Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Magn Reson Med ; 87(1): 528-540, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34411327

RESUMO

PURPOSE: The coax dipole antenna, a flexible antenna for body imaging at 7T is presented. Similar to the high impedance coil, this coaxial cable antenna is fed on the central conductor and through gaps in the shield, the current passes to the outside of the antenna to generate B1 field. This could achieve more favorable current distributions and better adaptation to the body curvature. METHODS: Finite difference time domain (FDTD) simulations are performed to optimize the positions of the gaps in the shield for a flat current profile. Lumped inductors are added to each end to reduce losses. The performance of a single antenna is compared to a fractionated dipole using B1 maps and MR thermometry. Finally, an array of eight coax dipoles is evaluated in simulations and used for in-vivo scanning. RESULTS: An optimal configuration is found with gaps located at 10 cm from the center and inductor values of 28 nH. In comparison to the fractionated dipole antenna, in single antenna phantom measurements the coax dipole achieves similar B1 amplitude with 18% lower peak temperature. In simulations, the eight-channel array of coax dipoles improved B1 homogeneity by 18%, along with small improvements in transmit efficiency and specific absorption rate (SAR). MRI measurements on three volunteers show more consistent performance for the coax dipoles. CONCLUSION: The coax dipole is a novel antenna design with a flattened current distribution resulting in beneficial properties. Also, the flexible design of the coax dipoles allows better adaptation to the body curvature and can potentially be used for a wide range of imaging targets.


Assuntos
Imageamento por Ressonância Magnética , Desenho de Equipamento , Humanos , Imagens de Fantasmas
2.
NMR Biomed ; 34(6): e4499, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33619838

RESUMO

The goal of this study was to introduce and evaluate the performance of a lightweight, high-performance, single-axis (z-axis) gradient insert design primarily intended for high-resolution functional magnetic resonance imaging, and aimed at providing both ease of use and a boost in spatiotemporal resolution. The optimal winding positions of the coil were obtained using a genetic algorithm with a cost function that balanced gradient performance (minimum 0.30 mT/m/A) and field linearity (≥16 cm linear region). These parameters were verified using field distribution measurements by B0 -mapping. The correction of geometrical distortions was performed using theoretical field distribution of the coil. Simulations and measurements were performed to investigate the echo planar imaging echo-spacing reduction due to the improved gradient performance. The resulting coil featured a 16-cm linear region, a weight of 45 kg, an installation time of 15 min, and a maximum gradient strength and slew rate of 200 mT/m and 1300 T/m/s, respectively, when paired with a commercially available gradient amplifier (940 V/630 A). The field distribution measurements matched the theoretically expected field. By utilizing the theoretical field distribution, geometrical distortions were corrected to within 6% of the whole-body gradient reference image in the target region. Compared with a whole-body gradient set, a maximum reduction in echo-spacing of a factor of 2.3 was found, translating to a 344 µs echo-spacing, for a field of view of 192 mm, a receiver bandwidth of 920 kHz and a gradient amplitude of 112 mT/m. We present a lightweight, single-axis gradient insert design that can provide high gradient performance and an increase in spatiotemporal resolution with correctable geometrical distortions while also offering a short installation time of less than 15 min and minimal system modifications.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem Ecoplanar , Adulto , Estimulação Elétrica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nervos Periféricos/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa