Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nature ; 483(7391): 589-93, 2012 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-22367537

RESUMO

Neuroblastoma is a childhood tumour of the peripheral sympathetic nervous system. The pathogenesis has for a long time been quite enigmatic, as only very few gene defects were identified in this often lethal tumour. Frequently detected gene alterations are limited to MYCN amplification (20%) and ALK activations (7%). Here we present a whole-genome sequence analysis of 87 neuroblastoma of all stages. Few recurrent amino-acid-changing mutations were found. In contrast, analysis of structural defects identified a local shredding of chromosomes, known as chromothripsis, in 18% of high-stage neuroblastoma. These tumours are associated with a poor outcome. Structural alterations recurrently affected ODZ3, PTPRD and CSMD1, which are involved in neuronal growth cone stabilization. In addition, ATRX, TIAM1 and a series of regulators of the Rac/Rho pathway were mutated, further implicating defects in neuritogenesis in neuroblastoma. Most tumours with defects in these genes were aggressive high-stage neuroblastomas, but did not carry MYCN amplifications. The genomic landscape of neuroblastoma therefore reveals two novel molecular defects, chromothripsis and neuritogenesis gene alterations, which frequently occur in high-risk tumours.


Assuntos
Cromossomos Humanos/genética , Neuritos/metabolismo , Neuroblastoma/genética , Neuroblastoma/patologia , Envelhecimento/genética , Análise por Conglomerados , DNA Helicases/genética , Análise Mutacional de DNA , Regulação Neoplásica da Expressão Gênica , Genoma Humano/genética , Cones de Crescimento/metabolismo , Cones de Crescimento/patologia , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Mutação , Estadiamento de Neoplasias , Neuroblastoma/diagnóstico , Neuroblastoma/metabolismo , Proteínas Nucleares/genética , Prognóstico , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T , Proteína Nuclear Ligada ao X , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
2.
Oncotarget ; 7(19): 27946-58, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27056887

RESUMO

The anti-apoptotic protein B cell lymphoma/leukaemia 2 (BCL-2) is highly expressed in neuroblastoma and plays an important role in oncogenesis. In this study, the selective BCL-2 inhibitor ABT199 was tested in a panel of neuroblastoma cell lines with diverse expression levels of BCL-2 and other BCL-2 family proteins. ABT199 caused apoptosis more potently in neuroblastoma cell lines expressing high BCL-2 and BIM/BCL-2 complex levels than low expressing cell lines. Effects on cell viability correlated with effects on BIM displacement from BCL-2 and cytochrome c release from the mitochondria. ABT199 treatment of mice with neuroblastoma tumors expressing high BCL-2 levels only resulted in growth inhibition, despite maximum BIM displacement from BCL-2 and the induction of a strong apoptotic response. We showed that neuroblastoma cells might survive ABT199 treatment due to its acute upregulation of the anti-apoptotic BCL-2 family protein myeloid cell leukaemia sequence 1 (MCL-1) and BIM sequestration by MCL-1. In vitro inhibition of MCL-1 sensitized neuroblastoma cell lines to ABT199, confirming the pivotal role of MCL-1 in ABT199 resistance. Our findings suggest that neuroblastoma patients with high BCL-2 and BIM/BCL-2 complex levels might benefit from combination treatment with ABT199 and compounds that inhibit MCL-1 expression.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Neuroblastoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sulfonamidas/uso terapêutico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Proteína 11 Semelhante a Bcl-2/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Concentração Inibidora 50 , Camundongos , Mitocôndrias/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Neuroblastoma/patologia , Sulfonamidas/farmacologia , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
3.
PLoS One ; 10(12): e0145744, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26716839

RESUMO

Tumor cells might resist therapy with ionizing radiation (IR) by non-homologous end-joining (NHEJ) of IR-induced double-strand breaks. One of the key players in NHEJ is DNA-dependent protein kinase (DNA-PK). The catalytic subunit of DNA-PK, i.e. DNA-PKcs, can be inhibited with the small-molecule inhibitor NU7026. In the current study, the in vitro potential of NU7026 to radiosensitize neuroblastoma cells was investigated. DNA-PKcs is encoded by the PRKDC (protein kinase, DNA-activated, catalytic polypeptide) gene. We showed that PRKDC levels were enhanced in neuroblastoma patients and correlated with a more advanced tumor stage and poor prognosis, making DNA-PKcs an interesting target for radiosensitization of neuroblastoma tumors. Optimal dose finding for combination treatment with NU7026 and IR was performed using NGP cells. One hour pre-treatment with 10 µM NU7026 synergistically sensitized NGP cells to 0.63 Gy IR. Radiosensitizing effects of NU7026 increased in time, with maximum effects observed from 96 h after IR-exposure on. Combined treatment of NGP cells with 10 µM NU7026 and 0.63 Gy IR resulted in apoptosis, while no apoptotic response was observed for either of the therapies alone. Inhibition of IR-induced DNA-PK activation by NU7026 confirmed the capability of NGP cells to, at least partially, resist IR by NHEJ. NU7026 also synergistically radiosensitized other neuroblastoma cell lines, while no synergistic effect was observed for low DNA-PKcs-expressing non-cancerous fibroblasts. Results obtained for NU7026 were confirmed by PRKDC knockdown in NGP cells. Taken together, the current study shows that DNA-PKcs is a promising target for neuroblastoma radiosensitization.


Assuntos
Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neuroblastoma/metabolismo , Radiossensibilizantes/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Cromonas/farmacologia , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Reparo do DNA por Junção de Extremidades/genética , Humanos , Morfolinas/farmacologia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/radioterapia , Proteínas Nucleares/metabolismo , Tolerância a Radiação/genética , Radiação Ionizante
4.
Eur J Cancer ; 50(3): 628-37, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24321263

RESUMO

Recently protocols have been devised for the culturing of cell lines from fresh tumours under serum-free conditions in defined neural stem cell medium. These cells, frequently called tumour initiating cells (TICs) closely retained characteristics of the tumours of origin. We report the isolation of eight newly-derived neuroblastoma TICs from six primary neuroblastoma tumours and two bone marrow metastases. The primary tumours from which these TICs were generated have previously been fully typed by whole genome sequencing (WGS). Array comparative genomic hybridisation (aCGH) analysis showed that TIC lines retained essential characteristics of the primary tumours and exhibited typical neuroblastoma chromosomal aberrations such as MYCN amplification, gain of chromosome 17q and deletion of 1p36. Protein analysis showed expression for neuroblastoma markers MYCN, NCAM, CHGA, DBH and TH while haematopoietic markers CD19 and CD11b were absent. We analysed the growth characteristics and confirmed tumour-forming potential using sphere-forming assays, subcutaneous and orthotopic injection of these cells into immune-compromised mice. Affymetrix mRNA expression profiling of TIC line xenografts showed an expression pattern more closely mimicking primary tumours compared to xenografts from classical cell lines. This establishes that these neuroblastoma TICs cultured under serum-free conditions are relevant and useful neuroblastoma tumour models.


Assuntos
Linhagem Celular Tumoral , Neuroblastoma/genética , Neuroblastoma/patologia , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Criança , Pré-Escolar , Meios de Cultura Livres de Soro , Genótipo , Humanos , Lactente , Camundongos , Camundongos Nus , Neuroblastoma/metabolismo , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Endocr Relat Cancer ; 18(6): 657-68, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21859926

RESUMO

BIRC5 (survivin) is one of the genes located on chromosome arm 17q in the region that is often gained in neuroblastoma. BIRC5 is a protein in the intrinsic apoptotic pathway that interacts with XIAP and DIABLO leading to caspase-3 and caspase-9 inactivation. BIRC5 is also involved in stabilizing the microtubule-kinetochore dynamics. Based on the Affymetrix mRNA expression data, we here show that BIRC5 expression is strongly upregulated in neuroblastoma compared with normal tissues, adult malignancies, and non-malignant fetal adrenal neuroblasts. The over-expression of BIRC5 correlates with an unfavorable prognosis independent of the presence of 17q gain. Silencing of BIRC5 in neuroblastoma cell lines by various antisense molecules resulted in massive apoptosis as measured by PARP cleavage and FACS analysis. As both the intrinsic apoptotic pathway and the chromosomal passenger complex can be therapeutically targeted, we investigated in which of them BIRC5 exerted its essential anti-apoptotic role. Immunofluorescence analysis of neuroblastoma cells after BIRC5 silencing showed formation of multinucleated cells indicating mitotic catastrophe, which leads to apoptosis via P53 and CASP2. We show that BIRC5 silencing indeed resulted in activation of P53 and we could rescue apoptosis by CASP2 inhibition. We conclude that BIRC5 stabilizes the microtubules in the chromosomal passenger complex in neuroblastoma and that the apoptotic response results from mitotic catastrophe, which makes BIRC5 an interesting target for therapy.


Assuntos
Apoptose/fisiologia , Proteínas Inibidoras de Apoptose/deficiência , Mitose/fisiologia , Neuroblastoma/patologia , Western Blotting , Caspase 2/fisiologia , Inibidores de Caspase , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Cisteína Endopeptidases/fisiologia , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Oligonucleotídeos/farmacologia , RNA Neoplásico/química , RNA Neoplásico/genética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Survivina , Análise Serial de Tecidos/métodos , Proteína Supressora de Tumor p53/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa