Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(18): e2207537120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37098064

RESUMO

Policymakers must make management decisions despite incomplete knowledge and conflicting model projections. Little guidance exists for the rapid, representative, and unbiased collection of policy-relevant scientific input from independent modeling teams. Integrating approaches from decision analysis, expert judgment, and model aggregation, we convened multiple modeling teams to evaluate COVID-19 reopening strategies for a mid-sized United States county early in the pandemic. Projections from seventeen distinct models were inconsistent in magnitude but highly consistent in ranking interventions. The 6-mo-ahead aggregate projections were well in line with observed outbreaks in mid-sized US counties. The aggregate results showed that up to half the population could be infected with full workplace reopening, while workplace restrictions reduced median cumulative infections by 82%. Rankings of interventions were consistent across public health objectives, but there was a strong trade-off between public health outcomes and duration of workplace closures, and no win-win intermediate reopening strategies were identified. Between-model variation was high; the aggregate results thus provide valuable risk quantification for decision making. This approach can be applied to the evaluation of management interventions in any setting where models are used to inform decision making. This case study demonstrated the utility of our approach and was one of several multimodel efforts that laid the groundwork for the COVID-19 Scenario Modeling Hub, which has provided multiple rounds of real-time scenario projections for situational awareness and decision making to the Centers for Disease Control and Prevention since December 2020.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Incerteza , Surtos de Doenças/prevenção & controle , Saúde Pública , Pandemias/prevenção & controle
2.
PLoS Comput Biol ; 19(3): e1010856, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36928042

RESUMO

Computational models of infectious diseases have become valuable tools for research and the public health response against epidemic threats. The reproducibility of computational models has been limited, undermining the scientific process and possibly trust in modeling results and related response strategies, such as vaccination. We translated published reproducibility guidelines from a wide range of scientific disciplines into an implementation framework for improving reproducibility of infectious disease computational models. The framework comprises 22 elements that should be described, grouped into 6 categories: computational environment, analytical software, model description, model implementation, data, and experimental protocol. The framework can be used by scientific communities to develop actionable tools for sharing computational models in a reproducible way.


Assuntos
Doenças Transmissíveis , Humanos , Reprodutibilidade dos Testes , Doenças Transmissíveis/epidemiologia , Software , Saúde Pública , Simulação por Computador
3.
BMC Infect Dis ; 23(1): 733, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891462

RESUMO

BACKGROUND: Infectious disease computational modeling studies have been widely published during the coronavirus disease 2019 (COVID-19) pandemic, yet they have limited reproducibility. Developed through an iterative testing process with multiple reviewers, the Infectious Disease Modeling Reproducibility Checklist (IDMRC) enumerates the minimal elements necessary to support reproducible infectious disease computational modeling publications. The primary objective of this study was to assess the reliability of the IDMRC and to identify which reproducibility elements were unreported in a sample of COVID-19 computational modeling publications. METHODS: Four reviewers used the IDMRC to assess 46 preprint and peer reviewed COVID-19 modeling studies published between March 13th, 2020, and July 30th, 2020. The inter-rater reliability was evaluated by mean percent agreement and Fleiss' kappa coefficients (κ). Papers were ranked based on the average number of reported reproducibility elements, and average proportion of papers that reported each checklist item were tabulated. RESULTS: Questions related to the computational environment (mean κ = 0.90, range = 0.90-0.90), analytical software (mean κ = 0.74, range = 0.68-0.82), model description (mean κ = 0.71, range = 0.58-0.84), model implementation (mean κ = 0.68, range = 0.39-0.86), and experimental protocol (mean κ = 0.63, range = 0.58-0.69) had moderate or greater (κ > 0.41) inter-rater reliability. Questions related to data had the lowest values (mean κ = 0.37, range = 0.23-0.59). Reviewers ranked similar papers in the upper and lower quartiles based on the proportion of reproducibility elements each paper reported. While over 70% of the publications provided data used in their models, less than 30% provided the model implementation. CONCLUSIONS: The IDMRC is the first comprehensive, quality-assessed tool for guiding researchers in reporting reproducible infectious disease computational modeling studies. The inter-rater reliability assessment found that most scores were characterized by moderate or greater agreement. These results suggest that the IDMRC might be used to provide reliable assessments of the potential for reproducibility of published infectious disease modeling publications. Results of this evaluation identified opportunities for improvement to the model implementation and data questions that can further improve the reliability of the checklist.


Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , Reprodutibilidade dos Testes , Lista de Checagem , Variações Dependentes do Observador , Simulação por Computador
4.
PLoS Comput Biol ; 16(3): e1007679, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32150536

RESUMO

Despite medical advances, the emergence and re-emergence of infectious diseases continue to pose a public health threat. Low-dimensional epidemiological models predict that epidemic transitions are preceded by the phenomenon of critical slowing down (CSD). This has raised the possibility of anticipating disease (re-)emergence using CSD-based early-warning signals (EWS), which are statistical moments estimated from time series data. For EWS to be useful at detecting future (re-)emergence, CSD needs to be a generic (model-independent) feature of epidemiological dynamics irrespective of system complexity. Currently, it is unclear whether the predictions of CSD-derived from simple, low-dimensional systems-pertain to real systems, which are high-dimensional. To assess the generality of CSD, we carried out a simulation study of a hierarchy of models, with increasing structural complexity and dimensionality, for a measles-like infectious disease. Our five models included: i) a nonseasonal homogeneous Susceptible-Exposed-Infectious-Recovered (SEIR) model, ii) a homogeneous SEIR model with seasonality in transmission, iii) an age-structured SEIR model, iv) a multiplex network-based model (Mplex) and v) an agent-based simulator (FRED). All models were parameterised to have a herd-immunity immunization threshold of around 90% coverage, and underwent a linear decrease in vaccine uptake, from 92% to 70% over 15 years. We found evidence of CSD prior to disease re-emergence in all models. We also evaluated the performance of seven EWS: the autocorrelation, coefficient of variation, index of dispersion, kurtosis, mean, skewness, variance. Performance was scored using the Area Under the ROC Curve (AUC) statistic. The best performing EWS were the mean and variance, with AUC > 0.75 one year before the estimated transition time. These two, along with the autocorrelation and index of dispersion, are promising candidate EWS for detecting disease emergence.


Assuntos
Doenças Transmissíveis Emergentes , Epidemias , Monitoramento Epidemiológico , Modelos Biológicos , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/transmissão , Biologia Computacional/métodos , Epidemias/classificação , Epidemias/estatística & dados numéricos , Humanos , Sarampo/epidemiologia , Sarampo/transmissão
5.
Proc Natl Acad Sci U S A ; 112(42): 13069-74, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26438851

RESUMO

Dengue is a mosquito-transmitted virus infection that causes epidemics of febrile illness and hemorrhagic fever across the tropics and subtropics worldwide. Annual epidemics are commonly observed, but there is substantial spatiotemporal heterogeneity in intensity. A better understanding of this heterogeneity in dengue transmission could lead to improved epidemic prediction and disease control. Time series decomposition methods enable the isolation and study of temporal epidemic dynamics with a specific periodicity (e.g., annual cycles related to climatic drivers and multiannual cycles caused by dynamics in population immunity). We collected and analyzed up to 18 y of monthly dengue surveillance reports on a total of 3.5 million reported dengue cases from 273 provinces in eight countries in Southeast Asia, covering ∼ 10(7) km(2). We detected strong patterns of synchronous dengue transmission across the entire region, most markedly during a period of high incidence in 1997-1998, which was followed by a period of extremely low incidence in 2001-2002. This synchrony in dengue incidence coincided with elevated temperatures throughout the region in 1997-1998 and the strongest El Niño episode of the century. Multiannual dengue cycles (2-5 y) were highly coherent with the Oceanic Niño Index, and synchrony of these cycles increased with temperature. We also detected localized traveling waves of multiannual dengue epidemic cycles in Thailand, Laos, and the Philippines that were dependent on temperature. This study reveals forcing mechanisms that drive synchronization of dengue epidemics on a continental scale across Southeast Asia.


Assuntos
Dengue/epidemiologia , Sudeste Asiático/epidemiologia , Clima , Dengue/transmissão , Surtos de Doenças , Humanos , Incidência
6.
PLoS Comput Biol ; 12(2): e1004655, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26845437

RESUMO

Epidemics of infectious diseases often occur in predictable limit cycles. Theory suggests these cycles can be disrupted by high amplitude seasonal fluctuations in transmission rates, resulting in deterministic chaos. However, persistent deterministic chaos has never been observed, in part because sufficiently large oscillations in transmission rates are uncommon. Where they do occur, the resulting deep epidemic troughs break the chain of transmission, leading to epidemic extinction, even in large cities. Here we demonstrate a new path to locally persistent chaotic epidemics via subtle shifts in seasonal patterns of transmission, rather than through high-amplitude fluctuations in transmission rates. We base our analysis on a comparison of measles incidence in 80 major cities in the prevaccination era United States and United Kingdom. Unlike the regular limit cycles seen in the UK, measles cycles in US cities consistently exhibit spontaneous shifts in epidemic periodicity resulting in chaotic patterns. We show that these patterns were driven by small systematic differences between countries in the duration of the summer period of low transmission. This example demonstrates empirically that small perturbations in disease transmission patterns can fundamentally alter the regularity and spatiotemporal coherence of epidemics.


Assuntos
Epidemias/estatística & dados numéricos , Vacina contra Sarampo , Sarampo/epidemiologia , Modelos Biológicos , Biologia Computacional , Humanos , Vacinação em Massa , Processos Estocásticos , Reino Unido/epidemiologia , Estados Unidos/epidemiologia
7.
BMC Public Health ; 17(1): 957, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29246217

RESUMO

BACKGROUND: During the past two decades, vaccination programs have greatly reduced global morbidity and mortality due to measles, but recently this progress has stalled. Even in countries that report high vaccination coverage rates, transmission has continued, particularly in spatially clustered subpopulations with low vaccination coverage. METHODS: We examined the spatial heterogeneity of measles vaccination coverage among children aged 12-23 months in ten Sub-Saharan African countries. We used the Anselin Local Moran's I to estimate clustering of vaccination coverage based on data from Demographic and Health Surveys conducted between 2008 and 2013. We also examined the role of sociodemographic factors to explain clustering of low vaccination. RESULTS: We detected 477 spatial clusters with low vaccination coverage, many of which were located in countries with relatively high nationwide vaccination coverage rates such as Zambia and Malawi. We also found clusters in border areas with transient populations. Clustering of low vaccination coverage was related to low health education and limited access to healthcare. CONCLUSIONS: Systematically monitoring clustered populations with low vaccination coverage can inform supplemental immunization activities and strengthen elimination programs. Metrics of spatial heterogeneity should be used routinely to determine the success of immunization programs and the risk of disease persistence.


Assuntos
Vacina contra Sarampo/administração & dosagem , Sarampo/prevenção & controle , Cobertura Vacinal/estatística & dados numéricos , África Subsaariana , Análise por Conglomerados , Humanos , Lactente , Análise Espacial
8.
J Infect Dis ; 214(2): 265-72, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27056951

RESUMO

BACKGROUND: Maternal-fetal transferred dengue virus (DENV)-specific antibodies have been implicated in the immunopathogenesis of dengue during infancy. METHODS: A prospective birth cohort was established in a dengue-endemic area in the Northeast Region of Brazil. DENV-specific immunoglobulin G (IgG) and DENV-1-4 serotype-specific neutralizing antibody (NAb) levels were assessed in 376 paired maternal and umbilical cord blood samples. The kinetics of enhancing activity by maternally acquired DENV antibodies was determined in serum samples from children enrolled in the cohort. RESULTS: Mothers were mostly immune to DENV-3 alone (53.7%) or combined with DENV-4 (30.6%). Levels of DENV-specific IgG, DENV-3 NAbs, and DENV-4 NAbs were significantly higher in newborns than in their respective mothers. Mothers immune to a single serotype transferred greater levels of DENV-specific IgG (P = .02) and DENV-3 NAbs (P = .04) than mothers immune to multiple DENV serotypes. Maternally acquired DENV-3 NAbs disappeared in >90% of the children by the age of 4 months. The peak enhancing activity was detected by the age of 2 months (P < .0001) and rapidly declined by the age of 4 months (P = .0035). CONCLUSIONS: Unlike Asian infants, the enhancing activity of DENV infection by maternally transferred DENV antibodies occurs at earlier ages in Brazilian children. These findings might explain the low occurrence of severe dengue among infants in our setting.


Assuntos
Anticorpos Bloqueadores/sangue , Anticorpos Antivirais/sangue , Anticorpos Facilitadores , Vírus da Dengue/imunologia , Dengue/imunologia , Exposição Materna , Adolescente , Adulto , Fatores Etários , Anticorpos Neutralizantes/sangue , Brasil , Feminino , Humanos , Imunoglobulina G/sangue , Lactente , Recém-Nascido , Masculino , Gravidez , Estudos Prospectivos , Adulto Jovem
9.
BMC Public Health ; 14: 1144, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25377061

RESUMO

BACKGROUND: In the current information age, the use of data has become essential for decision making in public health at the local, national, and global level. Despite a global commitment to the use and sharing of public health data, this can be challenging in reality. No systematic framework or global operational guidelines have been created for data sharing in public health. Barriers at different levels have limited data sharing but have only been anecdotally discussed or in the context of specific case studies. Incomplete systematic evidence on the scope and variety of these barriers has limited opportunities to maximize the value and use of public health data for science and policy. METHODS: We conducted a systematic literature review of potential barriers to public health data sharing. Documents that described barriers to sharing of routinely collected public health data were eligible for inclusion and reviewed independently by a team of experts. We grouped identified barriers in a taxonomy for a focused international dialogue on solutions. RESULTS: Twenty potential barriers were identified and classified in six categories: technical, motivational, economic, political, legal and ethical. The first three categories are deeply rooted in well-known challenges of health information systems for which structural solutions have yet to be found; the last three have solutions that lie in an international dialogue aimed at generating consensus on policies and instruments for data sharing. CONCLUSIONS: The simultaneous effect of multiple interacting barriers ranging from technical to intangible issues has greatly complicated advances in public health data sharing. A systematic framework of barriers to data sharing in public health will be essential to accelerate the use of valuable information for the global good.


Assuntos
Barreiras de Comunicação , Disseminação de Informação , Saúde Pública , Saúde Global , Humanos
10.
Epidemics ; 46: 100738, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38184954

RESUMO

Between December 2020 and April 2023, the COVID-19 Scenario Modeling Hub (SMH) generated operational multi-month projections of COVID-19 burden in the US to guide pandemic planning and decision-making in the context of high uncertainty. This effort was born out of an attempt to coordinate, synthesize and effectively use the unprecedented amount of predictive modeling that emerged throughout the COVID-19 pandemic. Here we describe the history of this massive collective research effort, the process of convening and maintaining an open modeling hub active over multiple years, and attempt to provide a blueprint for future efforts. We detail the process of generating 17 rounds of scenarios and projections at different stages of the COVID-19 pandemic, and disseminating results to the public health community and lay public. We also highlight how SMH was expanded to generate influenza projections during the 2022-23 season. We identify key impacts of SMH results on public health and draw lessons to improve future collaborative modeling efforts, research on scenario projections, and the interface between models and policy.


Assuntos
COVID-19 , Influenza Humana , Humanos , COVID-19/epidemiologia , Influenza Humana/epidemiologia , Pandemias , Políticas , Saúde Pública
11.
medRxiv ; 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36993426

RESUMO

Background: Infectious disease computational modeling studies have been widely published during the coronavirus disease 2019 (COVID-19) pandemic, yet they have limited reproducibility. Developed through an iterative testing process with multiple reviewers, the Infectious Disease Modeling Reproducibility Checklist (IDMRC) enumerates the minimal elements necessary to support reproducible infectious disease computational modeling publications. The primary objective of this study was to assess the reliability of the IDMRC and to identify which reproducibility elements were unreported in a sample of COVID-19 computational modeling publications. Methods: Four reviewers used the IDMRC to assess 46 preprint and peer reviewed COVID-19 modeling studies published between March 13th, 2020, and July 31st, 2020. The inter-rater reliability was evaluated by mean percent agreement and Fleiss' kappa coefficients (κ). Papers were ranked based on the average number of reported reproducibility elements, and average proportion of papers that reported each checklist item were tabulated. Results: Questions related to the computational environment (mean κ = 0.90, range = 0.90-0.90), analytical software (mean κ = 0.74, range = 0.68-0.82), model description (mean κ = 0.71, range = 0.58-0.84), model implementation (mean κ = 0.68, range = 0.39-0.86), and experimental protocol (mean κ = 0.63, range = 0.58-0.69) had moderate or greater (κ > 0.41) inter-rater reliability. Questions related to data had the lowest values (mean κ = 0.37, range = 0.23-0.59). Reviewers ranked similar papers in the upper and lower quartiles based on the proportion of reproducibility elements each paper reported. While over 70% of the publications provided data used in their models, less than 30% provided the model implementation. Conclusions: The IDMRC is the first comprehensive, quality-assessed tool for guiding researchers in reporting reproducible infectious disease computational modeling studies. The inter-rater reliability assessment found that most scores were characterized by moderate or greater agreement. These results suggests that the IDMRC might be used to provide reliable assessments of the potential for reproducibility of published infectious disease modeling publications. Results of this evaluation identified opportunities for improvement to the model implementation and data questions that can further improve the reliability of the checklist.

12.
medRxiv ; 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37461674

RESUMO

Our ability to forecast epidemics more than a few weeks into the future is constrained by the complexity of disease systems, our limited ability to measure the current state of an epidemic, and uncertainties in how human action will affect transmission. Realistic longer-term projections (spanning more than a few weeks) may, however, be possible under defined scenarios that specify the future state of critical epidemic drivers, with the additional benefit that such scenarios can be used to anticipate the comparative effect of control measures. Since December 2020, the U.S. COVID-19 Scenario Modeling Hub (SMH) has convened multiple modeling teams to make 6-month ahead projections of the number of SARS-CoV-2 cases, hospitalizations and deaths. The SMH released nearly 1.8 million national and state-level projections between February 2021 and November 2022. SMH performance varied widely as a function of both scenario validity and model calibration. Scenario assumptions were periodically invalidated by the arrival of unanticipated SARS-CoV-2 variants, but SMH still provided projections on average 22 weeks before changes in assumptions (such as virus transmissibility) invalidated scenarios and their corresponding projections. During these periods, before emergence of a novel variant, a linear opinion pool ensemble of contributed models was consistently more reliable than any single model, and projection interval coverage was near target levels for the most plausible scenarios (e.g., 79% coverage for 95% projection interval). SMH projections were used operationally to guide planning and policy at different stages of the pandemic, illustrating the value of the hub approach for long-term scenario projections.

13.
Nat Commun ; 14(1): 7260, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985664

RESUMO

Our ability to forecast epidemics far into the future is constrained by the many complexities of disease systems. Realistic longer-term projections may, however, be possible under well-defined scenarios that specify the future state of critical epidemic drivers. Since December 2020, the U.S. COVID-19 Scenario Modeling Hub (SMH) has convened multiple modeling teams to make months ahead projections of SARS-CoV-2 burden, totaling nearly 1.8 million national and state-level projections. Here, we find SMH performance varied widely as a function of both scenario validity and model calibration. We show scenarios remained close to reality for 22 weeks on average before the arrival of unanticipated SARS-CoV-2 variants invalidated key assumptions. An ensemble of participating models that preserved variation between models (using the linear opinion pool method) was consistently more reliable than any single model in periods of valid scenario assumptions, while projection interval coverage was near target levels. SMH projections were used to guide pandemic response, illustrating the value of collaborative hubs for longer-term scenario projections.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Pandemias/prevenção & controle , SARS-CoV-2 , Incerteza
14.
Am J Public Health ; 102(2): 269-76, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21940923

RESUMO

OBJECTIVES: We investigated whether introducing the rotavirus and pneumococcal vaccines, which are greatly needed in West Africa, would overwhelm existing supply chains (i.e., the series of steps required to get a vaccine from the manufacturers to the target population) in Niger. METHODS: As part of the Bill and Melinda Gates Foundation-funded Vaccine Modeling Initiative, we developed a computational model to determine the impact of introducing these new vaccines to Niger's Expanded Program on Immunization vaccine supply chain. RESULTS: Introducing either the rotavirus vaccine or the 7-valent pneumococcal conjugate vaccine could overwhelm available storage and transport refrigerator space, creating bottlenecks that would prevent the flow of vaccines down to the clinics. As a result, the availability of all World Health Organization Expanded Program on Immunization vaccines to patients might decrease from an average of 69% to 28.2% (range = 10%-51%). Addition of refrigerator and transport capacity could alleviate this bottleneck. CONCLUSIONS: Our results suggest that the effects on the vaccine supply chain should be considered when introducing a new vaccine and that computational models can help assess evolving needs and prevent problems with vaccine delivery.


Assuntos
Programas de Imunização/organização & administração , Vacinas Pneumocócicas/administração & dosagem , Vacinas contra Rotavirus/administração & dosagem , Simulação por Computador , Armazenamento de Medicamentos , Vacina Pneumocócica Conjugada Heptavalente , Humanos , Programas de Imunização/provisão & distribuição , Níger , Vacinas Pneumocócicas/uso terapêutico , Refrigeração , Vacinas contra Rotavirus/uso terapêutico , Meios de Transporte , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/uso terapêutico , Organização Mundial da Saúde
16.
BMC Public Health ; 11: 425, 2011 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-21635774

RESUMO

BACKGROUND: Many countries, such as Niger, are considering changing their vaccine vial size presentation and may want to evaluate the subsequent impact on their supply chains, the series of steps required to get vaccines from their manufacturers to patients. The measles vaccine is particularly important in Niger, a country prone to measles outbreaks. METHODS: We developed a detailed discrete event simulation model of the vaccine supply chain representing every vaccine, storage location, refrigerator, freezer, and transport device (e.g., cold trucks, 4 × 4 trucks, and vaccine carriers) in the Niger Expanded Programme on Immunization (EPI). Experiments simulated the impact of replacing the 10-dose measles vial size with 5-dose, 2-dose and 1-dose vial sizes. RESULTS: Switching from the 10-dose to the 5-dose, 2-dose and 1-dose vial sizes decreased the average availability of EPI vaccines for arriving patients from 83% to 82%, 81% and 78%, respectively for a 100% target population size. The switches also changed transport vehicle's utilization from a mean of 58% (range: 4-164%) to means of 59% (range: 4-164%), 62% (range: 4-175%), and 67% (range: 5-192%), respectively, between the regional and district stores, and from a mean of 160% (range: 83-300%) to means of 161% (range: 82-322%), 175% (range: 78-344%), and 198% (range: 88-402%), respectively, between the district to integrated health centres (IHC). The switch also changed district level storage utilization from a mean of 65% to means of 64%, 66% and 68% (range for all scenarios: 3-100%). Finally, accounting for vaccine administration, wastage, and disposal, replacing the 10-dose vial with the 5 or 1-dose vials would increase the cost per immunized patient from $0.47US to $0.71US and $1.26US, respectively. CONCLUSIONS: The switch from the 10-dose measles vaccines to smaller vial sizes could overwhelm the capacities of many storage facilities and transport vehicles as well as increase the cost per vaccinated child.


Assuntos
Embalagem de Medicamentos/normas , Armazenamento de Medicamentos/métodos , Vacina contra Sarampo/provisão & distribuição , Humanos , Vacina contra Sarampo/economia , Modelos Estatísticos , Níger
17.
J Infect Dis ; 202(7): 1002-10, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20738205

RESUMO

BACKGROUND: Currently, the only tests capable of determining the serotype associated with dengue virus (DENV) infection require sampling during the period of acute viremia. No test can accurately detect the serotype associated with past DENV infections. The standard assay for determination of serotype-specific antibody against DENV is the plaque reduction neutralization test (PRNT), although performance of this test continues to be evaluated. METHODS: From a cohort study among schoolchildren in Thailand, PRNT values were determined in serum samples collected before and after infection. A multinomial logistic regression model was used to infer the serotype associated with intercurrent DENV infections. Models were validated based on polymerase chain reaction identification of DENV serotypes. RESULTS: The serotype associated with DENV infection inferred by the model corresponded with polymerase chain reaction in 67.6% of cases, and the kappa statistic was 0.479. A model for 35 cases with primary seroconversion correctly identified the DENV serotypes causing infection in 77.1% of cases, compared with 66.9%, using a model for 169 cases with secondary seroconversion. The best model using only postinfection PRNT values correctly inferred the DENV serotype causing infection in 60.3% of cases. CONCLUSIONS: A statistical model based on both pre- and postinfection PRNT values can be used to infer the serotype associated with DENV infections in prospective studies and vaccine trials.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vírus da Dengue/classificação , Vírus da Dengue/imunologia , Dengue/virologia , Adolescente , Criança , Humanos , Testes de Neutralização , Sorotipagem/métodos , Tailândia , Ensaio de Placa Viral
18.
medRxiv ; 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33173914

RESUMO

Policymakers make decisions about COVID-19 management in the face of considerable uncertainty. We convened multiple modeling teams to evaluate reopening strategies for a mid-sized county in the United States, in a novel process designed to fully express scientific uncertainty while reducing linguistic uncertainty and cognitive biases. For the scenarios considered, the consensus from 17 distinct models was that a second outbreak will occur within 6 months of reopening, unless schools and non-essential workplaces remain closed. Up to half the population could be infected with full workplace reopening; non-essential business closures reduced median cumulative infections by 82%. Intermediate reopening interventions identified no win-win situations; there was a trade-off between public health outcomes and duration of workplace closures. Aggregate results captured twice the uncertainty of individual models, providing a more complete expression of risk for decision-making purposes.

19.
J Am Med Inform Assoc ; 25(12): 1608-1617, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30321381

RESUMO

Objective: In 2013, we released Project Tycho, an open-access database comprising 3.6 million counts of infectious disease cases and deaths reported for over a century by public health surveillance in the United States. Our objective is to describe how Project Tycho version 1 (v1) data has been used to create new knowledge and technology and to present improvements made in the newly released version 2.0 (v2). Materials and Methods: We analyzed our user database and conducted online searches to analyze the use of Project Tycho v1 data. For v2, we added new US data and dengue data for other countries, and grouped data into 360 datasets, each with a digital object identifier and rich metadata. In addition, we used standard vocabularies to encode data where possible, improving compliance with FAIR (findable, accessible, interoperable, reusable) guiding principles for data management. Results: Since release, 3174 people have registered to use Project Tycho data, leading to 18 new peer-reviewed papers and 27 other creative works, such as conference papers, student theses, and software applications. Project Tycho v2 comprises 5.7 million counts of infectious diseases in the United States and of dengue-related conditions in 98 additional countries. Discussion: Project Tycho v2 contributes to improving FAIR compliance of global health data, but more work is needed to develop community-accepted standard representations for global health data. Conclusion: FAIR principles are a valuable guide for improving the integration and reuse of data in global health to improve disease control and save lives.


Assuntos
Bases de Dados Factuais , Saúde Global , Metadados , Doenças Transmissíveis/epidemiologia , Agregação de Dados , Métodos Epidemiológicos , Humanos , Armazenamento e Recuperação da Informação , Vigilância em Saúde Pública
20.
Sci Rep ; 8(1): 12201, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111778

RESUMO

New epidemics of infectious diseases can emerge any time, as illustrated by the emergence of chikungunya virus (CHIKV) and Zika virus (ZIKV) in Latin America. During new epidemics, public health officials face difficult decisions regarding spatial targeting of interventions to optimally allocate limited resources. We used a large-scale, data-driven, agent-based simulation model (ABM) to explore CHIKV mitigation strategies, including strategies based on previous DENV outbreaks. Our model represents CHIKV transmission in a realistic population of Colombia with 45 million individuals in 10.6 million households, schools, and workplaces. Our model uses high-resolution probability maps for the occurrence of the Ae. aegypti mosquito vector to estimate mosquito density in Colombia. We found that vector control in all 521 municipalities with mosquito populations led to 402,940 fewer clinical cases of CHIKV compared to a baseline scenario without intervention. We also explored using data about previous dengue virus (DENV) epidemics to inform CHIKV mitigation strategies. Compared to the baseline scenario, 314,437 fewer cases occurred when we simulated vector control only in 301 municipalities that had previously reported DENV, illustrating the value of available data from previous outbreaks. When varying the implementation parameters for vector control, we found that faster implementation and scale-up of vector control led to the greatest proportionate reduction in cases. Using available data for epidemic simulations can strengthen decision making against new epidemic threats.


Assuntos
Febre de Chikungunya/prevenção & controle , Febre de Chikungunya/transmissão , Surtos de Doenças/prevenção & controle , Aedes/virologia , Animais , Vírus Chikungunya/patogenicidade , Colômbia/epidemiologia , Dengue/epidemiologia , Vírus da Dengue , Epidemias , Humanos , Insetos Vetores/virologia , Modelos Teóricos , Mosquitos Vetores , Saúde Pública , Zika virus , Infecção por Zika virus/epidemiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa