Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nutr ; 153(3): 610-614, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36787879

RESUMO

Nutrient Profiling Systems provide frameworks to assess the healthfulness of foods based on food composition and are intended as inputs into strategies to improve diets. Many Nutrient Profiling Systems are founded on a reductionist assumption that the healthfulness of foods is determined by the sum of their individual nutrients, with no consideration for the extent and purpose of processing and its health implications. A novel Nutrient Profiling System called Food Compass attempted to address existing gaps and provide a more holistic assessment of the healthfulness of foods. We propose that the chosen algorithm is not well justified and produces results that fail to discriminate for common shortfall nutrients, exaggerate the risks associated with animal-source foods, and underestimate the risks associated with ultraprocessed foods. We caution against the use of Food Compass in its current form to inform consumer choices, policies, programs, industry reformulations, and investment decisions.


Assuntos
Dieta , Alimentos , Valor Nutritivo , Nutrientes , Ração Animal , Algoritmos
2.
J Ren Nutr ; 33(1): 181-192, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34923111

RESUMO

OBJECTIVE: The goal of this investigation was to evaluate circulating and skeletal muscle inflammatory biomarkers between maintenance hemodialysis (MHD) and demographic-matched control subjects (CON) before and after ingestion of a protein-rich meal. DESIGN AND METHODS: CON (n = 8; 50 ± 2 years; 31 ± 1 kg/m2) and MHD patients (n = 8; 56 ± 5 years; 32 ± 2 kg/m2) underwent a basal blood draw and muscle biopsy and serial blood draws after the ingestion of a mixed meal on a nondialysis day. Plasma advanced glycation end products (AGEs) and markers of oxidation were assessed via liquid chromatography-tandem mass spectrometry before and after the meal (+240 min). Circulating inflammatory cytokines and soluble receptors for AGE (sRAGE) isoforms (endogenous secretory RAGEs and cleaved RAGEs) were determined before and after the meal (+240 min). Basal muscle was probed for inflammatory cytokines and protein expression of related signaling components (RAGE, Toll-like receptor 4, oligosaccharyltransferase subunit 48, TIR-domain-containing adapter-inducing interferon-ß, total IκBα, and pIκBα). RESULTS: Basal circulating AGEs were 7- to 343-fold higher (P < .001) in MHD than those in CON, but only MG-H1 increased in CON after the meal (P < .001). There was a group effect (MHD > CON) for total sRAGEs (P = .02) and endogenous secretory RAGEs (P < .001) and a trend for cleaved RAGEs (P=.09), with no meal effect. In addition, there was a group effect (MHD < CON; P < .05) for circulating fractalkine, interleukin (IL)10, IL17A, and IL1ß and a trend (P < .10) for IL6 and macrophage inflammatory protein 1 alpha, whereas tumor necrosis factor alpha was higher in MHD (P < .001). In muscle, Toll-like receptor 4 (P = .03), TIR-domain-containing adapter-inducing interferon-ß (P = .002), and oligosaccharyltransferase subunit 48 (P = .02) expression was lower in MHD than that in CON, whereas IL6 was higher (P = .01) and IL8 (P = .08) tended to be higher in MHD. CONCLUSION: Overall, MHD exhibited an exaggerated, circulating, and skeletal muscle inflammatory biomarker environment, and the meal did not appreciably affect the inflammatory status.


Assuntos
Produtos Finais de Glicação Avançada , Receptor 4 Toll-Like , Humanos , Produtos Finais de Glicação Avançada/metabolismo , Interleucina-6 , Biomarcadores , Interferon beta , Ingestão de Alimentos
3.
Am J Physiol Cell Physiol ; 323(2): C595-C605, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35848618

RESUMO

Satellite cells are required for muscle regeneration, remodeling, and repair through their activation, proliferation, and differentiation; however, how dietary factors regulate this process remains poorly understood. The L-type amino acid transporter 1 (LAT1) transports amino acids, such as leucine, into mature myofibers, which then stimulate protein synthesis and anabolic signaling. However, whether LAT1 is expressed on myoblasts and is involved in regulating myogenesis is unknown. The aim of this study was to characterize the expressional and functional relevance of LAT1 during different stages of myogenesis and in response to growth and atrophic conditions in vitro. We determined that LAT1 is expressed by C2C12 and human primary myoblasts, and its gene expression is lower during differentiation (P < 0.05). Pharmacological inhibition and genetic knockdown of LAT1 impaired myoblast viability, differentiation, and fusion (all P < 0.05). LAT1 protein content in C2C12 myoblasts was not significantly altered in response to different leucine concentrations in cell culture media or in two in vitro atrophy models. However, LAT1 content was decreased in myotubes under atrophic conditions in vitro (P < 0.05). These findings indicate that LAT1 is stable throughout myogenesis and in response to several in vitro conditions that induce muscle remodeling. Further, amino acid transport through LAT1 is required for normal myogenesis in vitro.


Assuntos
Transportador 1 de Aminoácidos Neutros Grandes , Desenvolvimento Muscular , Aminoácidos/metabolismo , Células Cultivadas , Humanos , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Leucina/metabolismo , Desenvolvimento Muscular/genética , Desenvolvimento Muscular/fisiologia , Mioblastos/metabolismo
4.
Diabetologia ; 64(5): 1158-1168, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33511440

RESUMO

AIMS/HYPOTHESIS: It has been proposed that muscle fibre type composition and perfusion are key determinants of insulin-stimulated muscle glucose uptake, and alterations in muscle fibre type composition and perfusion contribute to muscle, and consequently whole-body, insulin resistance in people with obesity. The goal of the study was to evaluate the relationships among muscle fibre type composition, perfusion and insulin-stimulated glucose uptake rates in healthy, lean people and people with obesity. METHODS: We measured insulin-stimulated whole-body glucose disposal and glucose uptake and perfusion rates in five major muscle groups (erector spinae, obliques, rectus abdominis, hamstrings, quadriceps) in 15 healthy lean people and 37 people with obesity by using the hyperinsulinaemic-euglycaemic clamp procedure in conjunction with [2H]glucose tracer infusion (to assess whole-body glucose disposal) and positron emission tomography after injections of [15O]H2O (to assess muscle perfusion) and [18F]fluorodeoxyglucose (to assess muscle glucose uptake). A biopsy from the vastus lateralis was obtained to assess fibre type composition. RESULTS: We found: (1) a twofold difference in glucose uptake rates among muscles in both the lean and obese groups (rectus abdominis: 67 [51, 78] and 32 [21, 55] µmol kg-1 min-1 in the lean and obese groups, respectively; erector spinae: 134 [103, 160] and 66 [24, 129] µmol kg-1 min-1, respectively; median [IQR]) that was unrelated to perfusion or fibre type composition (assessed in the vastus only); (2) the impairment in insulin action in the obese compared with the lean group was not different among muscle groups; and (3) insulin-stimulated whole-body glucose disposal expressed per kg fat-free mass was linearly related with muscle glucose uptake rate (r2 = 0.65, p < 0.05). CONCLUSIONS/INTERPRETATION: Obesity-associated insulin resistance is generalised across all major muscles, and is not caused by alterations in muscle fibre type composition or perfusion. In addition, insulin-stimulated whole-body glucose disposal relative to fat-free mass provides a reliable index of muscle glucose uptake rate.


Assuntos
Glucose/metabolismo , Insulina/farmacologia , Músculo Esquelético/efeitos dos fármacos , Obesidade/metabolismo , Magreza/metabolismo , Adulto , Transporte Biológico/efeitos dos fármacos , Biópsia , Feminino , Fluordesoxiglucose F18 , Glucose/farmacocinética , Técnica Clamp de Glucose , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Obesidade/diagnóstico por imagem , Obesidade/patologia , Tomografia por Emissão de Pósitrons , Músculo Quadríceps/diagnóstico por imagem , Músculo Quadríceps/efeitos dos fármacos , Músculo Quadríceps/metabolismo , Músculo Quadríceps/patologia , Magreza/diagnóstico por imagem , Magreza/patologia
5.
J Physiol ; 598(24): 5701-5716, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32969494

RESUMO

KEY POINTS: Patients with renal failure undergoing maintenance haemodialysis are associated with insulin resistance and protein metabolism dysfunction. Novel research suggests that disruption to the transmembrane protein linkage between the cytoskeleton and the extracellular matrix in skeletal muscle may contribute to reduced amino acid metabolism and insulin resistance in haemodialysis. ILK, PINCH1 and pFAKTyr397 were significantly decreased in haemodialysis compared to controls, whereas Rac1 and Akt2 showed no different between groups. Rac1 deletion in the Rac1 knockout model did not alter the expression of integrin-associated proteins. Phenylalanine kinetics were reduced in the haemodialysis group at 30 and 60 min post meal ingestion compared to controls; both groups showed similar levels of insulin sensitivity and ß-cell function. Key proteins in the integrin-cytoskeleton linkage are reduced in haemodialysis patients, suggesting for the first time that integrin-associated proteins dysfunction may contribute to reduced phenylalanine flux without affecting insulin resistance in haemodialysis patients. ABSTRACT: Muscle atrophy, insulin resistance and reduced muscle phosphoinositide 3-kinase-Akt signalling are common characteristics of patients undergoing maintenance haemodialysis (MHD). Disruption to the transmembrane protein linkage between the cytoskeleton and the extracellular matrix in skeletal muscle may contribute to reduced amino acid metabolism and insulin resistance in MHD patients. Eight MHD patients (age: 56 ± 5 years: body mass index: 32 ± 2 kg m-2 ) and non-diseased controls (age: 50 ± 2 years: body mass index: 31 ± 1 kg m-2 ) received primed continuous l-[ring-2 H5 ]phenylalanine before consuming a mixed meal. Phenylalanine metabolism was determined using two-compartment modelling. Muscle biopsies were collected prior to the meal and at 300 min postprandially. In a separate experiment, skeletal muscle tissue from muscle-specific Rac1 knockout (Rac1 mKO) was harvested to investigate whether Rac1 depletion disrupted the cytoskeleton-integrin linkage, allowing for cross-model examination of proteins of interest. ILK, PINCH1 and pFAKTyr397 were significantly lower in MHD (P < 0.01). Rac1 and Akt showed no difference between groups for the human trial. Rac1 deletion in the Rac1 mKO model did not alter the expression of integrin-associated proteins. Phenylalanine rates of appearance and disappearance, as well as metabolic clearance rates, were lower in the MHD group at 30 and 60 min post meal ingestion compared to controls (P < 0.05). Both groups showed similar levels of insulin sensitivity and ß-cell function. Key proteins in the integrin-cytoskeleton linkage are reduced in MHD patients, suggesting for the first time that integrin-associated proteins dysfunction may contribute to reduced phenylalanine flux without affecting insulin resistance in haemodialysis patients.


Assuntos
Resistência à Insulina , Integrinas , Humanos , Pessoa de Meia-Idade , Músculo Esquelético , Fosfatidilinositol 3-Quinases , Diálise Renal
6.
J Physiol ; 597(5): 1251-1258, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30010196

RESUMO

The maintenance of skeletal muscle mass and strength throughout life is a key determinant of human health and well-being. There is a gradual loss of both skeletal muscle mass and strength with ageing (a process termed sarcopenia) that increases the risk of functional dependence, morbidity and mortality. Understanding the factors that regulate the size of human muscle mass, particularly during the later years of life, has therefore become an area of intense scientific inquiry. The amount of muscle mass is determined by coordinated changes in muscle protein synthesis (MPS) and muscle protein breakdown (MPB). In this review, we assess both classical and contemporary work that has examined how resistance exercise and nutrition impact on MPS and MPB. Special consideration is given to the role of different sources of dietary protein (food vs. supplements) and non-protein nutrients such as omega-3 fatty acids in regulating MPS. We also critically evaluate recent studies that have employed novel 'omic' technologies such as dynamic protein profiling to probe for changes in rates of MPS and MPB at the individual protein level following exercise. Finally, we provide suggestions for future research that we hope will yield important information for the development of exercise and nutritional strategies to counteract muscle loss in a variety of clinical settings.


Assuntos
Exercício Físico/fisiologia , Músculo Esquelético/anatomia & histologia , Fenômenos Fisiológicos da Nutrição , Animais , Ingestão de Alimentos/fisiologia , Humanos , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiologia
7.
Am J Physiol Cell Physiol ; 315(4): C537-C543, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30133322

RESUMO

We have recently demonstrated that whole egg ingestion induces a greater muscle protein synthetic (MPS) response when compared with isonitrogenous egg white ingestion after resistance exercise in young men. Our aim was to determine whether whole egg or egg white ingestion differentially influenced colocalization of key regulators of mechanistic target of rapamycin complex 1 (mTORC1) as means to explain our previously observed divergent postexercise MPS response. In crossover trials, 10 healthy resistance-trained men (21 ± 1 yr; 88 ± 3 kg; body fat: 16 ± 1%; means ± SE) completed lower body resistance exercise before ingesting whole eggs (18 g protein, 17 g fat) or egg whites (18 g protein, 0 g fat). Muscle biopsies were obtained before exercise and at 120 and 300 min after egg ingestion to assess, by immunofluorescence, protein colocalization of key anabolic signaling molecules. After resistance exercise, tuberous sclerosis 2-Ras homolog enriched in brain (Rheb) colocalization decreased ( P < 0.01) at 120 and 300 min after whole egg and egg white ingestion with concomitant increases ( P < 0.01) in mTOR-Rheb colocalization. After resistance exercise, mTOR-lysosome-associated membrane protein 2 (LAMP2) colocalization significantly increased at 120 and 300 min only after whole egg ingestion ( P < 0.01), and mTOR-LAMP2 colocalization correlated with rates of MPS at rest and after exercise ( r = 0.40, P < 0.05). We demonstrated that the greater postexercise MPS response with whole egg ingestion is related in part to an enhanced recruitment of mTORC1-Rheb complexes to the lysosome during recovery. These data suggest nonprotein dietary factors influence the postexercise regulation of mRNA translation in human skeletal muscle.


Assuntos
Proteínas do Ovo/metabolismo , Exercício Físico/fisiologia , Lisossomos/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Adulto , Animais , Proteínas Alimentares/metabolismo , Ingestão de Alimentos/fisiologia , Ovos , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Masculino , Camundongos , Proteínas Musculares/metabolismo , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/metabolismo , Treinamento Resistido/métodos , Adulto Jovem
8.
J Physiol ; 596(19): 4681-4692, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30054913

RESUMO

KEY POINTS: It has been suggested that leucine is primarily responsible for the increase in muscle protein synthesis after protein ingestion because leucine uniquely activates the mTOR-p70S6K signalling cascade. We compared the effects of ingesting protein or an amount of leucine equal to that in the protein during a hyperinsulinaemic-euglycaemic clamp (to eliminate potential confounding as a result of differences in the insulinogenic effect of protein and leucine ingestion) on muscle anabolic signalling and protein turnover in 28 women. We found that protein, but not leucine, ingestion increased muscle p-mTORSer2448 and p-p70S6KThr389 , although only protein, and not leucine, ingestion decreased muscle p-eIF2αSer51 and increased muscle protein synthesis. ABSTRACT: It has been suggested that leucine is primarily responsible for the increase in muscle protein synthesis (MPS) after protein ingestion because leucine uniquely activates the mTOR-p70S6K signalling cascade. We tested this hypothesis by measuring muscle p-mTORSer2448 , p-p70S6KThr389 and p-eIF2αSer51 , as well as protein turnover (by stable isotope labelled amino acid tracer infusion in conjunction with leg arteriovenous blood and muscle tissue sampling), in 28 women who consumed either 0.45 g protein kg-1 fat-free mass (containing 0.0513 g leucine kg-1 fat-free mass) or a control drink (n = 14) or 0.0513 g leucine kg-1 fat-free mass or a control drink (n = 14) during a hyperinsulinaemic-euglycaemic clamp procedure (HECP). Compared to basal conditions, the HECP alone (without protein or leucine ingestion) suppressed muscle protein breakdown by ∼20% and increased p-mTORSer2448 and p-p70S6KThr389 by >50% (all P < 0.05) but had no effect on p-eIF2αSer51 and MPS. Both protein and leucine ingestion further increased p-mTORSer2448 and p-p70S6KThr389 , although only protein, and not leucine, ingestion decreased (by ∼35%) p-eIF2αSer51 and increased (by ∼100%) MPS (all P < 0.05). Accordingly, leg net protein balance changed from negative (loss) during basal conditions to equilibrium during the HECP alone and the HECP with concomitant leucine ingestion and to positive (gain) during the HECP with concomitant protein ingestion. These results provide new insights into the regulation of MPS by demonstrating that leucine and mTOR signalling alone are not responsible for the muscle anabolic effect of protein ingestion during physiological hyperinsulinaemia, most probably because they fail to signal to eIF2α to initiate translation and/or additional amino acids are needed to sustain translation.


Assuntos
Anabolizantes/administração & dosagem , Ingestão de Alimentos , Técnica Clamp de Glucose/métodos , Hiperinsulinismo/metabolismo , Leucina/administração & dosagem , Proteínas Musculares/administração & dosagem , Transdução de Sinais , Feminino , Glucose/metabolismo , Humanos , Insulina/metabolismo , Pessoa de Meia-Idade , Serina-Treonina Quinases TOR/metabolismo
9.
J Physiol ; 596(21): 5119-5133, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30113718

RESUMO

KEY POINTS: Lifestyle modifications that include the regular performance of exercise are probably important for counteracting the negative consequences of obesity on postprandial myofibrillar protein synthetic responses to protein dense food ingestion. We show that the interactive effect of resistance exercise and feeding on the stimulation of myofibrillar protein synthesis rates is diminished with obesity compared to normal weight adults. The blunted myofibrillar protein synthetic response with resistance exercise in people with obesity may be underpinned by alterations in muscle anabolic signalling phosphorylation (p70S6K and 4E-BP1). The results obtained in the present study suggest that further exercise prescription manipulation may be necessary to optimize post-exercise myofibrillar protein synthesis rates in adults with obesity. ABSTRACT: We aimed to determine whether obesity alters muscle anabolic and inflammatory signalling phosphorylation and also muscle protein synthesis within the myofibrillar (MYO) and sarcoplasmic (SARC) protein fractions after resistance exercise. Nine normal weight (NW) (21 ± 1 years, body mass index 22 ± 1 kg m-2 ) and nine obese (OB) (22 ± 1 years, body mass index 36 ± 2 kg m-2 ) adults received l-[ring-13 C6 ]phenylalanine infusions with blood and muscle sampling at basal and fed-state of the exercise (EX) and non-exercise (CON) legs. Participants performed unilateral leg extensions and consumed pork (36 g of protein) immediately after exercise. Basal muscle Toll-like receptor 4 (TLR4) protein was similar between OB and NW groups (P > 0.05) but increased at 300 min after pork ingestion only in the OB group (P = 0.03). Resistance exercise reduced TLR4 protein in the OB group at 300 min (EX vs. CON leg in OB: P = 0.04). Pork ingestion increased p70S6K phosphorylation at 300 min in CON and EX of the OB and NW groups (P > 0.05), although the response was lower in the EX leg of OB vs. NW at 300 min (P = 0.05). Basal MYO was similar between the NW and OB groups (P > 0.05) and was stimulated by pork ingestion in the EX and CON legs in both groups (Δ from basal NW: CON 0.04 ± 0.01% h-1 ; EX 0.10 ± 0.02% h-1 ; OB: CON 0.06 ± 0.01% h-1 ; EX 0.06 ± 0.01% h-1 ; P < 0.05). MYO was more strongly stimulated in the EX vs. CON legs in NW (P = 0.02) but not OB (P = 0.26). SARC was feeding sensitive but not further potentiated by resistance exercise in both groups. Our results suggest that obesity may attenuate the effectiveness of resistance exercise to augment fed-state MYO.


Assuntos
Ingestão de Alimentos , Miofibrilas/metabolismo , Obesidade/metabolismo , Treinamento Resistido , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular , Feminino , Humanos , Masculino , Obesidade/fisiopatologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Adulto Jovem
10.
J Nutr ; 146(7): 1428-33, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27281809

RESUMO

BACKGROUND: Stable isotope amino acids are regularly used as tracers to examine whole-body and muscle protein metabolism in humans. To accurately assess in vivo dietary protein digestion and absorption kinetics, the amino acid tracer is required to be incorporated within the dietary protein food source (i.e., intrinsically labeled protein). OBJECTIVE: We assessed the practicality of producing eggs and poultry meat intrinsically labeled with l-[5,5,5-(2)H3]leucine through noninvasive oral tracer administration. METHODS: A specifically formulated diet containing 0.52% leucine was supplemented with 0.3% l-[5,5,5-(2)H3]leucine and subsequently fed to 3 laying hens (Lohmann LSL Whites) for 55 d. On day 55, the hens were slaughtered and their meat, bones, and organs were harvested to determine tissue labeling. In Expt. 1, 2 healthy young men [mean ± SEM age: 22 ± 1.5 y; mean ± SEM body mass index (BMI; in kg/m(2)): 23.7 ± 0.5] ingested 18 g l-[5,5,5-(2)H3]leucine-labeled egg protein. In Expt. 2, 2 healthy young men (mean ± SEM age: 20.0 ± 0.0 y; mean ± SEM BMI: 26.4 ± 3.1) ingested 28 g l-[5,5,5-(2)H3]leucine-labeled poultry meat protein. Plasma samples (Expts. 1 and 2) and muscle biopsies (Expt. 1) were collected before and after labeled-food ingestion. RESULTS: High tracer labeling [>20 mole percent excess (MPE)] in the eggs was obtained after 7 d and maintained throughout the feeding protocol (P < 0.05). Over a 55-d period, ∼850 g egg protein (145 eggs) was produced, with a mean ± SEM tracer enrichment of 22.0 ± 0.8 MPE. Mean ± SEM l-[5,5,5-(2)H3]leucine enrichment in the meat was 9.6 ± 0.1 MPE. In Expts. 1 and 2, the consumption of labeled eggs and poultry meat protein increased plasma l-[5,5,5-(2)H3]leucine enrichment, with mean ± SEM peak values of 6.7 ± 0.1 MPE and 4.0 ± 0.9 MPE, respectively. The mean ± SEM 5-h postprandial increase in myofibrillar l-[5,5,5-(2)H3]leucine enrichment after egg ingestion in healthy young men was 0.051 ± 0.008 MPE (Expt. 1). CONCLUSION: We demonstrated the feasibility of producing intrinsically labeled eggs and poultry meat for use in human metabolic research.


Assuntos
Ovos/análise , Carne/análise , Traçadores Radioativos , Animais , Osso e Ossos/química , Isótopos de Carbono , Galinhas , Proteínas Alimentares/análise , Proteínas Alimentares/metabolismo , Feminino , Humanos , Marcação por Isótopo , Masculino , Refeições , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Ciências da Nutrição , Adulto Jovem
11.
J Nutr ; 145(9): 1981-91, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26224750

RESUMO

Clinical and consumer market interest is increasingly directed toward the use of plant-based proteins as dietary components aimed at preserving or increasing skeletal muscle mass. However, recent evidence suggests that the ingestion of the plant-based proteins in soy and wheat results in a lower muscle protein synthetic response when compared with several animal-based proteins. The possible lower anabolic properties of plant-based protein sources may be attributed to the lower digestibility of plant-based sources, in addition to greater splanchnic extraction and subsequent urea synthesis of plant protein-derived amino acids compared with animal-based proteins. The latter may be related to the relative lack of specific essential amino acids in plant- as opposed to animal-based proteins. Furthermore, most plant proteins have a relatively low leucine content, which may further reduce their anabolic properties when compared with animal proteins. However, few studies have actually assessed the postprandial muscle protein synthetic response to the ingestion of plant proteins, with soy and wheat protein being the primary sources studied. Despite the proposed lower anabolic properties of plant vs. animal proteins, various strategies may be applied to augment the anabolic properties of plant proteins. These may include the following: 1) fortification of plant-based protein sources with the amino acids methionine, lysine, and/or leucine; 2) selective breeding of plant sources to improve amino acid profiles; 3) consumption of greater amounts of plant-based protein sources; or 4) ingesting multiple protein sources to provide a more balanced amino acid profile. However, the efficacy of such dietary strategies on postprandial muscle protein synthesis remains to be studied. Future research comparing the anabolic properties of a variety of plant-based proteins should define the preferred protein sources to be used in nutritional interventions to support skeletal muscle mass gain or maintenance in both healthy and clinical populations.


Assuntos
Proteínas Alimentares/administração & dosagem , Músculo Esquelético/metabolismo , Proteínas de Soja/administração & dosagem , Animais , Bovinos , Qualidade dos Alimentos , Humanos , Leucina/administração & dosagem , Carne , Proteínas do Leite/administração & dosagem , Proteínas Musculares/metabolismo , Proteínas de Plantas/administração & dosagem , Período Pós-Prandial , Biossíntese de Proteínas , Proteínas do Soro do Leite/administração & dosagem
12.
J Nutr ; 145(6): 1178-84, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25926415

RESUMO

BACKGROUND: It has been demonstrated that protein ingestion before sleep increases muscle protein synthesis rates during overnight recovery from an exercise bout. However, it remains to be established whether dietary protein ingestion before sleep can effectively augment the muscle adaptive response to resistance-type exercise training. OBJECTIVE: Here we assessed the impact of dietary protein supplementation before sleep on muscle mass and strength gains during resistance-type exercise training. METHODS: Forty-four young men (22 ± 1 y) were randomly assigned to a progressive, 12-wk resistance exercise training program. One group consumed a protein supplement containing 27.5 g of protein, 15 g of carbohydrate, and 0.1 g of fat every night before sleep. The other group received a noncaloric placebo. Muscle hypertrophy was assessed on a whole-body (dual-energy X-ray absorptiometry), limb (computed tomography scan), and muscle fiber (muscle biopsy specimen) level before and after exercise training. Strength was assessed regularly by 1-repetition maximum strength testing. RESULTS: Muscle strength increased after resistance exercise training to a significantly greater extent in the protein-supplemented (PRO) group than in the placebo-supplemented (PLA) group (+164 ± 11 kg and +130 ± 9 kg, respectively; P < 0.001). In addition, quadriceps muscle cross-sectional area increased in both groups over time (P < 0.001), with a greater increase in the PRO group than in the PLA group (+8.4 ± 1.1 cm(2) vs. +4.8 ± 0.8 cm(2), respectively; P < 0.05). Both type I and type II muscle fiber size increased after exercise training (P < 0.001), with a greater increase in type II muscle fiber size in the PRO group (+2319 ± 368 µm(2)) than in the PLA group (+1017 ± 353 µm(2); P < 0.05). CONCLUSION: Protein ingestion before sleep represents an effective dietary strategy to augment muscle mass and strength gains during resistance exercise training in young men. This trial was registered at clinicaltrials.gov as NCT02222415.


Assuntos
Proteínas Alimentares/administração & dosagem , Fibras Musculares de Contração Rápida/fisiologia , Força Muscular , Treinamento Resistido , Sono/fisiologia , Absorciometria de Fóton , Composição Corporal , Registros de Dieta , Método Duplo-Cego , Ingestão de Energia , Humanos , Masculino , Estado Nutricional , Músculo Quadríceps/fisiologia , Adulto Jovem
13.
Obesity (Silver Spring) ; 32(3): 540-546, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228469

RESUMO

OBJECTIVE: The objective of this study was to evaluate the relative importance of the basal rate of glucose appearance (Ra) in the circulation and the basal rate of plasma glucose clearance in determining fasting plasma glucose concentration in people with obesity and different fasting glycemic statuses. METHODS: The authors evaluated basal glucose kinetics in 33 lean people with normal fasting glucose (<100 mg/dL; Lean < 100 group) and 206 people with obesity and normal fasting glucose (Ob < 100 group, n = 118), impaired fasting glucose (100-125 mg/dL; Ob 100-125 group, n = 66), or fasting glucose diagnostic of diabetes (≥126 mg/dL; Ob ≥ 126 group, n = 22). RESULTS: Although there was a large (up to three-fold) range in glucose Ra within each group, the ranges in glucose concentration in the Lean < 100, Ob < 100, and Ob 100-125 groups were small because of a close relationship between glucose Ra and clearance rate. However, the glucose clearance rate at any Ra value was lower in the hyperglycemic than the normoglycemic groups. In the Ob ≥ 126 group, plasma glucose concentration was primarily determined by glucose Ra, because glucose clearance was markedly attenuated. CONCLUSIONS: Fasting hyperglycemia in people with obesity represents a disruption of the precisely regulated integration of glucose production and clearance rates.


Assuntos
Glicemia , Hiperglicemia , Humanos , Insulina , Obesidade/complicações , Glucose , Jejum
14.
Meat Sci ; 213: 109510, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38598967

RESUMO

This research aimed to explore the potential influence of mitochondria on the rate of anaerobic glycolysis. We hypothesized that mitochondria could reduce the rate of anaerobic glycolysis and pH decline by metabolizing a portion of glycolytic pyruvate. We utilized an in vitro model and incorporated CPI-613 and Avidin to inhibit pyruvate dehydrogenase (PDH) and pyruvate carboxylase (PC), respectively. Four treatments were tested: 400 µM CPI-613, 1.5 U/ml Avidin, 400 µM CPI-613 + 1.5 U/ml Avidin, or control. Glycolytic metabolites and pH of the in vitro model were evaluated throughout a 1440-min incubation period. CPI-613-containing treatments, with or without Avidin, decreased pH levels and increased glycogen degradation and lactate accumulation compared to the control and Avidin treatments (P < 0.05), indicating increased glycolytic flux. In a different experiment, two treatments, 400 µM CPI-613 or control, were employed to track the fates of pyruvate using [13C6]glucose. CPI-613 reduced the contribution of glucose carbon to tricarboxylic acid cycle intermediates compared to control (P < 0.05). To test whether the acceleration of acidification in reactions containing CPI-613 was due to an increase in the activity of key enzymes of glycogenolysis and glycolysis, we evaluated the activities of glycogen phosphorylase, phosphofructokinase, and pyruvate kinase in the presence or absence of 400 µM CPI-613. The CPI-613 treatment did not elicit an alteration in the activity of these three enzymes. These findings indicate that inhibiting PDH increases the rate of anaerobic glycolysis and pH decline, suggesting that mitochondria are potential regulators of postmortem metabolism.


Assuntos
Glicogênio , Glicólise , Complexo Piruvato Desidrogenase , Animais , Anaerobiose , Glucose/metabolismo , Glicogênio/metabolismo , Concentração de Íons de Hidrogênio , Ácido Láctico/metabolismo , Mitocôndrias/metabolismo , Mudanças Depois da Morte , Piruvato Carboxilase/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Ácido Pirúvico/metabolismo , Suínos
16.
Foods ; 12(19)2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37835200

RESUMO

Grass-finished beef (GFB) can provide beneficial bioactive compounds to healthy diets, including omega-3 polyunsaturated fatty acids (n-3 PUFAs), conjugated linoleic acid (CLA), and secondary bioactive compounds, such as phytochemicals. The objective of this study was to compare fatty acids (FAs), micronutrients, and phytochemicals of beef fed a biodiverse pasture (GRASS), a total mixed ration (GRAIN), or a total mixed ration with 5% grapeseed extract (GRAPE). This was a two-year study involving fifty-four Red Angus steers (n = 54). GFB contained higher levels of n-3 PUFAs, vitamin E, iron, zinc, stachydrine, hippuric acid, citric acid, and succinic acid than beef from GRAIN and GRAPE (p < 0.001 for all). No differences were observed in quantified phytochemicals between beef from GRAIN and GRAPE (p > 0.05). Random forest analysis indicated that phytochemical and FA composition of meat can predict cattle diets with a degree of certainty, especially for GFB (5.6% class error). In conclusion, these results indicate that GFB contains higher levels of potentially beneficial bioactive compounds, such as n-3 PUFAs, micronutrients, and phytochemicals, compared to grain-finished beef. Additionally, the n-6:n-3 ratio was the most crucial factor capable of separating beef based on finishing diets.

17.
J Anim Sci Biotechnol ; 14(1): 49, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37004100

RESUMO

BACKGROUND: With rising concerns regarding the effects of red meat on human and environmental health, a growing number of livestock producers are exploring ways to improve production systems. A promising avenue includes agro-ecological practices such as rotational grazing of locally adapted ruminants. Additionally, growing consumer interest in pasture-finished meat (i.e., grass-fed) has raised questions about its nutritional composition. Thus, the goal of this study was to determine the impact of two common finishing systems in North American bison-pasture-finished or pen-finished on concentrates for 146 d-on metabolomic, lipidomic, and fatty acid profiles of striploins (M. longissimus lumborum). RESULTS: Six hundred and seventy-one (671) out of 1570 profiled compounds (43%) differed between pasture- and pen-finished conditions (n = 20 animals per group) (all, P < 0.05). Relative to pasture-finished animals, the muscle of pen-finished animals displayed elevated glucose metabolites (~ 1.6-fold), triglycerides (~ 2-fold), markers of oxidative stress (~ 1.5-fold), and proteolysis (~ 1.2-fold). In contrast, pasture-finished animals displayed improved mitochondrial (~ 1.3-fold higher levels of various Krebs cycle metabolites) and carnitine metabolism (~ 3-fold higher levels of long-chain acyl carnitines) (all P < 0.05). Pasture-finishing also concentrated higher levels of phenolics (~ 2.3-fold), alpha-tocopherol (~ 5.8-fold), carotene (~ 2.0-fold), and very long-chain fatty acids (~ 1.3-fold) in their meat, while having lower levels of a common advanced lipoxidation (4-hydroxy-nonenal-glutathione; ~ 2-fold) and glycation end-product (N6-carboxymethyllysine; ~ 1.7-fold) (all P < 0.05). In contrast, vitamins B5, B6, and C, gamma/beta-tocopherol, and three phenolics commonly found in alfalfa were ~ 2.5-fold higher in pen-finished animals (all P < 0.05); suggesting some concentrate feeding, or grazing plants rich in those compounds, may be beneficial. CONCLUSIONS: Pasture-finishing (i.e., grass-fed) broadly improves bison metabolic health and accumulates additional potential health-promoting compounds in their meat compared to concentrate finishing in confinement (i.e., pen-finished). Our data, however, does not indicate that meat from pen-finished bison is therefore unhealthy. The studied bison meat-irrespective of finishing practice-contained favorable omega 6:3 ratios (< 3.2), and amino acid and vitamin profiles. Our study represents one of the deepest meat profiling studies to date (> 1500 unique compounds), having revealed previously unrecognized differences in animal metabolic health and nutritional composition because of finishing mode. Whether observed nutritional differences have an appreciable effect on human health remains to be determined.

18.
Animals (Basel) ; 12(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36359120

RESUMO

The objective of this study was to evaluate and provide further insights into how dairy cows genetically divergent for milk urea N breeding values [MUNBV, high (2.21 ± 0.21) vs. low (−1.16 ± 0.21); µ ± SEM], consuming either fresh cut Plantain (Plantago lanceolata L., PL) or Ryegrass (Lolium perenne L., RG) herbage, impacted the nutraceutical profile of whole milk by investigating amino and fatty acid composition and applying metabolomic profiling techniques. Both diet and MUNBV, and their interaction term, were found to affect the relative abundance of alanine, glycine, histidine, and phenylalanine in the milk (p < 0.05), but their minor absolute differences (up to ~0.13%) would not be considered biologically relevant. Differences were also detected in the fatty acid profile based on MUNBV and diet (p < 0.05) with low MUNBV cows having a greater content of total unsaturated fatty acids (+16%) compared to high MUNBV cows and cows consuming PL having greater content of polyunsaturated fatty acids (+92%), omega 3 (+101%) and 6 (+113%) compared to RG. Differences in the metabolomic profile of the milk were also detected for both MUNBV and dietary treatments. Low MUNBV cows were found to have greater abundances of choline phosphate, phosphorylethanolamine, N-acetylglucosamine 1-phosphate, and 2-dimethylaminoethanol (p < 0.05). High MUNBV cows had a greater abundance of methionine sulfoxide, malate, 1,5-anhydroglucitol (1,5-AG), glycerate, arabitol/xylitol, 3-hydroxy-3-methylglutarate, 5-hydroxylysine and cystine (p < 0.05). Large differences (p < 0.05) were also detected as a result of diet with PL diets having greater abundances of the phytochemicals 4-acetylcatechol sulfate, 4-methylcatechol sulfate, and p-cresol glucuronide whilst RG diets had greater abundances of 2,6-dihydroxybenzoic acid, 2-acetamidophenol sulfate, and 2-hydroxyhippurate. The results of this study indicate the potential to alter the nutraceutical value of milk from dietary and genetic strategies that have been previously demonstrated to reduce environmental impact.

19.
Metabolism ; 132: 155216, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35577100

RESUMO

BACKGROUND: Although it is well-accepted that increased plasma free fatty acid (FFA) concentration causes lipid overload and muscle insulin resistance in people with obesity, plasma FFA concentration poorly predicts insulin-resistant glucose metabolism. It has been proposed that hyperinsulinemia in people with obesity sufficiently inhibits adipose tissue triglyceride lipolysis to prevent FFA-induced insulin resistance. However, we hypothesized enhanced FFA clearance in people with obesity, compared with lean people, prevents a marked increase in plasma FFA even when FFA appearance is high. METHODS: We assessed FFA kinetics during basal conditions and during a hyperinsulinemic-euglycemic clamp procedure in 14 lean people and 46 people with obesity by using [13C]palmitate tracer infusion. Insulin-stimulated muscle glucose uptake rate was evaluated by dynamic PET-imaging of skeletal muscles after [18F]fluorodeoxyglucose injection. RESULTS: Plasma FFA clearance was accelerated in participants with obesity and correlated negatively with muscle insulin sensitivity without a difference between lean and obese participants. Furthermore, insulin infusion increased FFA clearance and the increase was greater in obese than lean participants. CONCLUSIONS: Our findings suggest plasma FFA extraction efficiency, not just plasma FFA concentration, is an important determinant of the cellular fatty acid load and the stimulatory effect of insulin on FFA clearance counteracts some of its antilipolytic effect.


Assuntos
Resistência à Insulina , Ácidos Graxos/metabolismo , Ácidos Graxos não Esterificados , Glucose/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Cinética , Músculo Esquelético/metabolismo , Obesidade/metabolismo
20.
Animal ; 16(3): 100457, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35158307

RESUMO

Animal source foods are evolutionarily appropriate foods for humans. It is therefore remarkable that they are now presented by some as unhealthy, unsustainable, and unethical, particularly in the urban West. The benefits of consuming them are nonetheless substantial, as they offer a wide spectrum of nutrients that are needed for cell and tissue development, function, and survival. They play a role in proper physical and cognitive development of infants, children, and adolescents, and help promote maintenance of physical function with ageing. While high-red meat consumption in the West is associated with several forms of chronic disease, these associations remain uncertain in other cultural contexts or when consumption is part of wholesome diets. Besides health concerns, there is also widespread anxiety about the environmental impacts of animal source foods. Although several production methods are detrimental (intensive cropping for feed, overgrazing, deforestation, water pollution, etc.) and require substantial mitigation, damaging impacts are not intrinsic to animal husbandry. When well-managed, livestock farming contributes to ecosystem management and soil health, while delivering high-quality foodstuffs through the upcycling of resources that are otherwise non-suitable for food production, making use of marginal land and inedible materials (forage, by-products, etc.), integrating livestock and crop farming where possible has the potential to benefit plant food production through enhanced nutrient recycling, while minimising external input needs such as fertilisers and pesticides. Moreover, the impacts on land use, water wastage, and greenhouse gas emissions are highly contextual, and their estimation is often erroneous due to a reductionist use of metrics. Similarly, whether animal husbandry is ethical or not depends on practical specificities, not on the fact that animals are involved. Such discussions also need to factor in that animal husbandry plays an important role in culture, societal well-being, food security, and the provision of livelihoods. We seize this opportunity to argue for less preconceived assumptions about alleged effects of animal source foods on the health of the planet and the humans and animals involved, for less top-down planning based on isolated metrics or (Western) technocratic perspectives, and for more holistic and circumstantial approaches to the food system.


Assuntos
Agricultura , Dieta , Ecossistema , Gado , Agricultura/ética , Ração Animal , Criação de Animais Domésticos , Animais , Laticínios , Dieta/ética , Ovos , Humanos , Carne
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa