 25°C completely eliminated fever despite the ability to increase metabolic rate for thermogenesis in the phase correspondent to fever when it was pharmacologically induced by 2,4-dinitrophenol. Our data suggest that increased competing demands affect chicks' response to an immune challenge, favoring regulated hypothermia to preserve energy while the high costs of fever to resist a pathogen are avoided.


Assuntos
Hipotermia , Animais , Temperatura Corporal , Galinhas , Jejum/fisiologia , Febre/veterinária
3.
J Exp Biol ; 222(Pt 10)2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31028104

RESUMO

The embryonic development of parabronchi occurs mainly during the second half of incubation in precocious birds, which makes this phase sensitive to possible morphological modifications induced by O2 supply limitation. Thus, we hypothesized that hypoxia during the embryonic phase of parabronchial development induces morphological changes that remain after hatching. To test this hypothesis, chicken embryos were incubated entirely (21 days) under normoxia or partially under hypoxia (15% O2 during days 12 to 18). Lung structures, including air capillaries, blood capillaries, infundibula, atria, parabronchial lumen, bronchi, blood vessels larger than capillaries and interparabronchial tissue, in 1- and 10-day-old chicks were analyzed using light microscopy-assisted stereology. Tissue barrier and surface area of air capillaries were measured using electron microscopy-assisted stereology, allowing for calculation of the anatomical diffusion factor. Hypoxia increased the relative volumes of air and blood capillaries, structures directly involved in gas exchange, but decreased the relative volumes of atria in both groups of chicks, and the parabronchial lumen in older chicks. Accordingly, the surface area of the air capillaries and the anatomical diffusion factor were increased under hypoxic incubation. Treatment did not alter total lung volume, relative volumes of infundibula, bronchi, blood vessels larger than capillaries, interparabronchial tissue or the tissue barrier of any group. We conclude that hypoxia during the embryonic phase of parabronchial development leads to a morphological remodeling, characterized by increased volume density and respiratory surface area of structures involved in gas exchange at the expense of structures responsible for air conduction in chicks up to 10 days old.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Brônquios/crescimento & desenvolvimento , Galinhas/crescimento & desenvolvimento , Oxigênio/metabolismo , Anaerobiose , Animais , Brônquios/efeitos dos fármacos , Embrião de Galinha/efeitos dos fármacos
4.
Acta Physiol (Oxf) ; 240(7): e14162, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38741523

RESUMO

AIM: In cyclic climate variations, including seasonal changes, many animals regulate their energy demands to overcome critical transitory moments, restricting their high-demand activities to phases of resource abundance, enabling rapid growth and reproduction. Tegu lizards (Salvator merianae) are ectotherms with a robust annual cycle, being active during summer, hibernating during winter, and presenting a remarkable endothermy during reproduction in spring. Here, we evaluated whether changes in mitochondrial respiratory physiology in skeletal muscle could serve as a mechanism for the increased thermogenesis observed during the tegu's reproductive endothermy. METHODS: We performed high-resolution respirometry and calorimetry in permeabilized red and white muscle fibers, sampled during summer (activity) and spring (high activity and reproduction), in association with citrate synthase measurements. RESULTS: During spring, the muscle fibers exhibited increased oxidative phosphorylation. They also enhanced uncoupled respiration and heat production via adenine nucleotide translocase (ANT), but not via uncoupling proteins (UCP). Citrate synthase activity was higher during the spring, suggesting greater mitochondrial density compared to the summer. These findings were consistent across both sexes and muscle types (red and white). CONCLUSION: The current results highlight potential cellular thermogenic mechanisms in an ectothermic reptile that contribute to transient endothermy. Our study indicates that the unique feature of transitioning to endothermy through nonshivering thermogenesis during the reproductive phase may be facilitated by higher mitochondrial density, function, and uncoupling within the skeletal muscle. This knowledge contributes significant elements to the broader picture of models for the evolution of endothermy, particularly in relation to the enhancement of aerobic capacity.


Assuntos
Lagartos , Músculo Esquelético , Reprodução , Animais , Lagartos/fisiologia , Lagartos/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Reprodução/fisiologia , Termogênese/fisiologia , Feminino , Masculino , Estações do Ano , Mitocôndrias Musculares/metabolismo , Metabolismo Energético/fisiologia
5.
Sci Rep ; 12(1): 11610, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803955

RESUMO

Neural networks tune synaptic and cellular properties to produce stable activity. One form of homeostatic regulation involves scaling the strength of synapses up or down in a global and multiplicative manner to oppose activity disturbances. In American bullfrogs, excitatory synapses scale up to regulate breathing motor function after inactivity in hibernation, connecting homeostatic compensation to motor behavior. In traditional models of homeostatic synaptic plasticity, inactivity is thought to increase synaptic strength via mechanisms that involve reduced Ca2+ influx through voltage-gated channels. Therefore, we tested whether pharmacological inactivity and inhibition of voltage-gated Ca2+ channels are sufficient to drive synaptic compensation in this system. For this, we chronically exposed ex vivo brainstem preparations containing the intact respiratory network to tetrodotoxin (TTX) to stop activity and nimodipine to block L-type Ca2+ channels. We show that hibernation and TTX similarly increased motoneuron synaptic strength and that hibernation occluded the response to TTX. In contrast, inhibiting L-type Ca2+ channels did not upregulate synaptic strength but disrupted the apparent multiplicative scaling of synaptic compensation typically observed in response to hibernation. Thus, inactivity drives up synaptic strength through mechanisms that do not rely on reduced L-type channel function, while Ca2+ signaling associated with the hibernation environment independently regulates the balance of synaptic weights. Altogether, these results point to multiple feedback signals for shaping synaptic compensation that gives rise to proper network function during environmental challenges in vivo.


Assuntos
Hibernação , Animais , Neurônios Motores/fisiologia , Plasticidade Neuronal/fisiologia , Rana catesbeiana , Sinapses/fisiologia , Tetrodotoxina/farmacologia
6.
Front Physiol ; 12: 661943, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897469

RESUMO

Despite the current knowledge of the devastating effects of external exposure to crude oil on animal mortality, the study of developmental, transgenerational effects of such exposure has received little attention. We used the king quail as an animal model to determine if chronic dietary exposure to crude oil in a parental population would affect morpho-physiological phenotypic variables in their immediate offspring generation. Adult quail were separated into three groups: (1) Control, and two experimental groups dietarily exposed for at least 3 weeks to (2) Low (800 PAH ng/g food), or (3) High (2,400 PAH ng/g food) levels of crude oil. To determine the parental influence on their offspring, we measured metabolic and respiratory physiology in exposed parents and in their non-exposed eggs and hatchlings. Body mass and numerous metabolic (e.g., O2 consumption, CO2 production) and respiratory (e.g., ventilation frequency and volume) variables did not vary between control and oil exposed parental groups. In contrast, blood PO2, PCO2, and SO2 varied among parental groups. Notably, water loss though the eggshell was increased in eggs from High oil level exposed parents. Respiratory variables of hatchlings did not vary between populations, but hatchlings obtained from High oil-exposed parents exhibited lower capacities to maintain body temperature while exposed to a cooling protocol in comparison to hatchlings from Low- and Control-derived parents. The present study demonstrates that parental exposure to crude oil via diet impacts some aspects of physiological performance of the subsequent first (F 1 ) generation.

7.
Environ Toxicol Chem ; 40(8): 2347-2358, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33930207

RESUMO

Terrestrial, marine, or aquatic oil spills can directly or indirectly contaminate bird eggs. We hypothesized that chicken embryos exposed to crude oil can physiologically compensate to mitigate the potentially toxic effect of lower doses of oil. Embryos exposed to 0, 1, 3, or 5 µL of oil on embryonic days 4 and 10 were initially analyzed for mortality. All oil doses decreased day 4 embryo survival, but only the 2 highest oil doses lowered survival when applied on day 10. Thus, day 15 embryos treated with 1, 3, and 5 µL of source oil on day 10 had arterialized blood analyzed. The hematological variables hematocrit, red blood cell concentration ([RBC]), and hemoglobin concentration increased in response to 1 µL, were unchanged by 3 µL, and decreased by 5 µL of oil treatment. No changes occurred in arterialized blood gas variables (partial pressure of O2 [PO2 ], pH, bicarbonate concentration) for 1 and 3 µL embryos, but 5 µL of oil decreased PO2 and caused metabolic acidosis. Increased blood lactate in embryos treated with 3 and 5 µL of oil was correlated with decreased hematocrit and [RBC] and increased body mass, the latter likely reflecting edema. We conclude that embryos in middle development physiologically compensated for negative effects of lower doses of crude oil but that higher doses of oil were harmful to the embryos at all developmental stages. Environ Toxicol Chem 2021;40:2347-2358. © 2021 SETAC.


Assuntos
Poluição por Petróleo , Petróleo , Animais , Embrião de Galinha , Galinhas , Hematócrito , Petróleo/toxicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa