Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 150(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37526610

RESUMO

Drosophila is an important model for studying heart development and disease. Yet, single-cell transcriptomic data of its developing heart have not been performed. Here, we report single-cell profiling of the entire fly heart using ∼3000 Hand-GFP embryos collected at five consecutive developmental stages, ranging from bilateral migrating rows of cardiac progenitors to a fused heart tube. The data revealed six distinct cardiac cell types in the embryonic fly heart: cardioblasts, both Svp+ and Tin+ subtypes; and five types of pericardial cell (PC) that can be distinguished by four key transcription factors (Eve, Odd, Ct and Tin) and include the newly described end of the line PC. Notably, the embryonic fly heart combines transcriptional signatures of the mammalian first and second heart fields. Using unique markers for each heart cell type, we defined their number and location during heart development to build a comprehensive 3D cell map. These data provide a resource to track the expression of any gene in the developing fly heart, which can serve as a reference to study genetic perturbations and cardiac diseases.


Assuntos
Drosophila melanogaster , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Coração/embriologia , Análise da Expressão Gênica de Célula Única , Linfonodos/citologia , Linfonodos/embriologia , Embrião não Mamífero , Desenvolvimento Embrionário , Biomarcadores , Organogênese
2.
Dev Biol ; 490: 53-65, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35853502

RESUMO

Mammalian KMT2C, KMT2D, and HCFC1 are expressed during heart development and have been associated with congenital heart disease, but their roles in heart development remain elusive. We found that the Drosophila Lpt and trr genes encode the N-terminal and C-terminal homologs, respectively, of mammalian KMT2C or KMT2D. Lpt and trr mutant embryos showed reduced cardiac progenitor cells. Silencing of Lpt, trr, or both simultaneously in the heart led to similar abnormal cardiac morphology, tissue fibrosis, and cardiac functional defects. Like KMT2D, Lpt and trr were found to modulate histone H3K4 mono- and dimethylation, but not trimethylation. Investigation of downstream genes regulated by mouse KMT2D in the heart showed that their fly homologs are similarly regulated by Lpt or trr in the fly heart, suggesting that Lpt and trr regulate an evolutionarily conserved transcriptional network for heart development. Moreover, we showed that cardiac silencing of Hcf, the fly homolog of mammalian HCFC1, leads to heart defects similar to those observed in Lpt and trr silencing, as well as reduced H3K4 monomethylation. Our findings suggest that Lpt and trr function together to execute the conserved function of mammalian KMT2C and KMT2D in histone H3 lysine K4 mono- and dimethylation required for heart development. Possibly aided by Hcf, which we show plays a related role in H3K4 methylation during fly heart development.


Assuntos
Proteínas de Drosophila , Histona-Lisina N-Metiltransferase , Histonas , Coativadores de Receptor Nuclear , Animais , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Metilação , Camundongos , Coativadores de Receptor Nuclear/genética , Coativadores de Receptor Nuclear/metabolismo
3.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139143

RESUMO

Highly evolutionarily conserved multiprotein complexes termed Complex of Proteins Associated with Set1 (COMPASS) are required for histone 3 lysine 4 (H3K4) methylation. Drosophila Set1, Trx, and Trr form the core subunits of these complexes. We show that flies deficient in any of these three subunits demonstrated high lethality at eclosion (emergence of adult flies from their pupal cases) and significantly shortened lifespans for the adults that did emerge. Silencing Set1, trx, or trr in the heart led to a reduction in H3K4 monomethylation (H3K4me1) and dimethylation (H3K4me2), reflecting their distinct roles in H3K4 methylation. Furthermore, we studied the gene expression patterns regulated by Set1, Trx, and Trr. Each of the COMPASS core subunits controls the methylation of different sets of genes, with many metabolic pathways active early in development and throughout, while muscle and heart differentiation processes were methylated during later stages of development. Taken together, our findings demonstrate the roles of COMPASS series complex core subunits Set1, Trx, and Trr in regulating histone methylation during heart development and, given their implication in congenital heart diseases, inform research on heart disease.


Assuntos
Proteínas de Drosophila , Epigênese Genética , Animais , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Coração/crescimento & desenvolvimento
4.
PLoS Genet ; 10(2): e1003991, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24516392

RESUMO

Old English Sheepdogs and Gordon Setters suffer from a juvenile onset, autosomal recessive form of canine hereditary ataxia primarily affecting the Purkinje neuron of the cerebellar cortex. The clinical and histological characteristics are analogous to hereditary ataxias in humans. Linkage and genome-wide association studies on a cohort of related Old English Sheepdogs identified a region on CFA4 strongly associated with the disease phenotype. Targeted sequence capture and next generation sequencing of the region identified an A to C single nucleotide polymorphism (SNP) located at position 113 in exon 1 of an autophagy gene, RAB24, that segregated with the phenotype. Genotyping of six additional breeds of dogs affected with hereditary ataxia identified the same polymorphism in affected Gordon Setters that segregated perfectly with phenotype. The other breeds tested did not have the polymorphism. Genome-wide SNP genotyping of Gordon Setters identified a 1.9 MB region with an identical haplotype to affected Old English Sheepdogs. Histopathology, immunohistochemistry and ultrastructural evaluation of the brains of affected dogs from both breeds identified dramatic Purkinje neuron loss with axonal spheroids, accumulation of autophagosomes, ubiquitin positive inclusions and a diffuse increase in cytoplasmic neuronal ubiquitin staining. These findings recapitulate the changes reported in mice with induced neuron-specific autophagy defects. Taken together, our results suggest that a defect in RAB24, a gene associated with autophagy, is highly associated with and may contribute to canine hereditary ataxia in Old English Sheepdogs and Gordon Setters. This finding suggests that detailed investigation of autophagy pathways should be undertaken in human hereditary ataxia.


Assuntos
Autofagia/genética , Doenças do Cão/genética , Estudo de Associação Genômica Ampla , Degenerações Espinocerebelares/genética , Proteínas rab de Ligação ao GTP/genética , Animais , Córtex Cerebelar/patologia , Mapeamento Cromossômico , Doenças do Cão/patologia , Cães , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Mutação , Polimorfismo de Nucleotídeo Único , Degenerações Espinocerebelares/etiologia
5.
Mov Disord ; 30(2): 262-6, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25545641

RESUMO

BACKGROUND: The autosomal dominant spinocerebellar ataxias are most commonly caused by nucleotide repeat expansions followed by base-pair changes in functionally important genes. Structural variation has recently been shown to underlie spinocerebellar ataxia types 15 and 20. METHODS: We applied single-nucleotide polymorphism (SNP) genotyping to determine whether structural variation causes spinocerebellar ataxia in a family from France. RESULTS: We identified an approximately 7.5-megabasepair duplication on chromosome 11q21-11q22.3 that segregates with disease. This duplication contains an estimated 44 genes. Duplications at this locus were not found in control individuals. CONCLUSIONS: We have identified a new spastic ataxia syndrome caused by a genomic duplication, which we have denoted as spinocerebellar ataxia type 39. Finding additional families with this phenotype will be important to identify the genetic lesion underlying disease.


Assuntos
Ligação Genética , Predisposição Genética para Doença , Deficiência Intelectual/genética , Espasticidade Muscular/genética , Atrofia Óptica/genética , Ataxias Espinocerebelares/genética , Trissomia , Mapeamento Cromossômico , Cromossomos Humanos Par 11 , França , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
6.
Nature ; 451(7181): 998-1003, 2008 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-18288195

RESUMO

Genome-wide patterns of variation across individuals provide a powerful source of data for uncovering the history of migration, range expansion, and adaptation of the human species. However, high-resolution surveys of variation in genotype, haplotype and copy number have generally focused on a small number of population groups. Here we report the analysis of high-quality genotypes at 525,910 single-nucleotide polymorphisms (SNPs) and 396 copy-number-variable loci in a worldwide sample of 29 populations. Analysis of SNP genotypes yields strongly supported fine-scale inferences about population structure. Increasing linkage disequilibrium is observed with increasing geographic distance from Africa, as expected under a serial founder effect for the out-of-Africa spread of human populations. New approaches for haplotype analysis produce inferences about population structure that complement results based on unphased SNPs. Despite a difference from SNPs in the frequency spectrum of the copy-number variants (CNVs) detected--including a comparatively large number of CNVs in previously unexamined populations from Oceania and the Americas--the global distribution of CNVs largely accords with population structure analyses for SNP data sets of similar size. Our results produce new inferences about inter-population variation, support the utility of CNVs in human population-genetic research, and serve as a genomic resource for human-genetic studies in diverse worldwide populations.


Assuntos
Dosagem de Genes/genética , Variação Genética/genética , Genoma Humano/genética , Geografia , Haplótipos/genética , África , Alelos , Cromossomos Humanos Par 2/genética , Genética Populacional , Humanos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único/genética
7.
Dis Model Mech ; 17(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602042

RESUMO

Diabetes is a metabolic disorder characterized by high blood glucose levels and is a leading cause of kidney disease. Diabetic nephropathy has been attributed to dysfunctional mitochondria. However, many questions remain about the exact mechanism. The structure, function and molecular pathways are highly conserved between mammalian podocytes and Drosophila nephrocytes; therefore, we used flies on a high-sucrose diet to model type 2 diabetic nephropathy. The nephrocytes from flies on a high-sucrose diet showed a significant functional decline and decreased cell size, associated with a shortened lifespan. Structurally, the nephrocyte filtration structure, known as the slit diaphragm, was disorganized. At the cellular level, we found altered mitochondrial dynamics and dysfunctional mitochondria. Regulating mitochondrial dynamics by either genetic modification of the Pink1-Park (mammalian PINK1-PRKN) pathway or treatment with BGP-15, mitigated the mitochondrial defects and nephrocyte functional decline. These findings support a role for Pink1-Park-mediated mitophagy and associated control of mitochondrial dynamics in diabetic nephropathy, and demonstrate that targeting this pathway might provide therapeutic benefits for type 2 diabetic nephropathy.


Assuntos
Nefropatias Diabéticas , Proteínas de Drosophila , Drosophila melanogaster , Mitocôndrias , Dinâmica Mitocondrial , Transdução de Sinais , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/metabolismo , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Mitocôndrias/metabolismo , Podócitos/patologia , Podócitos/metabolismo , Mitofagia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases/metabolismo
8.
bioRxiv ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38496548

RESUMO

Background: People carrying two APOL1 risk alleles (RA) G1 or G2 are at greater risk of developing HIV-associated nephropathy (HIVAN). Studies in transgenic mice showed that the expression of HIV-1 genes in podocytes, and nef in particular, led to HIVAN. However, it remains unclear whether APOL1-RA and HIV-1 Nef interact to induce podocyte cell death. Method: We generated transgenic (Tg) flies that express APOL1-G1 (derived from a child with HIVAN) and HIV-1 nef specifically in the nephrocytes, the fly equivalent of mammalian podocytes, and assessed their individual and combined effects on the nephrocyte filtration structure and function. Results: We found that HIV-1 Nef acts in synergy with APOL1-G1 resulting in nephrocyte structural and functional defects. Specifically, HIV-1 Nef itself can induce endoplasmic reticulum (ER) stress without affecting autophagy. Furthermore, Nef exacerbates the organelle acidification defects and autophagy reduction induced by APOL1-G1. The synergy between HIV-1 Nef and APOL1-G1 is built on their joint effects on elevating ER stress, triggering nephrocyte dysfunction and ultimately cell death. Conclusions: Using a new Drosophila model of HIV-1-related kidney diseases, we identified ER stress as the converging point for the synergy between HIV-1 Nef and APOL1-G1 in inducing nephrocyte cell death. Given the high relevance between Drosophila nephrocytes and human podocytes, this finding suggests ER stress as a new therapeutic target for HIV-1 and APOL1-associated nephropathies.

9.
bioRxiv ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38559272

RESUMO

Alport syndrome is a hereditary chronic kidney disease, attributed to rare pathogenic variants in either of three collagen genes (COL4A3/4/5) with most localized in COL4A5. Trimeric type IV Collagen α3α4α5 is essential for the glomerular basement membrane that forms the kidney filtration barrier. A means to functionally assess the many candidate variants and determine pathogenicity is urgently needed. We used Drosophila, an established model for kidney disease, and identify Col4a1 as the functional homolog of human COL4A5 in the fly nephrocyte (equivalent of human podocyte). Fly nephrocytes deficient for Col4a1 showed an irregular and thickened basement membrane and significantly reduced nephrocyte filtration function. This phenotype was restored by expressing human reference (wildtype) COL4A5, but not by COL4A5 carrying any of three established pathogenic patient-derived variants. We then screened seven additional patient COL4A5 variants; their ClinVar classification was either likely pathogenic or of uncertain significance. The findings support pathogenicity for four of these variants; the three others were found benign. Thus, demonstrating the effectiveness of this Drosophila in vivo kidney platform in providing the urgently needed variant-level functional validation.

10.
Sci Rep ; 14(1): 3291, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332235

RESUMO

Primary human trophoblast stem cells (TSCs) and TSCs derived from human pluripotent stem cells (hPSCs) can potentially model placental processes in vitro. Yet, the pluripotent states and factors involved in the differentiation of hPSCs to TSCs remain poorly understood. In this study, we demonstrate that the primed pluripotent state can generate TSCs by activating pathways such as Epidermal Growth Factor (EGF) and Wingless-related integration site (WNT), and by suppressing tumor growth factor beta (TGFß), histone deacetylases (HDAC), and Rho-associated protein kinase (ROCK) signaling pathways, all without the addition of exogenous Bone morphogenetic protein 4 (BMP4)-a condition we refer to as the TS condition. We characterized this process using temporal single-cell RNA sequencing to compare TS conditions with differentiation protocols involving BMP4 activation alone or BMP4 activation in conjunction with WNT inhibition. The TS condition consistently produced a stable, proliferative cell type that closely mimics first-trimester placental cytotrophoblasts, marked by the activation of endogenous retroviral genes and the absence of amnion expression. This was observed across multiple cell lines, including various primed induced pluripotent stem cell (iPSC) and embryonic stem cell (ESC) lines. Primed-derived TSCs can proliferate for over 30 passages and further specify into multinucleated syncytiotrophoblasts and extravillous trophoblast cells. Our research establishes that the differentiation of primed hPSCs to TSC under TS conditions triggers the induction of TMSB4X, BMP5/7, GATA3, and TFAP2A without progressing through a naive state. These findings propose that the primed hPSC state is part of a continuum of potency with the capacity to differentiate into TSCs through multiple routes.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Feminino , Gravidez , Placenta , Diferenciação Celular/genética , Trofoblastos/metabolismo , Proteína Morfogenética Óssea 5/metabolismo
11.
J Cardiovasc Dev Dis ; 10(7)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37504561

RESUMO

Epigenetic marks regulate the transcriptomic landscape by facilitating the structural packing and unwinding of the genome, which is tightly folded inside the nucleus. Lysine-specific histone methylation is one such mark. It plays crucial roles during development, including in cell fate decisions, in tissue patterning, and in regulating cellular metabolic processes. It has also been associated with varying human developmental disorders. Heart disease has been linked to deregulated histone lysine methylation, and lysine-specific methyltransferases (KMTs) are overrepresented, i.e., more numerous than expected by chance, among the genes with variants associated with congenital heart disease. This review outlines the available evidence to support a role for individual KMTs in heart development and/or disease, including genetic associations in patients and supporting cell culture and animal model studies. It concludes with new advances in the field and new opportunities for treatment.

12.
Front Physiol ; 14: 1182610, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123266

RESUMO

The Drosophila heart tube seems simple, yet it has notable anatomic complexity and contains highly specialized structures. In fact, the development of the fly heart tube much resembles that of the earliest stages of mammalian heart development, and the molecular-genetic mechanisms driving these processes are highly conserved between flies and humans. Combined with the fly's unmatched genetic tools and a wide variety of techniques to assay both structure and function in the living fly heart, these attributes have made Drosophila a valuable model system for studying human heart development and disease. This perspective focuses on the functional and physiological similarities between fly and human hearts. Further, it discusses current limitations in using the fly, as well as promising prospects to expand the capabilities of Drosophila as a research model for studying human cardiac diseases.

13.
J Cardiovasc Dev Dis ; 10(7)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37504562

RESUMO

Methyltransferases regulate transcriptome dynamics during development and aging, as well as in disease. Various methyltransferases have been linked to heart disease, through disrupted expression and activity, and genetic variants associated with congenital heart disease. However, in vivo functional data for many of the methyltransferases in the context of the heart are limited. Here, we used the Drosophila model system to investigate different histone 3 lysine 36 (H3K36) methyltransferases for their role in heart development. The data show that Drosophila Ash1 is the functional homolog of human ASH1L in the heart. Both Ash1 and Set2 H3K36 methyltransferases are required for heart structure and function during development. Furthermore, Ash1-mediated H3K36 methylation (H3K36me2) is essential for healthy heart function, which depends on both Ash1-complex components, Caf1-55 and MRG15, together. These findings provide in vivo functional data for Ash1 and its complex, and Set2, in the context of H3K36 methylation in the heart, and support a role for their mammalian homologs, ASH1L with RBBP4 and MORF4L1, and SETD2, during heart development and disease.

14.
Dis Model Mech ; 16(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37969018

RESUMO

People of African ancestry who carry the APOL1 risk alleles G1 or G2 are at high risk of developing kidney diseases through not fully understood mechanisms that impair the function of podocytes. It is also not clear whether the APOL1-G1 and APOL1-G2 risk alleles affect these cells through similar mechanisms. Previously, we have developed transgenic Drosophila melanogaster lines expressing either the human APOL1 reference allele (G0) or APOL1-G1 specifically in nephrocytes, the cells homologous to mammalian podocytes. We have found that nephrocytes that expressed the APOL1-G1 risk allele display accelerated cell death, in a manner similar to that of cultured human podocytes and APOL1 transgenic mouse models. Here, to compare how the APOL1-G1 and APOL1-G2 risk alleles affect the structure and function of nephrocytes in vivo, we generated nephrocyte-specific transgenic flies that either expressed the APOL1-G2 or both G1 and G2 (G1G2) risk alleles on the same allele. We found that APOL1-G2- and APOL1-G1G2-expressing nephrocytes developed more severe changes in autophagic pathways, acidification of organelles and the structure of the slit diaphragm, compared to G1-expressing nephrocytes, leading to their premature death. We conclude that both risk alleles affect similar key cell trafficking pathways, leading to reduced autophagy and suggesting new therapeutic targets to prevent APOL1 kidney diseases.


Assuntos
Drosophila melanogaster , Nefropatias , Animais , Camundongos , Humanos , Drosophila melanogaster/metabolismo , Apolipoproteína L1/genética , Apolipoproteína L1/metabolismo , Morte Celular , Camundongos Transgênicos , Autofagia/genética , Mamíferos/metabolismo
15.
Cell Biosci ; 13(1): 199, 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925499

RESUMO

BACKGROUND: People of Sub-Saharan African ancestry are at higher risk of developing chronic kidney disease (CKD), attributed to the Apolipoprotein L1 (APOL1) gene risk alleles (RA) G1 and G2. The underlying mechanisms by which the APOL1-RA precipitate CKD remain elusive, hindering the development of potential treatments. RESULTS: Using a Drosophila genetic modifier screen, we found that SNARE proteins (Syx7, Ykt6, and Syb) play an important role in preventing APOL1 cytotoxicity. Reducing the expression of these SNARE proteins significantly increased APOL1 cytotoxicity in fly nephrocytes, the equivalent of mammalian podocytes, whereas overexpression of Syx7, Ykt6, or Syb attenuated their toxicity in nephrocytes. These SNARE proteins bound to APOL1-G0 with higher affinity than APOL1-G1/G2, and attenuated APOL1-G0 cytotoxicity to a greater extent than either APOL1-RA. CONCLUSIONS: Using a Drosophila screen, we identified SNARE proteins (Syx7, Ykt6, and Syb) as antagonists of APOL1-induced cytotoxicity by directly binding APOL1. These data uncovered a new potential protective role for certain SNARE proteins in the pathogenesis of APOL1-CKD and provide novel therapeutic targets for APOL1-associated nephropathies.

16.
Front Cell Dev Biol ; 10: 837828, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265622

RESUMO

The podocyte slit diaphragm (SD) is an essential component of the glomerular filtration barrier and its disruption is a common cause of proteinuria and many types of kidney disease. Therefore, better understanding of the pathways and proteins that play key roles in SD formation and maintenance has been of great interest. Podocyte and SD biology have been mainly studied using mouse and other vertebrate models. However, vertebrates are limited by inherent properties and technically challenging in vivo access to the podocytes. Drosophila is a relatively new alternative model system but it has already made great strides. Past the initial obvious differences, mammalian podocytes and fly nephrocytes are remarkably similar at the genetic, molecular and functional levels. This review discusses SD formation and maintenance, and their dependence on cell polarity, the cytoskeleton, and endo- and exocytosis, as learned from studies in fly nephrocytes and mammalian podocytes. In addition, it reflects on the remaining gaps in our knowledge, the physiological implications for glomerular diseases and how we can leverage the advantages Drosophila has to offer to further our understanding.

17.
Commun Biol ; 5(1): 1039, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180527

RESUMO

SARS-CoV-2 infection causes COVID-19, a severe acute respiratory disease associated with cardiovascular complications including long-term outcomes. The presence of virus in cardiac tissue of patients with COVID-19 suggests this is a direct, rather than secondary, effect of infection. Here, by expressing individual SARS-CoV-2 proteins in the Drosophila heart, we demonstrate interaction of virus Nsp6 with host proteins of the MGA/MAX complex (MGA, PCGF6 and TFDP1). Complementing transcriptomic data from the fly heart reveal that this interaction blocks the antagonistic MGA/MAX complex, which shifts the balance towards MYC/MAX and activates glycolysis-with similar findings in mouse cardiomyocytes. Further, the Nsp6-induced glycolysis disrupts cardiac mitochondrial function, known to increase reactive oxygen species (ROS) in heart failure; this could explain COVID-19-associated cardiac pathology. Inhibiting the glycolysis pathway by 2-deoxy-D-glucose (2DG) treatment attenuates the Nsp6-induced cardiac phenotype in flies and mice. These findings point to glycolysis as a potential pharmacological target for treating COVID-19-associated heart failure.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , COVID-19 , Proteínas de Drosophila/metabolismo , Insuficiência Cardíaca , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Desoxiglucose/metabolismo , Drosophila/metabolismo , Glicólise , Insuficiência Cardíaca/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , SARS-CoV-2
18.
PLoS Genet ; 4(5): e1000072, 2008 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-18464913

RESUMO

There is considerable evidence that human genetic variation influences gene expression. Genome-wide studies have revealed that mRNA levels are associated with genetic variation in or close to the gene coding for those mRNA transcripts - cis effects, and elsewhere in the genome - trans effects. The role of genetic variation in determining protein levels has not been systematically assessed. Using a genome-wide association approach we show that common genetic variation influences levels of clinically relevant proteins in human serum and plasma. We evaluated the role of 496,032 polymorphisms on levels of 42 proteins measured in 1200 fasting individuals from the population based InCHIANTI study. Proteins included insulin, several interleukins, adipokines, chemokines, and liver function markers that are implicated in many common diseases including metabolic, inflammatory, and infectious conditions. We identified eight Cis effects, including variants in or near the IL6R (p = 1.8x10(-57)), CCL4L1 (p = 3.9x10(-21)), IL18 (p = 6.8x10(-13)), LPA (p = 4.4x10(-10)), GGT1 (p = 1.5x10(-7)), SHBG (p = 3.1x10(-7)), CRP (p = 6.4x10(-6)) and IL1RN (p = 7.3x10(-6)) genes, all associated with their respective protein products with effect sizes ranging from 0.19 to 0.69 standard deviations per allele. Mechanisms implicated include altered rates of cleavage of bound to unbound soluble receptor (IL6R), altered secretion rates of different sized proteins (LPA), variation in gene copy number (CCL4L1) and altered transcription (GGT1). We identified one novel trans effect that was an association between ABO blood group and tumour necrosis factor alpha (TNF-alpha) levels (p = 6.8x10(-40)), but this finding was not present when TNF-alpha was measured using a different assay , or in a second study, suggesting an assay-specific association. Our results show that protein levels share some of the features of the genetics of gene expression. These include the presence of strong genetic effects in cis locations. The identification of protein quantitative trait loci (pQTLs) may be a powerful complementary method of improving our understanding of disease pathways.


Assuntos
Proteínas Sanguíneas/genética , Genoma Humano , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas Sanguíneas/metabolismo , Feminino , Dosagem de Genes , Ligação Genética , Variação Genética , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Transcrição Gênica
19.
Mol Cell Biol ; 41(9): e0018521, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34124934

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic, responsible for millions of deaths globally. Even with effective vaccines, SARS-CoV-2 will likely maintain a hold in the human population through gaps in efficacy, percent vaccinated, and arising new strains. Therefore, understanding how SARS-CoV-2 causes widespread tissue damage and the development of targeted pharmacological treatments will be critical in fighting this virus and preparing for future outbreaks. Herein, we summarize the progress made thus far by using in vitro or in vivo models to investigate individual SARS-CoV-2 proteins and their pathogenic mechanisms. We have grouped the SARS-CoV-2 proteins into three categories: host entry, self-acting, and host interacting. This review focuses on the self-acting and host-interacting SARS-CoV-2 proteins and summarizes current knowledge on how these proteins promote virus replication and disrupt host systems, as well as drugs that target the virus and virus interacting host proteins. Encouragingly, many of these drugs are currently in clinical trials for the treatment of COVID-19. Future coronavirus outbreaks will most likely be caused by new virus strains that evade vaccine protection through mutations in entry proteins. Therefore, study of individual self-acting and host-interacting SARS-CoV-2 proteins for targeted therapeutic interventions is not only essential for fighting COVID-19 but also valuable against future coronavirus outbreaks.


Assuntos
Antivirais/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Proteínas Virais/metabolismo , Vacinas contra COVID-19/farmacologia , Desenvolvimento de Medicamentos , Humanos , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Internalização do Vírus , Replicação Viral/efeitos dos fármacos , Replicação Viral/fisiologia , Tratamento Farmacológico da COVID-19
20.
Cell Biosci ; 11(1): 110, 2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34120640

RESUMO

The COVID-19 pandemic is having a tremendous impact on humanity. Although COVID-19 vaccines are showing promising results, they are not 100% effective and resistant mutant SARS-CoV-2 strains are on the rise. To successfully fight against SARS-CoV-2 and prepare for future coronavirus outbreaks, it is essential to understand SARS-CoV-2 protein functions, their host interactions, and how these processes convey pathogenicity at host tissue, organ and systemic levels. In vitro models are valuable but lack the physiological context of a whole organism. Current animal models for SARS-CoV-2 research are exclusively mammals, with the intrinsic limitations of long reproduction times, few progeny, ethical concerns and high maintenance costs. These limitations make them unsuitable for rapid functional investigations of virus proteins as well as genetic and pharmacological screens. Remarkably, 90% of the SARS-CoV-2 virus-host interacting proteins are conserved between Drosophila and humans. As a well-established model system for studying human diseases, the fruit fly offers a highly complementary alternative to current mammalian models for SARS-CoV-2 research, from investigating virus protein function to developing targeted drugs. Herein, we review Drosophila's track record in studying human viruses and discuss the advantages and limitations of using fruit flies for SARS-CoV-2 research. We also review studies that already used Drosophila to investigate SARS-CoV-2 protein pathogenicity and their damaging effects in COVID-19 relevant tissues, as well as studies in which the fly was used as an efficient whole animal drug testing platform for targeted therapeutics against SARS-CoV-2 proteins or their host interacting pathways.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa