Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Environ Manage ; 357: 120677, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38565033

RESUMO

Attention on the use of transboundary aquifers (TBAs) and their cross-border impacts is growing as countries become increasingly concerned about their long-term water security. Cross-border impacts, in groundwater quality and quantity, tend to concentrate in specific parts of TBAs, as they largely depend on the transboundary flow dynamics where anthropogenic actions operate. Thus, there is a growing consensus that strategies intended to prevent or mitigate such impacts should be implemented in strategic zones rather than in the whole TBA. These transboundary groundwater management zones (TGMZs) are relatively recent but have become a prominent topic in TBA management. However, until now, limited effort has been put into exploring the concept of TGMZs and the methods for their delineation. This research aims to fill these gaps and provide a basis for the delineation of TGMZs, thus helping neighbouring countries meet international responsibilities regarding the right to use and enjoy groundwater in TBAs. By reviewing academic and grey literature accessible from public sources, we present an overview of the concept and terminology of TGMZs, the approaches proposed for their delineation, and current operating examples. Additionally, we build a conceptual framework for assessing cross-border groundwater impacts by identifying their typologies and causal factors. We then apply our framework to evaluate and compare three reported methods which identify and delineate TGMZs from distinct perspectives, thereby gaining insights into their principles, performances, and limitations. Finally, we provide recommendations for further research towards optimising methods for delineating TGMZs.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Abastecimento de Água , Poluentes Químicos da Água/análise , Água , Monitoramento Ambiental/métodos
2.
Environ Sci Technol ; 49(12): 7073-81, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26000605

RESUMO

Biodegradation is one of the most favored and sustainable means of removing organic pollutants from contaminated aquifers but the major steering factors are still surprisingly poorly understood. Growing evidence questions some of the established concepts for control of biodegradation. Here, we critically discuss classical concepts such as the thermodynamic redox zonation, or the use of steady state transport scenarios for assessing biodegradation rates. Furthermore, we discuss if the absence of specific degrader populations can explain poor biodegradation. We propose updated perspectives on the controls of biodegradation in contaminant plumes. These include the plume fringe concept, transport limitations, and transient conditions as currently underestimated processes affecting biodegradation.


Assuntos
Bactérias/metabolismo , Água Subterrânea/microbiologia , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Elétrons , Oxirredução
3.
Water Res ; 267: 122517, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39353344

RESUMO

Iron (Fe2+), manganese (Mn2+), and ammonium (NH4+) oxidation processes were studied in three single media and three dual media full-scale rapid sand filters (RSFs) using reactive transport modelling (RTM) in PHREEQC and parameter estimation using PEST. Here, we present the insights gained into the spatial distribution of Fe and Mn mineral coatings in RSFs and its influence on the oxidation sequence and rates. Fe2+ and Mn2+ oxidation predominantly occurred simultaneously in the RSFs, contrary to the expected sequential oxidation based on Gibbs free energy calculations. During backwashing, RSF grains become fully mixed, which initiates heterogeneous Mn2+ oxidation on Mn-coated grains that end up in the top layer. The resulting grains have a mixed Fe/Mn mineral coating, which is limiting heterogeneous Mn2+ oxidation due to the limited Mn mineral surface available. Mixed coatings did not seem to affect Fe2+ oxidation rates, instead oxidation rates were increasing at lower pH. We found that RSFs can be designed to spatially separate Fe2+ and Mn2+ oxidation, which results in optimal conditions for Mn2+ oxidation. The RSF needs to consist of two layers with varying density to inhibit mixing and complete Fe2+ oxidation should occur in the top layer. The developed RTM can be used to estimate the depth at which Fe2+ oxidation is complete, and thus the ideal intersection depth of the two layers. A novel perspective is provided on how mineral coating distribution in single and dual media filters influence removal rates and the sequence of oxidation, which contributes to the design of more efficient groundwater filters.

4.
Environ Sci Technol ; 47(17): 9668-77, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23895211

RESUMO

Carbon (C), chlorine (Cl), and hydrogen (H) isotope effects were determined during dechlorination of TCE to ethene by a mixed Dehalococcoides (Dhc) culture. The C isotope effects for the dechlorination steps were consistent with data published in the past for reductive dechlorination (RD) by Dhc. The Cl effects (combined with an inverse H effect in TCE) suggested that dechlorination proceeded through nucleophilic reactions with cobalamin rather than by an electron transfer mechanism. Depletions of (37)Cl in daughter compounds, resulting from fractionation at positions away from the dechlorination center (secondary isotope effects), further support the nucleophilic dechlorination mechanism. Determination of C and Cl isotope ratios of the reactants and products in the reductive dechlorination chain offers a potential tool for differentiation of Dhc activity from alternative transformation mechanisms (e.g., aerobic degradation and reductive dechlorination proceeding via outer sphere mechanisms), in studies of in situ attenuation of chlorinated ethenes. Hydrogenation of the reaction products (DCE, VC, and ethene) showed a major preference for the (1)H isotope. Detection of depleted dechlorination products could provide a line of evidence in discrimination between alternative sources of TCE (e.g., evolution from DNAPL sources or from conversion of PCE).


Assuntos
Chloroflexi/metabolismo , Etilenos/metabolismo , Tricloroetileno/metabolismo , Poluentes Químicos da Água/metabolismo , Carbono/metabolismo , Isótopos de Carbono/metabolismo , Cloro/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Hidrogênio/metabolismo , Oxirredução
5.
Environ Sci Technol ; 47(24): 14476-84, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24266518

RESUMO

Shallow geothermal systems are increasingly being used to store or harvest thermal energy for heating or cooling purposes. This technology causes temperature perturbations exceeding the natural variations in aquifers, which may impact groundwater quality. Here, we report the results of laboratory experiments on the effect of temperature variations (5-80 °C) on redox processes and associated microbial communities in anoxic unconsolidated subsurface sediments. Both hydrochemical and microbiological data showed that a temperature increase from 11 °C (in situ) to 25 °C caused a shift from iron-reducing to sulfate-reducing and methanogenic conditions. Bioenergetic calculations could explain this shift. A further temperature increase (>45 °C) resulted in the emergence of a thermophilic microbial community specialized in fermentation and sulfate reduction. Two distinct maxima in sulfate reduction rates, of similar orders of magnitude (5 × 10(-10) M s(-1)), were observed at 40 and 70 °C. Thermophilic sulfate reduction, however, had a higher activation energy (100-160 kJ mol(-1)) than mesophilic sulfate reduction (30-60 kJ mol(-1)), which might be due to a trade-off between enzyme stability and activity with thermostable enzymes being less efficient catalysts that require higher activation energies. These results reveal that while sulfate-reducing functionality can withstand a substantial temperature rise, other key biochemical processes appear more temperature sensitive.


Assuntos
Bactérias/metabolismo , Energia Geotérmica , Microbiota , Carbono/análise , Sedimentos Geológicos/microbiologia , Temperatura Alta , Ferro/análise , Cinética , Metano/análise , Oxirredução , Sulfatos/análise , Sulfatos/metabolismo , Fatores de Tempo
6.
Sci Total Environ ; 901: 166181, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37572894

RESUMO

Agricultural aquifer storage recovery and transfer (ASTR) stores excess fresh water for later reuse in irrigation. Moreover, water quality improves because chemical pollutants and pathogens will be removed by degradation and attachment to the aquifer material. The source water may contain the bacterial plant pathogen Ralstonia solanacearum which causes plant infections and high yield losses. We used quantitative microbial risk assessment (QMRA) to investigate the removal of R. solanacearum during ASTR to predict infection risks of potato plants after irrigation with the recovered water. Laboratory experiments analyzed the ASTR treatment by investigating the bacterial die-off in the water phase and the removal by attachment to the aquifer sediment. Die-off in the water phase depends on the residence time and ranged between 1.3 and 2.7 log10 after 10 or 60 days water storage, respectively. A subpopulation of the bacteria persisted for a prolonged time at low concentrations which may pose a risk if the water is recovered too early. However, the natural aquifer sand filtration proofed to be highly effective in removing R. solanacearum by attachment which depends on the distance between injection and abstraction well. The high removal by attachment alone (18 log10 after 1 m) would reduce bacterial concentrations to negligible numbers. Upscaling to longer soil passages is discussed in the paper. Infection risks of potato plants were calculated using a dose-response model and ASTR treatment resulted in negligible infection risks of a single plant, but also when simulating the irrigation of a 5 ha potato field. This is the first QMRA that analyzed an agricultural ASTR and the fate of a plant pathogen focusing on plant health. QMRA is a useful (water) management tool to evaluate the treatment steps of water reclamation technologies with the aim to provide safe irrigation water and reduce risks disseminating plant diseases.

7.
Environ Sci Technol ; 46(14): 7700-8, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22681629

RESUMO

The effects of transverse hydrodynamic dispersion on altering transformation-induced compound-specific isotope analysis (CSIA) signals within groundwater pollution plumes have been assessed with reactive transport modeling accommodating diffusion-induced isotope fractionation (DIF) and implementing different parameterizations of local transverse dispersion. The model reproduced previously published field data showing a negative carbon isotope pattern (-2 ‰) at the fringes of a nondegrading PCE plume. We extended the study to reactive transport scenarios considering vinyl chloride as a model compound and assessing, through a detailed sensitivity analysis, the coupled effects of transverse hydrodynamic dispersion (with and without DIF) and aerobic fringe degradation on the evolution of carbon and chloride isotope ratios. Transformation-induced positive isotope signals were increasingly attenuated with distance from the source and higher degradation rate. The effect of DIF on the overall isotope signal attenuation was greatest near the source and for low values of groundwater flow velocity, transverse dispersion coefficient, molecular weight, rate constant, and isotope fractionation factor, α, of the degradation reaction. Models disregarding DIF underestimate the actual α. The approximately twice larger DIF effect for chlorine than for carbon together with the low α for oxidation resulted in strong chlorine CSIA depletions for VC at the plume fringe.


Assuntos
Água Subterrânea/química , Halogenação , Hidrodinâmica , Solventes/química , Biodegradação Ambiental , Canadá , Isótopos de Carbono , Fracionamento Químico , Simulação por Computador , Difusão , Modelos Químicos , Cloreto de Polivinila/química , Reprodutibilidade dos Testes
8.
J Contam Hydrol ; 251: 104094, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36228506

RESUMO

Degradation of 7 common pesticides (bentazon, boscalid, chloridazon, fluopyram, flutolanil, imidacloprid, and methoxyfenozide) and 2 metabolites of chloridazon (desphenyl-chloridazon, and methyl-desphenyl-chloridazon) was studied in an anoxic and brackish sandy aquifer before and during Aquifer Storage Transfer and Recovery (ASTR) operation. Fresh tile drainage water was injected and stored for later re-use as irrigation water. We hypothesized that electron acceptors (O2, NO3), dissolved organic carbon (∼24.7 mg/L), nutrients (NO3: ∼14.1 mg/L, NH4: ∼0.13 mg/L, PO4: ∼5.2 mg/L), and biodegrading bacteria in tile drainage water could stimulate degradation of the pesticides and metabolites (ranging between 0.013 and 10.8 µg/L) introduced in the aquifer. Pesticide degradation was studied at 6 depths in the aquifer using push-pull tests lasting ±18 days before the onset of ASTR operation. Degradation was too limited to quantify and/or could not be assessed because of the potential occurrence of pesticide retardation. Utilizing push-pull tests to obtain degradation constants should only be considered in future studies for non-retarding pesticides with relative low half-lives (here <20 days). During ASTR operation, pesticide degradation was studied at the same depths during 3 storage periods equally spread over 1.5 years of ASTR operation. Overall, trends of degradation were observed, although with relatively high half-lives of at least 53 days. Microbial adaptation of the aquifer and/or bioaugmentation by the injected biodegrading bacteria did not result in enhanced degradation during consecutive storage periods. Operational monitoring data over longer periods and distances yielded half-lives of at least 141 days. The slow degradation mostly agrees with previous studies. The injected tile drainage water composition did therefore not notably stimulate pesticide degradation. The relatively persistent behavior of the studied pesticides/metabolites implies that ASTR abstracted water will have generally high pesticide concentrations, and non-abstracted water may form a contamination risk for the surrounding native brackish groundwater.


Assuntos
Água Subterrânea , Praguicidas , Poluentes Químicos da Água , Praguicidas/análise , Poluentes Químicos da Água/análise , Água Doce , Água
9.
J Contam Hydrol ; 248: 104015, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35489141

RESUMO

A field injection experiment was performed in an anoxic sandy aquifer over 6 days to assess sorption characteristics of 7 commonly applied pesticides in agriculture and 2 frequently detected metabolites. Pesticide use changed considerably in the last decades, and there is insufficient knowledge of the fate of currently used pesticides in aquifers. Injected water arrival was monitored at 6 depth intervals of 1 m ranging from 11.4 to 32.2 m-below surface level with varying organic carbon contents (0.057-0.91%d.w.) to examine intra-aquifer variations in sorption. Observed pesticide concentrations were fit using a non-linear least squares routine to an advection-dispersion equation, from which retardation factors (R) were obtained. Pesticide degradation did not significantly influence the simulated R during the experiment. We observed that bentazon and cycloxydim were most mobile with R < 1.1 at all depths. Desphenyl chloridazon, methyl desphenyl chloridazon, and imidacloprid were, on average, less mobile, with maximum R of 1.5. Boscalid, chloridazon, fluopyram, and flutolanil showed a larger range of R, and R > 2.0 were observed in the shallowest part of the aquifer. Largest R were observed at the top of the aquifer and decreased with depth. Koc values varied similarly, which indicates that sorption is not only influenced by sedimentary organic matter (SOM) content but also by its sorption reactivity. Obtained sorption parameters were substantially lower than reported in a widely used pesticide sorption database, which suggests that sorption parameters are influenced by methodological differences and variations in the sorption reactivity of SOM. The large intra-aquifer variations in pesticide sorption highlights that aquifer heterogeneity should be considered in groundwater risk assessments.


Assuntos
Água Subterrânea , Praguicidas , Poluentes Químicos da Água , Praguicidas/análise , Poluentes Químicos da Água/análise
10.
Sci Total Environ ; 849: 157791, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35940262

RESUMO

An aquifer storage transfer and recovery (ASTR) system was studied in which tile drainage water (TDW) was injected with relatively high NO3 (about 14 mg/L) concentrations originating from fertilizers. Here we present the evolution of denitrification kinetics at 6 different depths in the aquifer before, and during ASTR operation. First-order denitrification rate constants increased over time before and during the first days of ASTR operation, likely due to microbial adaptation of the native bacterial community and/or bioaugmentation of the aquifer by denitrifying bacteria present in injected TDW. Push-pull tests were performed in the native aquifer before ASTR operation. Obtained first-order denitrification rate constants were negligible (0.00-0.03 d-1) at the start, but increased to 0.17-0.83 d-1 after a lag-phase of about 6 days. During the first days of ASTR operation in autumn 2019, the arrival of injected TDW was studied at 2.5 m distance from the injection well. First-order denitrification rate constants increased again over time (maximum >1 d-1). Three storage periods without injection were monitored in winter 2019, fall 2020, and spring 2021 during ASTR operation. First-order rate constants ranged between 0.12 and 0.61 d-1. Denitrification coupled to pyrite oxidation occurred at all depths, but other oxidation processes were indicated as well. NO3 concentration trends resembled Monod kinetics but were fitted also to a first-order decay rate model to facilitate comparison. Rate constants during the storage periods were substantially lower than during injection, probably due to a reduction in the exchange rate between aquifer solid phases and injected water during the stagnant conditions. Denitrification rate constants deviated maximally a factor 5 over time and depth for all in-situ measurement approaches after the lag-phase. The combination of these in-situ approaches enabled to obtain more detailed insights in the evolution of denitrification kinetics during AS(T)R.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Desnitrificação , Fator V , Fertilizantes , Água Subterrânea/microbiologia , Cinética , Nitratos/análise , Água , Poluentes Químicos da Água/análise
11.
Water Res ; 220: 118724, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35696807

RESUMO

Irrigation with surface water carrying plant pathogens poses a risk for agriculture. Managed aquifer recharge enhances fresh water availability while simultaneously it may reduce the risk of plant diseases by removal of pathogens during aquifer passage. We compared the transport of three plant pathogenic bacteria with Escherichia coli WR1 as reference strain in saturated laboratory column experiments filled with quartz sand, or sandy aquifer sediments. E. coli showed the highest removal, followed by Pectobacterium carotovorum, Dickeya solani and Ralstonia solanacearum. Bacterial and non-reactive tracer breakthrough curves were fitted with Hydrus-1D and compared with colloid filtration theory (CFT). Bacterial attachment to fine and medium aquifer sand under anoxic conditions was highest with attachment rates of max. katt1 = 765 day-1 and 355 day-1, respectively. Attachment was the least to quartz sand under oxic conditions (katt1 = 61 day-1). In CFT, sticking efficiencies were higher in aquifer than in quartz sand but there was no differentiation between fine and medium aquifer sand. Overall removal ranged between < 6.8 log10 m-1 in quartz and up to 40 log10 m-1 in fine aquifer sand. Oxygenation of the anoxic aquifer sediments for two weeks with oxic influent water decreased the removal. The results highlight the potential of natural sand filtration to sufficiently remove plant pathogenic bacteria during aquifer storage.


Assuntos
Filtração , Água Subterrânea , Quartzo , Dickeya/isolamento & purificação , Escherichia coli , Filtração/métodos , Sedimentos Geológicos , Água Subterrânea/microbiologia , Pectobacterium carotovorum/isolamento & purificação , Ralstonia solanacearum/isolamento & purificação , Areia , Água
12.
Front Plant Sci ; 13: 1074192, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36937141

RESUMO

Ralstonia solanacearum is the causative agent of bacterial wilt of potato and other vegetable crops. Contaminated irrigation water contributes to the dissemination of this pathogen but the exact concentration or biological threshold to cause an infection is unknown. In two greenhouse experiments, potted potato plants (Solanum tuberosum) were exposed to a single irrigation with 50 mL water (non-invasive soil-soak inoculation) containing no or 102 - 108 CFU/mL R. solanacearum. The disease response of two cultivars, Kondor and HB, were compared. Disease development was monitored over a three-month period after which stems, roots and tubers of asymptomatic plants were analyzed for latent infections. First wilting symptoms were observed 15 days post inoculation in a plant inoculated with 5x109 CFU and a mean disease index was used to monitor disease development over time. An inoculum of 5x105 CFU per pot (1.3x102 CFU/g soil) was the minimum dose required to cause wilting symptoms, while one latent infection was detected at the lowest dose of 5x102 CFU per pot (0.13 CFU/g). In a second set of experiments, stem-inoculated potato plants grown in vitro were used to investigate the dose-response relationship under optimal conditions for pathogen growth and disease development. Plants were inoculated with doses between 0.5 and 5x105 CFU/plant which resulted in visible symptoms at all doses. The results led to a dose-response model describing the relationship between R. solanacearum exposure and probability of infection or illness of potato plants. Cultivar Kondor was more susceptible to brown-rot infections than HB in greenhouse experiments while there was no significant difference between the dose-response models of both cultivars in in vitro experiments. The ED50 for infection of cv Kondor was 1.1x107 CFU. Results can be used in management strategies aimed to reduce or eliminate the risk of bacterial wilt infection when using treated water in irrigation.

14.
PLoS One ; 16(5): e0250338, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33951075

RESUMO

Managed aquifer recharge (MAR) can provide irrigation water and overcome water scarcity in agriculture. Removal of potentially present plant pathogens during MAR is essential to prevent crop diseases. We studied the die-off of three plant pathogenic bacteria in water microcosms with natural or filtered tile drainage water (TDW) at 10 and 25°C and with natural anoxic aquifer water (AW) at 10°C from a MAR site. These bacteria were: Ralstonia solanacearum (bacterial wilt), and the soft rot Pectobacteriaceae (SRP) Dickeya solani and Pectobacterium carotovorum sp. carotovorum (soft rot, blackleg). They are present in surface waters and cause destructive crop diseases worldwide which have been linked to contaminated irrigation water. Nevertheless, little is known about the survival of the SRP in aqueous environments and no study has investigated the persistence of R. solanacearum under natural anoxic conditions. We found that all bacteria were undetectable in 0.1 mL samples within 19 days under oxic conditions in natural TDW at 10°C, using viable cell counting, corresponding to 3-log10 reduction by die-off. The SRP were no longer detected within 6 days at 25°C, whereas R. solanacearum was detectable for 25 days. Whereas in anoxic natural aquifer water at 10°C, the bacterial concentrations declined slower and the detection limit was reached within 56 days. Finally, we modelled the inactivation curves with a modified Weibull model that can simulate different curve shapes such as shoulder phenomena in the beginning and long tails reflecting persistent bacterial populations. The non-linear model was shown to be a reliable tool to predict the die-off of the analysed plant pathogenic bacteria, suggesting its further application to other pathogenic microorganisms in the context of microbial risk assessment.


Assuntos
Água Subterrânea/microbiologia , Plantas/microbiologia , Microbiologia da Água , Agricultura
15.
J Contam Hydrol ; 231: 103638, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32240881

RESUMO

Degradation of chlorinated ethenes (CEs) in low conductivity layers of aquifers reduces pollution plume tailing and accelerates natural attenuation timeframes. The degradation pathways involved are often different from those in the higher conductive layers and might go undetected when only highly conductive layers are targeted in site assessments. Reactive transport model simulations (PHT3D in FloPy) were executed to assess the performance of dual carbon and chlorine compound specific stable isotope analysis (CSIA) in degradation pathway identification and quantification in a coupled physical-chemical heterogeneous virtual aquifer. Degradation rate constants were assumed correlated to the hydraulic conductivity: positively for oxidative transformation (higher oxygen availability in coarser sands) and negatively for chemical reduction (higher content of reducing solids in finer sediments). Predicted carbon isotope ratios were highly heterogeneous. They generally increased downgradient of the pollution source but the large variation across depth illustrates that monotonously increasing isotope ratios downgradient, as were associated with the oxidative component, are not necessarily a common situation when degradation is favorable in low conductivity layers. Dual carbon-chlorine CSIA performed well in assessing the occurrence of the spatially separated degradation pathways and the overall degradation, provided appropriate enrichment factors were known and sufficiently different. However, pumping to obtain groundwater samples especially from longer well screens causes a bias towards overestimation of the contribution of oxidative transformation associated with the higher conductive zones. As degradation was less intense in these highly conductive zones under the simulated conditions, overall degradation was underestimated. In contrast, in the usual case of limited CSIA data, dual CSIA plots may rather indicate dominance of chemical reduction, while oxidative transformation could go unnoticed, despite being an equally important degradation pathway.


Assuntos
Água Subterrânea , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Isótopos de Carbono/análise , Cloro
16.
Waste Manag ; 29(2): 829-38, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18848774

RESUMO

Open waste dump systems are still widely used in Indonesia. The Jatibarang landfill receives 650-700 tons of municipal waste per day from the city of Semarang, Central Java. Some of the leachate from the landfill flows via several natural and collection ponds to a nearby river. The objectives of the study were to identify seasonal landfill leachate characteristics in this surface water and to determine the occurrence of natural attenuation, in particular the potential for biodegradation, along the flow path. Monthly measurements of general landfill leachate parameters, organic matter-related factors and redox-related components revealed that leachate composition was influenced by seasonal precipitation. In the dry season, electrical conductivity and concentrations of BOD, COD, N-organic matter, ammonia, sulphate and calcium were significantly higher (1.1-2.3 fold) than during the wet season. Dilution was the major natural attenuation process acting on leachate. Heavy metals had the highest impact on river water quality. Between the landfill and the river, a fivefold dilution occurred during the dry season due to active springwater infiltration, while rainwater led to a twofold dilution in the wet season. Residence time of leachate in the surface leachate collection system was less than 70 days. Field measurements and laboratory experiments showed that during this period hardly any biodegradation of organic matter and ammonia occurred (less than 25%). However, the potential for biodegradation of organic matter and ammonia was clearly revealed during 700 days of incubation of leachate in the laboratory (over 65%). If the residence time of leachate discharge can be increased to allow for biodegradation processes and precipitation reactions, the polluting effects of leachate on the river can be diminished.


Assuntos
Eliminação de Resíduos/métodos , Estações do Ano , Clima Tropical , Poluentes Químicos da Água/química , Água/química , Indonésia , Rios , Fatores de Tempo , Abastecimento de Água
17.
J Contam Hydrol ; 226: 103520, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31377464

RESUMO

Back-diffusion of chlorinated ethenes (CEs) from low-permeability layers (LPLs) causes contaminant persistence long after the primary spill zones have disappeared. Naturally occurring degradation in LPLs lowers remediation time frames, but its assessment through sediment sampling is prohibitive in conventional remediation projects. Scenario simulations were performed with a reactive transport model (PHT3D in FloPy) accounting for isotope effects associated with degradation, sorption, and diffusion, to evaluate the potential of CSIA data from aquifers in assessing degradation in aquitards. The model simulated a trichloroethylene (TCE) DNAPL and its pollution plume within an aquifer-aquitard-aquifer system. Sequential reductive dechlorination to ethene and sorption were uniform in the aquitard and did not occur in the aquifer. After 10 years of loading the aquitard through diffusion from the plume, subsequent source removal triggered release of TCE by back-diffusion. In the upper aquifer, during the loading phase, δ13C-TCE was slightly enriched (up to 2‰) due to diffusion effects stimulated by degradation in the aquitard. In the upper aquifer, during the release phase, (i) source removal triggered a huge δ13C increase especially for higher CEs, (ii) moreover, downstream decreasing isotope ratios (caused by downgradient later onset of the release phase) with temporal increasing isotope ratios reflect aquitard degradation (as opposed to downstream increasing and temporally constant isotope ratios in reactive aquifers), and (iii) the carbon isotope mass balance (CIMB) enriched up to 4‰ as lower CEs (more depleted, less sorbing) have been transported deeper into the aquitard. Thus, enriched CIMB does not indicate oxidative transformation in this system. The CIMB enrichment enhanced with more sorption and lower aquitard thickness. Thin aquitards are quicker flushed from lower CEs leading to faster CIMB enrichment over time. CIMB enrichment is smaller or nearly absent when daughter products accumulate. Aquifer CSIA patterns indicative of aquitard degradation were similar in case of linear decreasing rate constants but contrasted with previous simulations assuming a thin bioactive zone. The Rayleigh equation systematically underestimates the extent of TCE degradation in aquifer samples especially during the loading phase and for conditions leading to long remediation time frames (low groundwater flow velocity, thicker aquitards, strong sorption in the aquitard). The Rayleigh equation provides a good and useful picture on aquitard degradation during the release phase throughout the sensitivity analysis. This modelling study provides a framework on how aquifer CSIA data can inform on the occurrence of aquitard degradation and its pitfalls.


Assuntos
Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Biodegradação Ambiental , Etilenos
18.
Sci Total Environ ; 678: 288-300, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31075595

RESUMO

Urban areas in coastal lowlands host a significant part of the world's population. In these areas, cities have often expanded to unfavorable locations that have to be drained or where excess rain water and groundwater need to be pumped away in order to maintain dry feet for its citizens. As a result, groundwater seepage influences surface water quality in many of such urban lowland catchments. This study aims at identifying the flow routes and mixing processes that control surface water quality in the groundwater-influenced urban catchment Polder Geuzenveld, which is part of the city of Amsterdam. Geuzenveld is a highly paved urban area with a subsurface rain water collection system, a groundwater drainage system, and a main surface water system that receive runoff from pavement and roofs, shallow groundwater and direct groundwater seepage, respectively. We conducted a field survey and systematic monitoring to identify the spatial and temporal variations in water quality in runoff, ditch water, drain water, and shallow and deep groundwater. We found that Geuzenveld receives a substantial inflow of deep, O2-depleted groundwater, which is enriched in ammonium and phosphorus due to the subsurface mineralization of organic matter under sulfate-reducing conditions. This groundwater is mixed in the ditches during wet periods with O2-rich runoff, and iron- and phosphate-rich drain water. Unlike natural catchments, the newly created, separated urban flow routes lead to mixing of water in the main surface water itself, shortcutting much of the soil and shallow subsurface. This leads to low O2 and high ammonia concentrations in dry periods, which might be mitigated by water level management or artificially increasing O2 levels by water inlet or artificially aeration of the main water canals. Further research is necessary how to optimize artificial urban systems to deliver a better ecological and chemical status of the surface water.

19.
Appl Environ Microbiol ; 74(13): 3959-68, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18469120

RESUMO

Eukaryotes may influence pollutant degradation processes in groundwater ecosystems by activities such as predation on bacteria and recycling of nutrients. Culture-independent community profiling and phylogenetic analysis of 18S rRNA gene fragments, as well as culturing, were employed to obtain insight into the sediment-associated eukaryotic community composition in an anaerobic sandy aquifer polluted with landfill leachate (Banisveld, The Netherlands). The microeukaryotic community at a depth of 1 to 5 m below the surface along a transect downgradient (21 to 68 m) from the landfill and at a clean reference location was diverse. Fungal sequences dominated most clone libraries. The fungal diversity was high, and most sequences were sequences of yeasts of the Basidiomycota. Sequences of green algae (Chlorophyta) were detected in parts of the aquifer close (<30 m) to the landfill. The bacterium-predating nanoflagellate Heteromita globosa (Cercozoa) was retrieved in enrichments, and its sequences dominated the clone library derived from the polluted aquifer at a depth of 5 m at a location 21 m downgradient from the landfill. The number of culturable eukaryotes ranged from 10(2) to 10(3) cells/g sediment. Culture-independent quantification revealed slightly higher numbers. Groundwater mesofauna was not detected. We concluded that the food chain in this polluted aquifer is short and consists of prokaryotes and fungi as decomposers of organic matter and protists as primary consumers of the prokaryotes.


Assuntos
Células Eucarióticas/classificação , Água Doce , Sedimentos Geológicos , Poluentes Químicos da Água/análise , Anaerobiose , Animais , Bactérias/crescimento & desenvolvimento , Ecossistema , Eletroforese em Gel de Poliacrilamida , Eucariotos/crescimento & desenvolvimento , Cadeia Alimentar , Água Doce/química , Água Doce/microbiologia , Água Doce/parasitologia , Fungos/crescimento & desenvolvimento , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/parasitologia , Dados de Sequência Molecular , Países Baixos , Filogenia , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Poluição Química da Água
20.
FEMS Microbiol Ecol ; 65(3): 534-43, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18616584

RESUMO

Heterogeneity in eukaryotic and bacteria community structure in surface and subsurface sediment samples downgradient of the Banisveld landfill (The Netherlands) was studied using a culturing-independent molecular approach. Along a transect covering the part of the aquifer most polluted by landfill leachate, sediment was sampled at 1-m depth intervals, until a depth of 5.5 m, at four distances from the landfill. Two drillings were placed in a nearby clean area as a reference. Denaturing gradient gel electrophoresis banding patterns revealed high bacterial and eukaryotic diversity and complex community structures. Bacteria and eukaryotic community profiles in polluted samples grouped different from those in clean samples. Bacteria community profiles in surface samples clustered together and separately from subsurface community profiles. Subsurface bacteria profiles clustered in a location-specific manner. Eukaryotic community structure did not significantly relate to distance from the landfill or depth. No significant spatial autocorrelation of bacteria or eukaryotic communities was observed over 1-m depth intervals per sampling location. Spatial heterogeneity in sediment-associated bacterial communities appears to be much larger than in groundwater. We discuss how on the one hand, spatial heterogeneity may complicate the assessment of microbial community structure and functioning, while on the other it may provide better opportunities for natural attenuation.


Assuntos
Bactérias/crescimento & desenvolvimento , Sedimentos Geológicos/microbiologia , Microbiologia do Solo , Microbiologia da Água , Poluentes Químicos da Água/análise , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , DNA Bacteriano/isolamento & purificação , Condutividade Elétrica , Eletroforese em Gel de Campo Pulsado , Monitoramento Ambiental , Sedimentos Geológicos/análise , Países Baixos , Compostos de Amônio Quaternário/análise , RNA Ribossômico 16S/isolamento & purificação , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa