Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
New Phytol ; 218(2): 542-553, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29468690

RESUMO

There is consensus that plant species richness enhances plant productivity within natural grasslands, but the underlying drivers remain debated. Recently, differential accumulation of soil-borne fungal pathogens across the plant diversity gradient has been proposed as a cause of this pattern. However, the below-ground environment has generally been treated as a 'black box' in biodiversity experiments, leaving these fungi unidentified. Using next generation sequencing and pathogenicity assays, we analysed the community composition of root-associated fungi from a biodiversity experiment to examine if evidence exists for host specificity and negative density dependence in the interplay between soil-borne fungi, plant diversity and productivity. Plant species were colonised by distinct (pathogenic) fungal communities and isolated fungal species showed negative, species-specific effects on plant growth. Moreover, 57% of the pathogenic fungal operational taxonomic units (OTUs) recorded in plant monocultures were not detected in eight plant species plots, suggesting a loss of pathogenic OTUs with plant diversity. Our work provides strong evidence for host specificity and negative density-dependent effects of root-associated fungi on plant species in grasslands. Our work substantiates the hypothesis that fungal root pathogens are an important driver of biodiversity-ecosystem functioning relationships.


Assuntos
Biodiversidade , Fungos/fisiologia , Desenvolvimento Vegetal , Plantas/microbiologia , Microbiologia do Solo , Biomassa , Fungos/patogenicidade , Interações Hospedeiro-Patógeno , Modelos Biológicos , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Especificidade da Espécie
2.
New Phytol ; 207(3): 830-40, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25871977

RESUMO

Plant-soil feedback is receiving increasing interest as a factor influencing plant competition and species coexistence in grasslands. However, we do not know how spatial distribution of plant-soil feedback affects plant below-ground interactions. We investigated the way in which spatial heterogeneity of soil biota affects competitive interactions in grassland plant species. We performed a pairwise competition experiment combined with heterogeneous distribution of soil biota using four grassland plant species and their soil biota. Patches were applied as quadrants of 'own' and 'foreign' soils from all plant species in all pairwise combinations. To evaluate interspecific root responses, species-specific root biomass was quantified using real-time PCR. All plant species suffered negative soil feedback, but strength was species-specific, reflected by a decrease in root growth in own compared with foreign soil. Reduction in root growth in own patches by the superior plant competitor provided opportunities for inferior competitors to increase root biomass in these patches. These patterns did not cascade into above-ground effects during our experiment. We show that root distributions can be determined by spatial heterogeneity of soil biota, affecting plant below-ground competitive interactions. Thus, spatial heterogeneity of soil biota may contribute to plant species coexistence in species-rich grasslands.


Assuntos
Retroalimentação , Raízes de Plantas/fisiologia , Poaceae/fisiologia , Solo , Biomassa , Brotos de Planta/fisiologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa