Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Chem Rev ; 123(23): 12757-12794, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37979189

RESUMO

Quantum materials are driving a technology revolution in sensing, communication, and computing, while simultaneously testing many core theories of the past century. Materials such as topological insulators, complex oxides, superconductors, quantum dots, color center-hosting semiconductors, and other types of strongly correlated materials can exhibit exotic properties such as edge conductivity, multiferroicity, magnetoresistance, superconductivity, single photon emission, and optical-spin locking. These emergent properties arise and depend strongly on the material's detailed atomic-scale structure, including atomic defects, dopants, and lattice stacking. In this review, we describe how progress in the field of electron microscopy (EM), including in situ and in operando EM, can accelerate advances in quantum materials and quantum excitations. We begin by describing fundamental EM principles and operation modes. We then discuss various EM methods such as (i) EM spectroscopies, including electron energy loss spectroscopy (EELS), cathodoluminescence (CL), and electron energy gain spectroscopy (EEGS); (ii) four-dimensional scanning transmission electron microscopy (4D-STEM); (iii) dynamic and ultrafast EM (UEM); (iv) complementary ultrafast spectroscopies (UED, XFEL); and (v) atomic electron tomography (AET). We describe how these methods could inform structure-function relations in quantum materials down to the picometer scale and femtosecond time resolution, and how they enable precision positioning of atomic defects and high-resolution manipulation of quantum materials. For each method, we also describe existing limitations to solve open quantum mechanical questions, and how they might be addressed to accelerate progress. Among numerous notable results, our review highlights how EM is enabling identification of the 3D structure of quantum defects; measuring reversible and metastable dynamics of quantum excitations; mapping exciton states and single photon emission; measuring nanoscale thermal transport and coupled excitation dynamics; and measuring the internal electric field and charge density distribution of quantum heterointerfaces- all at the quantum materials' intrinsic atomic and near atomic-length scale. We conclude by describing open challenges for the future, including achieving stable sample holders for ultralow temperature (below 10K) atomic-scale spatial resolution, stable spectrometers that enable meV energy resolution, and high-resolution, dynamic mapping of magnetic and spin fields. With atomic manipulation and ultrafast characterization enabled by EM, quantum materials will be poised to integrate into many of the sustainable and energy-efficient technologies needed for the 21st century.

2.
J Am Chem Soc ; 146(26): 17908-17916, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38889309

RESUMO

To fully harness the potential of abundant metal coordination complex photosensitizers, a detailed understanding of the molecular properties that dictate and control the electronic excited-state population dynamics initiated by light absorption is critical. In the absence of detectable luminescence, optical transient absorption (TA) spectroscopy is the most widely employed method for interpreting electron redistribution in such excited states, particularly for those with a charge-transfer character. The assignment of excited-state TA spectral features often relies on spectroelectrochemical measurements, where the transient absorption spectrum generated by a metal-to-ligand charge-transfer (MLCT) electronic excited state, for instance, can be approximated using steady-state spectra generated by electrochemical ligand reduction and metal oxidation and accounting for the loss of absorptions by the electronic ground state. However, the reliability of this approach can be clouded when multiple electronic configurations have similar optical signatures. Using a case study of Fe(II) complexes supported by benzannulated diarylamido ligands, we highlight an example of such an ambiguity and show how time-resolved X-ray emission spectroscopy (XES) measurements can reliably assign excited states from the perspective of the metal, particularly in conjunction with accurate synthetic models of ligand-field electronic excited states, leading to a reinterpretation of the long-lived excited state as a ligand-field metal-centered quintet state. A detailed analysis of the XES data on the long-lived excited state is presented, along with a discussion of the ultrafast dynamics following the photoexcitation of low-spin Fe(II)-Namido complexes using a high-spin ground-state analogue as a spectral model for the 5T2 excited state.

3.
J Am Chem Soc ; 146(20): 13962-13973, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38727611

RESUMO

Dimeric complexes composed of d8 square planar metal centers and rigid bridging ligands provide model systems to understand the interplay between attractive dispersion forces and steric strain in order to assist the development of reliable methods to model metal dimer complexes more broadly. [Ir2 (dimen)4]2+ (dimen = para-diisocyanomenthane) presents a unique case study for such phenomena, as distortions of the optimal structure of a ligand with limited conformational flexibility counteract the attractive dispersive forces from the metal and ligand to yield a complex with two ground state deformational isomers. Here, we use ultrafast X-ray solution scattering (XSS) and optical transient absorption spectroscopy (OTAS) to reveal the nature of the equilibrium distribution and the exchange rate between the deformational isomers. The two ground state isomers have spectrally distinct electronic excitations that enable the selective excitation of one isomer or the other using a femtosecond duration pulse of visible light. We then track the dynamics of the nonequilibrium depletion of the electronic ground state population─often termed the ground state hole─with ultrafast XSS and OTAS, revealing a restoration of the ground state equilibrium in 2.3 ps. This combined experimental and theoretical study provides a critical test of various density functional approximations in the description of bridged d8-d8 metal complexes. The results show that density functional theory calculations can reproduce the primary experimental observations if dispersion interactions are added, and a hybrid functional, which includes exact exchange, is used.

4.
Molecules ; 29(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38792184

RESUMO

The ability to study chemical dynamics on ultrafast timescales has greatly advanced with the introduction of X-ray free electron lasers (XFELs) providing short pulses of intense X-rays tailored to probe atomic structure and electronic configuration. Fully exploiting the full potential of XFELs requires specialized experimental endstations along with the development of techniques and methods to successfully carry out experiments. The liquid jet endstation (LJE) at the Linac Coherent Light Source (LCLS) has been developed to study photochemistry and biochemistry in solution systems using a combination of X-ray solution scattering (XSS), X-ray absorption spectroscopy (XAS), and X-ray emission spectroscopy (XES). The pump-probe setup utilizes an optical laser to excite the sample, which is subsequently probed by a hard X-ray pulse to resolve structural and electronic dynamics at their intrinsic femtosecond timescales. The LJE ensures reliable sample delivery to the X-ray interaction point via various liquid jets, enabling rapid replenishment of thin samples with millimolar concentrations and low sample volumes at the 120 Hz repetition rate of the LCLS beam. This paper provides a detailed description of the LJE design and of the techniques it enables, with an emphasis on the diagnostics required for real-time monitoring of the liquid jet and on the spatiotemporal overlap methods used to optimize the signal. Additionally, various scientific examples are discussed, highlighting the versatility of the LJE.

5.
J Am Chem Soc ; 145(29): 15754-15765, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37163700

RESUMO

Resolving the structural dynamics of bond breaking, bond formation, and solvation is required for a deeper understanding of solution-phase chemical reactions. In this work, we investigate the photodissociation of triiodide in four solvents using femtosecond time-resolved X-ray solution scattering following 400 nm photoexcitation. Structural analysis of the scattering data resolves the solvent-dependent structural evolution during the bond cleavage, internal rearrangements, solvent-cage escape, and bond reformation in real time. The nature and structure of the reaction intermediates during the recombination are determined, elucidating the full mechanism of photodissociation and recombination on ultrafast time scales. We resolve the structure of the precursor state for recombination as a geminate pair. Further, we determine the size of the solvent cages from the refined structures of the radical pair. The observed structural dynamics present a comprehensive picture of the solvent influence on structure and dynamics of dissociation reactions.

6.
J Am Chem Soc ; 145(25): 14070-14086, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37327324

RESUMO

Femtosecond time-resolved X-ray absorption (XANES) at the Co K-edge, X-ray emission (XES) in the Co Kß and valence-to-core regions, and broadband UV-vis transient absorption are combined to probe the femtosecond to picosecond sequential atomic and electronic dynamics following photoexcitation of two vitamin B12 compounds, hydroxocobalamin and aquocobalamin. Polarized XANES difference spectra allow identification of sequential structural evolution involving first the equatorial and then the axial ligands, with the latter showing rapid coherent bond elongation to the outer turning point of the excited state potential followed by recoil to a relaxed excited state structure. Time-resolved XES, especially in the valence-to-core region, along with polarized optical transient absorption suggests that the recoil results in the formation of a metal-centered excited state with a lifetime of 2-5 ps. This combination of methods provides a uniquely powerful tool to probe the electronic and structural dynamics of photoactive transition-metal complexes and will be applicable to a wide variety of systems.

7.
Phys Chem Chem Phys ; 25(35): 23417-23434, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37486006

RESUMO

We apply ultrashort X-ray laser pulses to track optically excited structural dynamics of [Ir2(dimen)4]2+ molecules in solution. In our exploratory study we determine angular correlations in the scattered X-rays, which comprise a complex fingerprint of the ultrafast dynamics. Model-assisted analysis of the experimental correlation data allows us to elucidate various aspects of the photoinduced changes in the excited molecular ensembles. We unambiguously identify that in our experiment the photoinduced transition dipole moments in [Ir2(dimen)4]2+ molecules are oriented perpendicular to the Ir-Ir bond. The analysis also shows that the ground state conformer of [Ir2(dimen)4]2+ with a larger Ir-Ir distance is mostly responsible for the formation of the excited state. We also reveal that the ensemble of solute molecules can be characterized with a substantial structural heterogeneity due to solvent influence. The proposed X-ray correlation approach offers an alternative path for studies of ultrafast structural dynamics of molecular ensembles in the liquid and gas phases.

8.
Angew Chem Int Ed Engl ; 62(28): e202304615, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37114904

RESUMO

Photoexcited molecular trajectories on potential energy surfaces (PESs) prior to thermalization are intimately connected to the photochemical reaction outcome. The excited-state trajectories of a diplatinum complex featuring photo-activated metal-metal σ-bond formation and associated Pt-Pt stretching motions were detected in real time using femtosecond wide-angle X-ray solution scattering. The observed motions correspond well with coherent vibrational wavepacket motions detected by femtosecond optical transient absorption. Two key coordinates for intersystem crossing have been identified, the Pt-Pt bond length and the orientation of the ligands coordinated with the platinum centers, along which the excited-state trajectories can be projected onto the calculated PESs of the excited states. This investigation has gleaned novel insight into electronic transitions occurring on the time scales of vibrational motions measured in real time, revealing ultrafast nonadiabatic or non-equilibrium processes along excited-state trajectories involving multiple excited-state PESs.

9.
Phys Rev Lett ; 129(5): 056001, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35960558

RESUMO

Time-resolved scattering experiments enable imaging of materials at the molecular scale with femtosecond time resolution. However, in disordered media they provide access to just one radial dimension thus limiting the study of orientational structure and dynamics. Here we introduce a rigorous and practical theoretical framework for predicting and interpreting experiments combining optically induced anisotropy and time-resolved scattering. Using impulsive nuclear Raman and ultrafast x-ray scattering experiments of chloroform and simulations, we demonstrate that this framework can accurately predict and elucidate both the spatial and temporal features of these experiments.

10.
J Chem Phys ; 157(22): 224201, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36546808

RESUMO

We present a sub-picosecond resolved investigation of the structural solvent reorganization and geminate recombination dynamics following 400 nm two-photon excitation and photodetachment of a valence p electron from the aqueous atomic solute, I-(aq). The measurements utilized time-resolved X-ray Absorption Near Edge Structure (TR-XANES) spectroscopy and X-ray Solution Scattering (TR-XSS) at the Linac Coherent Light Source x-ray free electron laser in a laser pump/x-ray probe experiment. The XANES measurements around the L1-edge of the generated nascent iodine atoms (I0) yield an average electron ejection distance from the iodine parent of 7.4 ± 1.5 Å with an excitation yield of about 1/3 of the 0.1M NaI aqueous solution. The kinetic traces of the XANES measurement are in agreement with a purely diffusion-driven geminate iodine-electron recombination model without the need for a long-lived (I0:e-) contact pair. Nonequilibrium classical molecular dynamics simulations indicate a delayed response of the caging H2O solvent shell and this is supported by the structural analysis of the XSS data: We identify a two-step process exhibiting a 0.1 ps delayed solvent shell reorganization time within the tight H-bond network and a 0.3 ps time constant for the mean iodine-oxygen distance changes. The results indicate that most of the reorganization can be explained classically by a transition from a hydrophilic cavity with a well-ordered first solvation shell (hydrogens pointing toward I-) to an expanded cavity around I0 with a more random orientation of the H2O molecules in a broadened first solvation shell.

11.
Phys Rev Lett ; 127(5): 058001, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34397240

RESUMO

We report observations of nanosecond nonuniform colloidal dynamics in a free flowing liquid jet using ultrafast x-ray speckle visibility spectroscopy. Utilizing a nanosecond double-bunch mode, the Linac Coherent Light Source free electron laser produced pairs of femtosecond coherent hard x-ray pulses. By exploring anisotropy in the visibility of summed speckle patterns which relates to the correlation functions, we evaluate not only the average particle flow rate in a colloidal nanoparticle jet, but also the nonuniform flow field within. The methodology presented here establishes the foundation for the study of nano- and atomic-scale inhomogeneous fluctuations in complex matter using x-ray free electron laser sources.

12.
Phys Rev Lett ; 125(22): 226001, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33315438

RESUMO

Resolving the structural dynamics of the initial steps of chemical reactions is challenging. We report the femtosecond time-resolved wide-angle x-ray scattering of the photodissociation of diiodomethane in cyclohexane. The data reveal with structural detail how the molecule dissociates into radicals, how the radicals collide with the solvent, and how they form the photoisomer. We extract how translational and rotational kinetic energy is dispersed into the solvent. We also find that 85% of the primary radical pairs are confined to their original solvent cage and discuss how this influences the downstream recombination reactions.

13.
Nature ; 509(7500): 345-8, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24805234

RESUMO

Crucial to many light-driven processes in transition metal complexes is the absorption and dissipation of energy by 3d electrons. But a detailed understanding of such non-equilibrium excited-state dynamics and their interplay with structural changes is challenging: a multitude of excited states and possible transitions result in phenomena too complex to unravel when faced with the indirect sensitivity of optical spectroscopy to spin dynamics and the flux limitations of ultrafast X-ray sources. Such a situation exists for archetypal polypyridyl iron complexes, such as [Fe(2,2'-bipyridine)3](2+), where the excited-state charge and spin dynamics involved in the transition from a low- to a high-spin state (spin crossover) have long been a source of interest and controversy. Here we demonstrate that femtosecond resolution X-ray fluorescence spectroscopy, with its sensitivity to spin state, can elucidate the spin crossover dynamics of [Fe(2,2'-bipyridine)3](2+) on photoinduced metal-to-ligand charge transfer excitation. We are able to track the charge and spin dynamics, and establish the critical role of intermediate spin states in the crossover mechanism. We anticipate that these capabilities will make our method a valuable tool for mapping in unprecedented detail the fundamental electronic excited-state dynamics that underpin many useful light-triggered molecular phenomena involving 3d transition metal complexes.

14.
J Chem Phys ; 152(7): 074203, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32087640

RESUMO

Valence-to-core x-ray emission spectroscopy (VtC XES) combines the sample flexibility and element specificity of hard x-rays with the chemical environment sensitivity of valence spectroscopy. We extend this technique to study geometric and electronic structural changes induced by photoexcitation in the femtosecond time domain via laser-pump, x-ray probe experiments using an x-ray free electron laser. The results of time-resolved VtC XES on a series of ferrous complexes [Fe(CN)2n(2, 2'-bipyridine)3-n]-2n+2, n = 1, 2, 3, are presented. Comparisons of spectra obtained from ground state density functional theory calculations reveal signatures of excited state bond length and oxidation state changes. An oxidation state change associated with a metal-to-ligand charge transfer state with a lifetime of less than 100 fs is observed, as well as bond length changes associated with metal-centered excited states with lifetimes of 13 ps and 250 ps.

15.
Angew Chem Int Ed Engl ; 59(1): 364-372, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31602726

RESUMO

Iron N-heterocyclic carbene (NHC) complexes have received a great deal of attention recently because of their growing potential as light sensitizers or photocatalysts. We present a sub-ps X-ray spectroscopy study of an FeII NHC complex that identifies and quantifies the states involved in the deactivation cascade after light absorption. Excited molecules relax back to the ground state along two pathways: After population of a hot 3 MLCT state, from the initially excited 1 MLCT state, 30 % of the molecules undergo ultrafast (150 fs) relaxation to the 3 MC state, in competition with vibrational relaxation and cooling to the relaxed 3 MLCT state. The relaxed 3 MLCT state then decays much more slowly (7.6 ps) to the 3 MC state. The 3 MC state is rapidly (2.2 ps) deactivated to the ground state. The 5 MC state is not involved in the deactivation pathway. The ultrafast partial deactivation of the 3 MLCT state constitutes a loss channel from the point of view of photochemical efficiency and highlights the necessity to screen transition-metal complexes for similar ultrafast decays to optimize photochemical performance.

16.
J Synchrotron Radiat ; 26(Pt 2): 346-357, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30855242

RESUMO

The Macromolecular Femtosecond Crystallography (MFX) instrument at the Linac Coherent Light Source (LCLS) is the seventh and newest instrument at the world's first hard X-ray free-electron laser. It was designed with a primary focus on structural biology, employing the ultrafast pulses of X-rays from LCLS at atmospheric conditions to overcome radiation damage limitations in biological measurements. It is also capable of performing various time-resolved measurements. The MFX design consists of a versatile base system capable of supporting multiple methods, techniques and experimental endstations. The primary techniques supported are forward scattering and crystallography, with capabilities for various spectroscopic methods and time-resolved measurements. The location of the MFX instrument allows for utilization of multiplexing methods, increasing user access to LCLS by running multiple experiments simultaneously.

17.
Opt Lett ; 44(10): 2582-2585, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31090737

RESUMO

We present the concept and a prototypical implementation of a compact x-ray split-delay system that is capable of performing continuous on-the-fly delay scans over a range of ∼10 ps with sub-100 nanoradian pointing stability. The system consists of four channel-cut silicon crystals, two of which have gradually varying gap sizes from intentional 5 deg asymmetric cuts. The delay adjustment is realized by linear motions of these two monolithic varying-gap channel cuts, where the x-ray beam experiences pairs of anti-parallel reflections, and thus becomes less sensitive in output beam pointing to motion imperfections of the translation stages. The beam splitting is accomplished by polished crystal edges. A high degree of mutual coherence between the two branches at the focus is observed by analyzing small-angle coherent x-ray scattering patterns. We envision a wide range of applications including single-shot x-ray pulse temporal diagnostics, studies of high-intensity x-ray-matter interactions, as well as measurement of dynamics in disordered material systems using split-pulse x-ray photon correlation spectroscopy.

18.
J Synchrotron Radiat ; 25(Pt 2): 306-315, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29488907

RESUMO

Time-resolved X-ray scattering patterns from photoexcited molecules in solution are in many cases anisotropic at the ultrafast time scales accessible at X-ray free-electron lasers (XFELs). This anisotropy arises from the interaction of a linearly polarized UV-Vis pump laser pulse with the sample, which induces anisotropic structural changes that can be captured by femtosecond X-ray pulses. In this work, a method for quantitative analysis of the anisotropic scattering signal arising from an ensemble of molecules is described, and it is demonstrated how its use can enhance the structural sensitivity of the time-resolved X-ray scattering experiment. This method is applied on time-resolved X-ray scattering patterns measured upon photoexcitation of a solvated di-platinum complex at an XFEL, and the key parameters involved are explored. It is shown that a combined analysis of the anisotropic and isotropic difference scattering signals in this experiment allows a more precise determination of the main photoinduced structural change in the solute, i.e. the change in Pt-Pt bond length, and yields more information on the excitation channels than the analysis of the isotropic scattering only. Finally, it is discussed how the anisotropic transient response of the solvent can enable the determination of key experimental parameters such as the instrument response function.

19.
Phys Chem Chem Phys ; 20(6): 4238-4249, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29364300

RESUMO

The excited state dynamics of solvated [Fe(bpy)(CN)4]2-, where bpy = 2,2'-bipyridine, show significant sensitivity to the solvent Lewis acidity. Using a combination of optical absorption and X-ray emission transient spectroscopies, we have previously shown that the metal to ligand charge transfer (MLCT) excited state of [Fe(bpy)(CN)4]2- has a 19 picosecond lifetime and no discernable contribution from metal centered (MC) states in weak Lewis acid solvents, such as dimethyl sulfoxide and acetonitrile.1,2 In the present work, we use the same combination of spectroscopic techniques to measure the MLCT excited state relaxation dynamics of [Fe(bpy)(CN)4]2- in water, a strong Lewis acid solvent. The charge-transfer excited state is now found to decay in less than 100 femtoseconds, forming a quasi-stable metal centered excited state with a 13 picosecond lifetime. We find that this MC excited state has triplet (3MC) character, unlike other reported six-coordinate Fe(ii)-centered coordination compounds, which form MC quintet (5MC) states. The solvent dependent changes in excited state non-radiative relaxation for [Fe(bpy)(CN)4]2- allows us to infer the influence of the solvent on the electronic structure of the complex. Furthermore, the robust characterization of the dynamics and optical spectral signatures of the isolated 3MC intermediate provides a strong foundation for identifying 3MC intermediates in the electronic excited state relaxation mechanisms of similar Fe-centered systems being developed for solar applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa