Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Eur Heart J ; 34(25): 1930-41, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23139380

RESUMO

AIMS: The cardiac extracellular matrix is highly involved in regulating inflammation, remodelling, and function of the heart. Whether matrix alterations relate to the degree of inflammation, fibrosis, and overall rejection in the human transplanted heart remained, until now, unknown. METHODS AND RESULTS: Expression of matricellular proteins, proteoglycans, and metalloproteinases (MMPs) and their inhibitors (TIMPs) were investigated in serial endomyocardial biopsies (n = 102), in a cohort of 39 patients within the first year after cardiac transplantation. Out of 15 matrix-related proteins, intragraft transcript and protein levels of syndecan-1 and MMP-9 showed a strong association with the degree of cardiac allograft rejection (CAR), the expression of pro-inflammatory cytokines tumour necrosis factor (TNF)-α, interleukin (IL)-6 and transforming growth factor (TGF)-ß, and with infiltrating CD3⁺ T-cells and CD68⁺ monocytes. In addition, SPARC, CTGF, TSP-2, MMP-14, TIMP-1, Testican-1, TSP-1, Syndecan-1, MMP-2, -9, and -14, as well as IL-6 and TGF-ß transcript levels and inflammatory infiltrates all strongly relate to collagen expression in the transplanted heart. More importantly, receiver operating characteristic curve analysis demonstrated that syndecan-1 and MMP-9 transcript levels had the highest area under the curve (0.969 and 0.981, respectively), thereby identifying both as a potential decision-making tool to discriminate rejecting from non-rejecting hearts. CONCLUSION: Out of 15 matrix-related proteins, we identified synd-1 and MMP-9 intragraft transcript levels of as strong predictors of human CAR. In addition, a multitude of non-structural matrix-related proteins closely associate with collagen expression in the transplanted heart. Therefore, we are convinced that these findings deserve further investigation and are likely to be of clinical value to prevent human CAR.


Assuntos
Matriz Extracelular/metabolismo , Rejeição de Enxerto/patologia , Transplante de Coração , Metaloproteinases da Matriz/metabolismo , Miocárdio/patologia , Aloenxertos , Biomarcadores/metabolismo , Citocinas/metabolismo , Feminino , Fibrose/metabolismo , Fibrose/patologia , Rejeição de Enxerto/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Monócitos/patologia , Miocardite/metabolismo , Miocardite/patologia , Proteoglicanas/metabolismo , Linfócitos T/patologia , Inibidores Teciduais de Metaloproteinases/metabolismo
2.
Macromol Biosci ; 24(1): e2300005, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36934315

RESUMO

Local intraperitoneal drug administration is considered a challenging drug delivery route. The therapeutic efficiency is low, mainly due to rapid clearance of drugs. To increase the intraperitoneal retention time of specific drugs, a pH-sensitive supramolecular hydrogel that can act as a drug delivery vehicle is developed. To establish the optimal formulation of the hydrogel and to study its feasibility, safety, and tissue compatibility, in vitro, postmortem, and in vivo experiments are performed. In vitro tests reveal that a hydrogelator formulation with pH ≥ 9 results in a constant viscosity of 0.1 Pa·s. After administration postmortem, the hydrogel covers the parietal and visceral peritoneum with a thin, soft layer. In the subsequent in vivo experiments, 14 healthy rats are subjected to intraperitoneal injection with the hydrogel. Fourteen and 28 days after implantation, the animals are euthanized. Intraperitoneal exposure to the hydrogel is not resulted in significant weight loss or discomfort. Moreover, no macroscopic adverse effects or signs of organ damage are detected. In several intra-abdominal tissues, vacuolated macrophages are found indicating a physiological degradation of the synthetic hydrogel. This study demonstrates that the supramolecular hydrogel is safe for intraperitoneal application and that the hydrogel shows good tissue compatibility in rats.


Assuntos
Sistemas de Liberação de Medicamentos , Hidrogéis , Ratos , Animais , Hidrogéis/farmacologia , Hidrogéis/química , Injeções Intraperitoneais , Injeções
3.
Clin Exp Metastasis ; 40(3): 243-253, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37211565

RESUMO

Patients with peritoneal metastases (PM) of colorectal cancer have a very poor outcome. Intraperitoneal delivery of chemotherapy is the preferred route for PM treatment. The main limitation of the treatment options is the short residence time of the cytostatic, with subsequent short exposure of the cancer cells. To address this, a supramolecular hydrogel has been developed that allows both local and slow release of its encapsulated drug, mitomycin C (MMC) or cholesterol-conjugated MMC (cMMC), respectively. This experimental study investigates if drug delivery using this hydrogel improves the therapeutic efficacy against PM. PM was induced in WAG/Rij rats (n = 72) by intraperitoneally injecting syngeneic colon carcinoma cells (CC531) expressing luciferase. After seven days, animals received a single intraperitoneal injection with saline (n = 8), unloaded hydrogel (n = 12), free MMC (n = 13), free cMMC (n = 13), MMC-loaded hydrogel (n = 13), or cMMC-loaded hydrogel (n = 13). Primary outcome was overall survival with a maximum follow-up of 120 days. Intraperitoneal tumor development was non-invasive monitored via bioluminescence imaging. Sixty-one rats successfully underwent all study procedures and were included to assess therapeutic efficacy. After 120 days, the overall survival in the MMC-loaded hydrogel and free MMC group was 78% and 38%, respectively. A trend toward significance was found when comparing the survival curves of the MMC-loaded hydrogel and free MMC (p = 0.087). No survival benefit was found for the cMMC-loaded hydrogel compared to free cMMC. Treating PM with our MMC-loaded hydrogel, exhibiting prolonged MMC exposure, seems effective in improving survival compared to treatment with free MMC.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Citostáticos , Neoplasias Peritoneais , Ratos , Animais , Citostáticos/uso terapêutico , Neoplasias Peritoneais/secundário , Hidrogéis/uso terapêutico , Roedores , Mitomicina , Neoplasias do Colo/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico
4.
Life (Basel) ; 13(10)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37895458

RESUMO

The prognosis of colorectal cancer patients with peritoneal metastases is very poor. Intraperitoneal drug delivery systems, like supramolecular hydrogels, are being developed to improve local delivery and intraperitoneal residence time of a cytostatic such as mitomycin C (MMC). In this study, we evaluate the effect of intraperitoneal hydrogel administration on anastomotic healing. Forty-two healthy Wistar rats received a colonic end-to-end anastomosis, after which 6 animals received an intraperitoneal injection with saline, 18 with unloaded hydrogel and 18 with MMC-loaded hydrogel. After 7 days, animals were euthanized, and the anastomotic adhesion and leakage score were measured as primary outcome. Secondary outcomes were bursting pressure, histological anastomosis evaluation and body weight changes. Twenty-two rats completed the follow-up period (saline: n = 6, unloaded hydrogel: n = 10, MMC-loaded hydrogel: n = 6) and were included in the analysis. A trend towards significance was found for anastomotic leakage score between the rats receiving saline and unloaded hydrogel after multiple-comparison correction (p = 0.020, α = 0.0167). No significant differences were found for all other outcomes. The main reason for drop-out in this study was intestinal blood loss. Although the preliminary results suggest that MMC-loaded or unloaded hydrogel does not influence anastomotic healing, the intestinal blood loss observed in a considerable number of animals receiving unloaded and MMC-loaded hydrogel implies that the injection of the hydrogel under the studied conditions is not safe in the current rodent model and warrants further optimalisation of the hydrogel.

5.
J Mol Cell Cardiol ; 51(3): 318-28, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21624372

RESUMO

Clinical use of the antineoplastic agent doxorubicin (DOX) is limited by its cardiomyocyte toxicity. Attempts to decrease cardiomyocyte injury showed promising results in vitro, but failed to reduce the adverse effects of DOX in vivo, suggesting that other mechanisms contribute to its cardiotoxicity as well. Evidence that DOX also induces cardiac injury by compromising extracellular matrix integrity is lacking. The matricellular protein thrombospondin-2 (TSP-2) is known for its matrix-preserving function, and for modulating cellular function. Here, we investigated whether TSP-2 modulates the process of doxorubicin-induced cardiomyopathy (DOX-CMP). TSP-2-knockout (TSP-2-KO) and wild-type (WT) mice were treated with DOX (2 mg/kg/week) for 12 weeks to induce DOX-CMP. Mortality was significantly increased in TSP-2-KO compared to WT mice. Surviving DOX-treated TSP-2-KO mice had depressed cardiac function compared to WT animals, accompanied by increased cardiomyocyte apoptosis and matrix damage. Enhanced myocyte damage in the absence of TSP-2 was associated with impaired activation of the Akt signaling pathway in TSP-2-KO compared to WT. The absence of TSP-2, in vivo and in vitro, reduced Akt activation both under non-treated conditions and after DOX. Importantly, inhibition of Akt phosphorylation in cardiomyocytes significantly reduced TSP-2 expression, unveiling a unique feedback loop between Akt and TSP-2. Finally, enhanced matrix disruption in DOX-treated TSP-2-KO hearts went along with increased matrix metalloproteinase-2 levels. Taken together, this study is the first to provide evidence for the implication of the matrix element TSP-2 in protecting against DOX-induced cardiac injury and dysfunction.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Cardiomiopatias/induzido quimicamente , Doxorrubicina/toxicidade , Matriz Extracelular/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Trombospondinas/genética , Animais , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Matriz Extracelular/metabolismo , Feminino , Fibrose/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Endogâmicos Lew , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Trombospondinas/metabolismo
6.
Circulation ; 120(16): 1585-97, 2009 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-19805649

RESUMO

BACKGROUND: The progressive shift from a young to an aged heart is characterized by alterations in the cardiac matrix. The present study investigated whether the matricellular protein thrombospondin-2 (TSP-2) may affect cardiac dimensions and function with physiological aging of the heart. METHODS AND RESULTS: TSP-2 knockout (KO) and wild-type mice were followed up to an age of 60 weeks. Survival rate, cardiac function, and morphology did not differ at a young age in TSP-2 KO compared with wild-type mice. However, >55% of the TSP-2 KO mice died between 24 and 60 weeks of age, whereas <10% of the wild-type mice died. In the absence of TSP-2, older mice displayed a severe dilated cardiomyopathy with impaired systolic function, increased cardiac dilatation, and fibrosis. Ultrastructural analysis revealed progressive myocyte stress and death, accompanied by an inflammatory response and replacement fibrosis, in aging TSP-2 KO animals, whereas capillary or coronary morphology or density was not affected. Importantly, adeno-associated virus-9 gene-mediated transfer of TSP-2 in 7-week-old TSP-2 KO mice normalized their survival and prevented dilated cardiomyopathy. In TSP-2 KO animals, age-related cardiomyopathy was accompanied by increased matrix metalloproteinase-2 and decreased tissue transglutaminase-2 activity, together with impaired collagen cross-linking. At the cardiomyocyte level, TSP-2 deficiency in vivo and its knockdown in vitro decreased the activation of the Akt survival pathway in cardiomyocytes. CONCLUSIONS: TSP-2 expression in the heart protects against age-dependent dilated cardiomyopathy.


Assuntos
Envelhecimento , Cardiomiopatia Dilatada/etiologia , Miocárdio/metabolismo , Trombospondinas/deficiência , Animais , Cardiomiopatia Dilatada/mortalidade , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/prevenção & controle , Morte Celular , Ativação Enzimática , Feminino , Fibrose , Técnicas de Transferência de Genes , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Miocardite/etiologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Proteínas Proto-Oncogênicas c-akt/metabolismo , Trombospondinas/genética , Regulação para Cima
7.
Macromol Biosci ; 20(7): e2000024, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32558365

RESUMO

For in situ tissue engineering (TE) applications it is important that implant degradation proceeds in concord with neo-tissue formation to avoid graft failure. It will therefore be valuable to have an imaging contrast agent (CA) available that can report on the degrading implant. For this purpose, a biodegradable radiopaque biomaterial is presented, modularly composed of a bisurea chain-extended polycaprolactone (PCL2000-U4U) elastomer and a novel iodinated bisurea-modified CA additive (I-U4U). Supramolecular hydrogen bonding interactions between the components ensure their intimate mixing. Porous implant TE-grafts are prepared by simply electrospinning a solution containing PCL2000-U4U and I-U4U. Rats receive an aortic interposition graft, either composed of only PCL2000-U4U (control) or of PCL2000-U4U and I-U4U (test). The grafts are explanted for analysis at three time points over a 1-month period. Computed tomography imaging of the test group implants prior to explantation shows a decrease in iodide volume and density over time. Explant analysis also indicates scaffold degradation. (Immuno)histochemistry shows comparable cellular contents and a similar neo-tissue formation process for test and control group, demonstrating that the CA does not have apparent adverse effects. A supramolecular approach to create solid radiopaque biomaterials can therefore be used to noninvasively monitor the biodegradation of synthetic implants.


Assuntos
Materiais Biocompatíveis/química , Prótese Vascular , Meios de Contraste/química , Engenharia Tecidual , Células 3T3 , Animais , Sobrevivência Celular , Meios de Contraste/síntese química , Elastômeros/química , Fibroblastos/citologia , Masculino , Camundongos , Peso Molecular , Poliésteres/química , Ratos Sprague-Dawley , Alicerces Teciduais/química , Tomografia Computadorizada por Raios X
8.
J Tissue Eng Regen Med ; 11(6): 1820-1834, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28586546

RESUMO

Renal applications in healthcare, such as renal replacement therapies and nephrotoxicity tests, could potentially benefit from bioartificial kidney membranes with fully differentiated and functional human tubular epithelial cells. A replacement of the natural environment of these cells is required to maintain and study cell functionality cell differentiation in vitro. Our approach was based on synthetic supramolecular biomaterials to mimic the natural basement membrane (BM) on which these cells grow and a bioreactor to provide the desired organotypical culture parameters. The BM mimics were constructed from ureidopyrimidinone (UPy)-functionalized polymer and bioactive peptides by electrospinning. The resultant membranes were shown to have a hierarchical fibrous BM-like structure consisting of self-assembled nanofibres within the electrospun microfibres. Human kidney-2 (HK-2) epithelial cells were cultured on the BM mimics under organotypical conditions in a custom-built bioreactor. The bioreactor facilitated in situ monitoring and functionality testing of the cultures. Cell viability and the integrity of the epithelial cell barrier were demonstrated inside the bioreactor by microscopy and transmembrane leakage of fluorescently labelled inulin, respectively. Furthermore, HK-2 cells maintained a polarized cell layer and showed modulation of both gene expression of membrane transporter proteins and metabolic activity of brush border enzymes when subjected to a continuous flow of culture medium inside the new bioreactor for 21 days. These results demonstrated that both the culture and study of renal epithelial cells was facilitated by the bioartificial in vitro environment that is formed by synthetic supramolecular BM mimics in our custom-built bioreactor. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Membrana Basal/química , Materiais Biomiméticos/química , Reatores Biológicos , Células Epiteliais/metabolismo , Rim/metabolismo , Teste de Materiais , Técnicas de Cultura de Células , Linhagem Celular , Sobrevivência Celular , Células Epiteliais/citologia , Humanos , Rim/citologia
9.
Macromol Biosci ; 16(3): 350-62, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26611660

RESUMO

Cell-free approaches to in situ tissue engineering require materials that are mechanically stable and are able to control cell-adhesive behavior upon implantation. Here, the development of mechanically stable grafts with non-cell adhesive properties via a mix-and-match approach using ureido-pyrimidinone (UPy)-modified supramolecular polymers is reported. Cell adhesion is prevented in vitro through mixing of end-functionalized or chain-extended UPy-polycaprolactone (UPy-PCL or CE-UPy-PCL, respectively) with end-functionalized UPy-poly(ethylene glycol) (UPy-PEG) at a ratio of 90:10. Further characterization reveals intimate mixing behavior of UPy-PCL with UPy-PEG, but poor mechanical properties, whereas CE-UPy-PCL scaffolds are mechanically stable. As a proof-of-concept for the use of non-cell adhesive supramolecular materials in vivo, electrospun vascular scaffolds are applied in an aortic interposition rat model, showing reduced cell infiltration in the presence of only 10% of UPy-PEG. Together, these results provide the first steps toward advanced supramolecular biomaterials for in situ vascular tissue engineering with control over selective cell capturing.


Assuntos
Bioprótese , Prótese Vascular , Poliésteres/química , Polietilenoglicóis/química , Pirimidinonas/química , Alicerces Teciduais/química , Animais , Adesão Celular , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Células NIH 3T3 , Ratos
10.
Biomaterials ; 76: 187-95, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26524538

RESUMO

In an in-situ approach towards tissue engineered cardiovascular replacement grafts, cell-free scaffolds are implanted that engage in endogenous tissue formation. Bioactive molecules can be incorporated into such grafts to facilitate cellular recruitment. Stromal cell derived factor 1α (SDF1α) is a powerful chemoattractant of lymphocytes, monocytes and progenitor cells and plays an important role in cellular signaling and tissue repair. Short SDF1α-peptides derived from its receptor-activating domain are capable of activating the SDF1α-specific receptor CXCR4. Here, we show that SDF1α-derived peptides can be chemically modified with a supramolecular four-fold hydrogen bonding ureido-pyrimidinone (UPy) moiety, that allows for the convenient incorporation of the UPy-SDF1α-derived peptides into a UPy-modified polymer scaffold. We hypothesized that a UPy-modified material bioactivated with these UPy-SDF1α-derived peptides can retain and stimulate circulating cells in an anti-inflammatory, pro-tissue formation signaling environment. First, the early recruitment of human peripheral blood mononuclear cells to the scaffolds was analyzed in vitro in a custom-made mesofluidic device applying physiological pulsatile fluid flow. Preferential adhesion of lymphocytes with reduced expression of inflammatory factors TNFα, MCP1 and lymphocyte activation marker CD25 was found in the bioactivated scaffolds, indicating a reduction in inflammatory signaling. As a proof of concept, in-vivo implantation of the bioactivated scaffolds as rat abdominal aorta interposition grafts showed increased cellularity by CD68+ cells after 7 days. These results indicate that a completely synthetic, cell-free biomaterial can attract and stimulate specific leukocyte populations through supramolecular incorporation of short bioactive SDF1α derived peptides.


Assuntos
Prótese Vascular , Quimiocina CXCL12/química , Peptídeos/química , Humanos , Ligação de Hidrogênio , Microscopia Eletrônica de Varredura , Proteólise , Engenharia Tecidual
11.
Nat Commun ; 6: 8833, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26640126

RESUMO

RORγt is critical for the differentiation and proliferation of Th17 cells associated with several chronic autoimmune diseases. We report the discovery of a novel allosteric binding site on the nuclear receptor RORγt. Co-crystallization of the ligand binding domain (LBD) of RORγt with a series of small-molecule antagonists demonstrates occupancy of a previously unreported allosteric binding pocket. Binding at this non-canonical site induces an unprecedented conformational reorientation of helix 12 in the RORγt LBD, which blocks cofactor binding. The functional consequence of this allosteric ligand-mediated conformation is inhibition of function as evidenced by both biochemical and cellular studies. RORγt function is thus antagonized in a manner molecularly distinct from that of previously described orthosteric RORγt ligands. This brings forward an approach to target RORγt for the treatment of Th17-mediated autoimmune diseases. The elucidation of an unprecedented modality of pharmacological antagonism establishes a mechanism for modulation of nuclear receptors.


Assuntos
Interleucina-17/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/química , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Sítio Alostérico , Animais , Diferenciação Celular , Humanos , Interleucina-17/química , Ligantes , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Estrutura Terciária de Proteína , Células Th17/química , Células Th17/metabolismo
12.
Chem Commun (Camb) ; 48(10): 1452-4, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22010132

RESUMO

A convenient method to prepare supramolecular bioconjugates in a facile and scalable manner is by a modular approach, whereby self-assembling units and peptides are coupled using oxime chemistry. We here report syntheses of bioactive ureidopyrimidinone-based peptide conjugates, and their resultant self-assembly into fibrous structures.


Assuntos
Oximas/química , Peptídeos/química , Pirimidinonas/química , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
13.
Aging Cell ; 10(5): 769-79, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21501375

RESUMO

To understand the process of cardiac aging, it is of crucial importance to gain insight into the age-related changes in gene expression in the senescent failing heart. Age-related cardiac remodeling is known to be accompanied by changes in extracellular matrix (ECM) gene and protein levels. Small noncoding microRNAs regulate gene expression in cardiac development and disease and have been implicated in the aging process and in the regulation of ECM proteins. However, their role in age-related cardiac remodeling and heart failure is unknown. In this study, we investigated the aging-associated microRNA cluster 17-92, which targets the ECM proteins connective tissue growth factor (CTGF) and thrombospondin-1 (TSP-1). We employed aged mice with a failure-resistant (C57Bl6) and failure-prone (C57Bl6 × 129Sv) genetic background and extrapolated our findings to human age-associated heart failure. In aging-associated heart failure, we linked an aging-induced increase in the ECM proteins CTGF and TSP-1 to a decreased expression of their targeting microRNAs 18a, 19a, and 19b, all members of the miR-17-92 cluster. Failure-resistant mice showed an opposite expression pattern for both the ECM proteins and the microRNAs. We showed that these expression changes are specific for cardiomyocytes and are absent in cardiac fibroblasts. In cardiomyocytes, modulation of miR-18/19 changes the levels of ECM proteins CTGF and TSP-1 and collagens type 1 and 3. Together, our data support a role for cardiomyocyte-derived miR-18/19 during cardiac aging, in the fine-tuning of cardiac ECM protein levels. During aging, decreased miR-18/19 and increased CTGF and TSP-1 levels identify the failure-prone heart.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/metabolismo , Insuficiência Cardíaca/patologia , MicroRNAs/metabolismo , Trombospondina 1/metabolismo , Adulto , Idoso , Envelhecimento/genética , Envelhecimento/fisiologia , Animais , Biópsia , Colágeno/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Fibrose/genética , Fibrose/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Coração/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Pessoa de Meia-Idade , Família Multigênica , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Ratos , Ratos Endogâmicos Lew , Trombospondina 1/genética
14.
Hypertension ; 55(2): 249-56, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20048198

RESUMO

Syndecan-1 (Synd1) is a transmembrane heparan sulfate proteoglycan that functions as a coreceptor for various growth factors and modulates signal transduction. The present study investigated whether Synd1, by affecting growth factor signaling, may play a role in hypertension-induced cardiac fibrosis and dysfunction. Expression of Synd1 was increased significantly in mouse hearts with angiotensin II-induced hypertension, which was spatially related to cardiac fibrosis. Angiotensin II significantly impaired fractional shortening and induced cardiac fibrosis in wild-type mice, whereas these effects were blunted in Synd1-null mice. Angiotensin II significantly increased cardiac expression of connective tissue growth factor and collagen type I and III in wild-type mice, which was blunted in Synd1-null mice. These findings were confirmed in vitro, where angiotensin II induced the expression of both connective tissue growth factor and collagen I in fibroblasts. The absence of Synd1 in either Synd1-null fibroblasts, after knockdown of Synd1 by short hairpin RNA, or after inhibition of heparan sulfates by protamine attenuated this increase, which was associated with reduced phosphorylation of Smad2. In conclusion, loss of Synd1 reduces cardiac fibrosis and dysfunction during angiotensin II-induced hypertension.


Assuntos
Angiotensina II/farmacologia , Miocárdio/patologia , Proteína Smad2/metabolismo , Sindecana-1/metabolismo , Animais , Western Blotting , Modelos Animais de Doenças , Fibrose/patologia , Regulação da Expressão Gênica , Hipertensão/induzido quimicamente , Hipertensão/complicações , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Probabilidade , RNA Mensageiro/análise , Distribuição Aleatória , Proteína Smad2/efeitos dos fármacos , Proteína Smad2/genética , Sindecana-1/genética
15.
J Cell Commun Signal ; 3(3-4): 201-13, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19798592

RESUMO

Cardiac remodeling after myocardial injury involves inflammation, angiogenesis, left ventricular hypertrophy and matrix remodeling. Thrombospondins (TSPs) belong to the group of matricellular proteins, which are non-structural extracellular matrix proteins that modulate cell-matrix interactions and cell function in injured tissues or tumors. They interact with different matrix and membrane-bound proteins due to their diverse functional domains. That the expression of TSPs strongly increases during cardiac stress or injury indicates an important role for them during cardiac remodeling. Recently, the protective properties of TSP expression against heart failure have been acknowledged. The current review will focus on the biological role of TSPs in the ischemic and hypertensive heart, and will describe the functional consequences of TSP polymorphisms in cardiac disease.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa