Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 37(4): e22827, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36856610

RESUMO

Metabolic rhythms include rapid, ultradian (hourly) dynamics, but it remains unclear what their relationship to circadian metabolic rhythms is, and what role meal timing plays in coordinating these ultradian rhythms in metabolism. Here, we characterized widespread ultradian rhythms under ad libitum feeding conditions in the plasma metabolome of the vole, the gold standard animal model for behavioral ultradian rhythms, naturally expressing ~2-h foraging rhythms throughout the day and night. These ultradian metabolite rhythms co-expressed with diurnal 24-h rhythms in the same metabolites and did not align with food intake patterns. Specifically, under light-dark entrained conditions we showed twice daily entrainment of phase and period of ultradian behavioral rhythms associated with phase adjustment of the ultradian cycle around the light-dark and dark-light transitions. These ultradian activity patterns also drove an ultradian feeding pattern. We used a unique approach to map this behavioral activity/feeding status to high temporal resolution (every 90 min) measures of plasma metabolite profiles across the 24-h light-dark cycle. A total of 148 known metabolites were detected in vole plasma. Supervised, discriminant analysis did not group metabolite concentration by feeding status, instead, unsupervised clustering of metabolite time courses revealed clusters of metabolites that exhibited significant ultradian rhythms with periods different from the feeding cycle. Two clusters with dissimilar ultradian dynamics, one lipid-enriched (period = 3.4 h) and one amino acid-enriched (period = 4.1 h), both showed co-expression with diurnal cycles. A third cluster solely comprised of glycerophospholipids (specifically ether-linked phosphatidylcholines) expressed an 11.9 h ultradian rhythm without co-expressed diurnal rhythmicity. Our findings show coordinated co-expression of diurnal metabolic rhythms with rapid dynamics in feeding and metabolism. These findings reveal that ultradian rhythms are integral to biological timing of metabolic regulation, and will be important in interpreting the impact of circadian desynchrony and meal timing on metabolic rhythms.


Assuntos
Ritmo Ultradiano , Animais , Metaboloma , Ritmo Circadiano , Aminoácidos , Arvicolinae
2.
J Peripher Nerv Syst ; 29(1): 58-71, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38126610

RESUMO

BACKGROUND AND AIMS: Chemotherapy-induced peripheral neurotoxicity (CIPN) is one of the most common dose-limiting side effects of paclitaxel (PTX) treatment. Many age-related changes have been hypothesized to underlie susceptibility to damage or impaired regeneration/repair after nerve injury. The results of these studies, however, are inconclusive and other potential biomarkers of nerve impairment need to be investigated. METHODS: Twenty-four young (2 months) and 24 adult (9 months) Wistar male rats were randomized to either PTX treatment (10 mg/kg i.v. once/week for 4 weeks) or vehicle administration. Neurophysiological and behavioral tests were performed at baseline, after 4 weeks of treatment and 2-week follow-up. Skin biopsies and nerve specimens collected from sacrificed animals were examined for intraepidermal nerve fiber (IENF) density assessment and nerve morphology/morphometry. Blood and liver samples were collected for targeted metabolomics analysis. RESULTS: At the end of treatment, the neurophysiological studies revealed a reduction in sensory nerve action potential amplitude (p < .05) in the caudal nerve of young PTX-animals, and in both the digital and caudal nerve of adult PTX-animals (p < .05). A significant decrease in the mechanical threshold was observed only in young PTX-animals (p < .001), but not in adult PTX-ones. Nevertheless, both young and adult PTX-rats had reduced IENF density (p < .0001), which persisted at the end of follow-up period. Targeted metabolomics analysis showed significant differences in the plasma metabolite profiles between PTX-animals developing peripheral neuropathy and age-matched controls, with triglycerides, diglycerides, acylcarnitines, carnosine, long chain ceramides, sphingolipids, and bile acids playing a major role in the response to PTX administration. INTERPRETATION: Our study identifies for the first time multiple related metabolic axes involved in PTX-induced peripheral neurotoxicity, and suggests age-related differences in CIPN manifestations and in the metabolic profile.


Assuntos
Síndromes Neurotóxicas , Doenças do Sistema Nervoso Periférico , Animais , Masculino , Ratos , Síndromes Neurotóxicas/patologia , Paclitaxel/toxicidade , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Ratos Wistar , Pele/patologia
3.
Electrophoresis ; 43(12): 1337-1346, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35543378

RESUMO

Adipocytes are energy stores of the body which also play a role in physiological regulation and homeostasis through their endocrine activity. Adipocyte circadian clocks drive rhythms in gene expression, and dysregulation of these circadian rhythms associates with pathological conditions such as diabetes. However, although the role of circadian rhythms in adipose cells and related tissues has been studied from phsyiological and molecular perspectives, they have not yet been explored from an electrical perspective. Research into electro-chronobiology has revealed that electrical properties have important roles in peripheral clock regulation independently of transcription-translation feedback loops. We have used dielectrophoresis to study electrophysiological rhythms in pre-adipocytes - representing an adipocyte precursor and nucleated cell-based model, using serum shocking as the cellular method of clock entrainment. The results revealed significant electrophysiological rhythms, culminating in circadian (ca. 24 hourly) cycles in effective membrane capacitance and radius properties, whereas effective membrane conductance was observed to express ultradian (ca. 14 hourly) rhythms. These data shed new light into pre-adipocyte electrical behaviour and present a potential target for understanding and manipulation of metabolic physiology.


Assuntos
Relógios Circadianos , Adipócitos/metabolismo , Animais , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Camundongos
4.
J Pineal Res ; 73(4): e12827, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36030553

RESUMO

The biomechanical environment plays a key role in regulating cartilage formation, but the current understanding of mechanotransduction pathways in chondrogenic cells is incomplete. Among the combination of external factors that control chondrogenesis are temporal cues that are governed by the cell-autonomous circadian clock. However, mechanical stimulation has not yet directly been proven to modulate chondrogenesis via entraining the circadian clock in chondroprogenitor cells. The purpose of this study was to establish whether mechanical stimuli entrain the core clock in chondrogenic cells, and whether augmented chondrogenesis caused by mechanical loading was at least partially mediated by the synchronised, rhythmic expression of the core circadian clock genes, chondrogenic transcription factors, and cartilage matrix constituents at both transcript and protein levels. We report here, for the first time, that cyclic uniaxial mechanical load applied for 1 h for a period of 6 days entrains the molecular clockwork in chondroprogenitor cells during chondrogenesis in limb bud-derived micromass cultures. In addition to the several core clock genes and proteins, the chondrogenic markers SOX9 and ACAN also followed a robust sinusoidal rhythmic expression pattern. These rhythmic conditions significantly enhanced cartilage matrix production and upregulated marker gene expression. The observed chondrogenesis-promoting effect of the mechanical environment was at least partially attributable to its entraining effect on the molecular clockwork, as co-application of the small molecule clock modulator longdaysin attenuated the stimulatory effects of mechanical load. This study suggests that an optimal biomechanical environment enhances tissue homoeostasis and histogenesis during chondrogenesis at least partially through entraining the molecular clockwork.


Assuntos
Relógios Circadianos , Melatonina , Condrogênese , Mecanotransdução Celular , Melatonina/farmacologia , Fatores de Transcrição/metabolismo , Condrócitos/metabolismo , Células Cultivadas , Diferenciação Celular
5.
PLoS Pathog ; 14(2): e1006900, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29481559

RESUMO

Circadian rhythms enable organisms to synchronise the processes underpinning survival and reproduction to anticipate daily changes in the external environment. Recent work shows that daily (circadian) rhythms also enable parasites to maximise fitness in the context of ecological interactions with their hosts. Because parasite rhythms matter for their fitness, understanding how they are regulated could lead to innovative ways to reduce the severity and spread of diseases. Here, we examine how host circadian rhythms influence rhythms in the asexual replication of malaria parasites. Asexual replication is responsible for the severity of malaria and fuels transmission of the disease, yet, how parasite rhythms are driven remains a mystery. We perturbed feeding rhythms of hosts by 12 hours (i.e. diurnal feeding in nocturnal mice) to desynchronise the host's peripheral oscillators from the central, light-entrained oscillator in the brain and their rhythmic outputs. We demonstrate that the rhythms of rodent malaria parasites in day-fed hosts become inverted relative to the rhythms of parasites in night-fed hosts. Our results reveal that the host's peripheral rhythms (associated with the timing of feeding and metabolism), but not rhythms driven by the central, light-entrained circadian oscillator in the brain, determine the timing (phase) of parasite rhythms. Further investigation reveals that parasite rhythms correlate closely with blood glucose rhythms. In addition, we show that parasite rhythms resynchronise to the altered host feeding rhythms when food availability is shifted, which is not mediated through rhythms in the host immune system. Our observations suggest that parasites actively control their developmental rhythms. Finally, counter to expectation, the severity of disease symptoms expressed by hosts was not affected by desynchronisation of their central and peripheral rhythms. Our study at the intersection of disease ecology and chronobiology opens up a new arena for studying host-parasite-vector coevolution and has broad implications for applied bioscience.


Assuntos
Ritmo Circadiano/fisiologia , Comportamento Alimentar/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Malária/parasitologia , Animais , Glicemia/análise , Microbioma Gastrointestinal/fisiologia , Homeostase , Malária/sangue , Malária/fisiopatologia , Masculino , Camundongos , Plasmodium chabaudi/crescimento & desenvolvimento , Plasmodium chabaudi/fisiologia
6.
Proc Natl Acad Sci U S A ; 114(18): 4591-4596, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28408395

RESUMO

Currently, cell separation occurs almost exclusively by density gradient methods and by fluorescence- and magnetic-activated cell sorting (FACS/MACS). These variously suffer from lack of specificity, high cell loss, use of labels, and high capital/operating cost. We present a dielectrophoresis (DEP)-based cell-separation method, using 3D electrodes on a low-cost disposable chip; one cell type is allowed to pass through the chip whereas the other is retained and subsequently recovered. The method advances usability and throughput of DEP separation by orders of magnitude in throughput, efficiency, purity, recovery (cells arriving in the correct output fraction), cell losses (those which are unaccounted for at the end of the separation), and cost. The system was evaluated using three example separations: live and dead yeast; human cancer cells/red blood cells; and rodent fibroblasts/red blood cells. A single-pass protocol can enrich cells with cell recovery of up to 91.3% at over 300,000 cells per second with >3% cell loss. A two-pass protocol can process 300,000,000 cells in under 30 min, with cell recovery of up to 96.4% and cell losses below 5%, an effective processing rate >160,000 cells per second. A three-step protocol is shown to be effective for removal of 99.1% of RBCs spiked with 1% cancer cells while maintaining a processing rate of ∼170,000 cells per second. Furthermore, the self-contained and low-cost nature of the separator device means that it has potential application in low-contamination applications such as cell therapies, where good manufacturing practice compatibility is of paramount importance.


Assuntos
Separação Celular/métodos , Eletroforese/métodos , Fenômenos Eletrofisiológicos , Eritrócitos/citologia , Neoplasias/patologia , Saccharomyces cerevisiae/citologia , Linhagem Celular Tumoral , Separação Celular/economia , Eletroforese/economia , Humanos
7.
FASEB J ; 31(2): 743-750, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27871062

RESUMO

Biological oscillations with an ultradian time scale of 1 to several hours include cycles in behavioral arousal, episodic glucocorticoid release, and gene expression. Ultradian rhythms are thought to have an extrinsic origin because of a perceived absence of ultradian rhythmicity in vitro and a lack of known molecular ultradian oscillators. We designed a novel, non-spectral-analysis method of separating ultradian from circadian components and applied it to a published gene expression dataset with an ultradian sampling resolution. Ultradian rhythms in mouse hepatocytes in vivo have been published, and we validated our approach using this control by confirming 175 of 323 ultradian genes identified in a prior study and found 862 additional ultradian genes. For the first time, we now report ultradian expression of >900 genes in vitro Sixty genes exhibited ultradian transcriptional rhythmicity, both in vivo and in vitro, including 5 genes involved in the cell cycle. Within these 60 genes, we identified significant enrichment of specific DNA motifs in the 1000 bp proximal promotor, some of which associate with known transcriptional factors. These findings are in strong support of instrinsically driven ultradian rhythms and expose potential molecular mechanisms and functions underlying ultradian rhythms that remain unknown.-Van der Veen, D. R., Gerkema, M. P. Unmasking ultradian rhythms in gene expression.


Assuntos
Regulação da Expressão Gênica/fisiologia , Periodicidade , Transcriptoma/fisiologia , Animais , Fígado/metabolismo , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
FASEB J ; 31(12): 5557-5567, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28821636

RESUMO

Metabolic profiling of individuals with type 2 diabetes mellitus (T2DM) has previously been limited to single-time-point samples, ignoring time-of-day variation. Here, we tested our hypothesis that body mass and T2DM affect daily rhythmicity and concentrations of circulating metabolites across a 24-h day in 3 age-matched, male groups-lean, overweight/obese (OW/OB), and OW/OB with T2DM-in controlled laboratory conditions, which were not confounded by large meals. By using targeted liquid chromatography/mass spectrometry metabolomics, we quantified 130 plasma metabolites every 2 h over 24 h, and we show that average metabolite concentrations were significantly altered by increased body mass (90 of 130) and T2DM (56 of 130). Thirty-eight percent of metabolites exhibited daily rhythms in at least 1 study group, and where a metabolite was rhythmic in >1 group, its peak time was comparable. The optimal time of day was assessed to provide discriminating biomarkers. This differed between metabolite classes and study groups-for example, phospholipids showed maximal difference at 5:00 AM (lean vs. OW/OB) and at 5:00 PM (OW/OB vs. T2DM). Metabolites that were identified with both robust 24-h rhythms and significant concentration differences between study groups emphasize the importance of controlling the time of day for diagnosis and biomarker discovery, offering a significant improvement over current single sampling.-Isherwood, C. M., Van der Veen, D. R., Johnston, J. D., Skene, D. J. Twenty-four-hour rhythmicity of circulating metabolites: effect of body mass and type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Obesidade/metabolismo , Adulto , Biomarcadores/metabolismo , Índice de Massa Corporal , Ritmo Circadiano/fisiologia , Feminino , Humanos , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Sobrepeso/metabolismo
9.
Proc Natl Acad Sci U S A ; 111(6): E682-91, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24449876

RESUMO

Circadian organization of the mammalian transcriptome is achieved by rhythmic recruitment of key modifiers of chromatin structure and transcriptional and translational processes. These rhythmic processes, together with posttranslational modification, constitute circadian oscillators in the brain and peripheral tissues, which drive rhythms in physiology and behavior, including the sleep-wake cycle. In humans, sleep is normally timed to occur during the biological night, when body temperature is low and melatonin is synthesized. Desynchrony of sleep-wake timing and other circadian rhythms, such as occurs in shift work and jet lag, is associated with disruption of rhythmicity in physiology and endocrinology. However, to what extent mistimed sleep affects the molecular regulators of circadian rhythmicity remains to be established. Here, we show that mistimed sleep leads to a reduction of rhythmic transcripts in the human blood transcriptome from 6.4% at baseline to 1.0% during forced desynchrony of sleep and centrally driven circadian rhythms. Transcripts affected are key regulators of gene expression, including those associated with chromatin modification (methylases and acetylases), transcription (RNA polymerase II), translation (ribosomal proteins, initiation, and elongation factors), temperature-regulated transcription (cold inducible RNA-binding proteins), and core clock genes including CLOCK and ARNTL (BMAL1). We also estimated the separate contribution of sleep and circadian rhythmicity and found that the sleep-wake cycle coordinates the timing of transcription and translation in particular. The data show that mistimed sleep affects molecular processes at the core of circadian rhythm generation and imply that appropriate timing of sleep contributes significantly to the overall temporal organization of the human transcriptome.


Assuntos
Ritmo Circadiano , Sono , Transcriptoma , Adulto , Feminino , Expressão Gênica , Humanos , Masculino , Melatonina/fisiologia , RNA Mensageiro/genética , Adulto Jovem
10.
FASEB J ; 28(6): 2441-54, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24577121

RESUMO

In humans, a primate-specific variable-number tandem-repeat (VNTR) polymorphism (4 or 5 repeats 54 nt in length) in the circadian gene PER3 is associated with differences in sleep timing and homeostatic responses to sleep loss. We investigated the effects of this polymorphism on circadian rhythmicity and sleep homeostasis by introducing the polymorphism into mice and assessing circadian and sleep parameters at baseline and during and after 12 h of sleep deprivation (SD). Microarray analysis was used to measure hypothalamic and cortical gene expression. Circadian behavior and sleep were normal at baseline. The response to SD of 2 electrophysiological markers of sleep homeostasis, electroencephalography (EEG) θ power during wakefulness and δ power during sleep, were greater in the Per3(5/5) mice. During recovery, the Per3(5/5) mice fully compensated for the SD-induced deficit in δ power, but the Per3(4/4) and wild-type mice did not. Sleep homeostasis-related transcripts (e.g., Homer1, Ptgs2, and Kcna2) were differentially expressed between the humanized mice, but circadian clock genes were not. These data are in accordance with the hypothesis derived from human data that the PER3 VNTR polymorphism modifies the sleep homeostatic response without significantly influencing circadian parameters.


Assuntos
Ritmo Circadiano/genética , Homeostase/fisiologia , Proteínas Circadianas Period/genética , Privação do Sono/fisiopatologia , Sono/fisiologia , Animais , Comportamento Animal/efeitos da radiação , Córtex Cerebral/metabolismo , Ritmo Circadiano/fisiologia , Escuridão , Regulação para Baixo , Eletroencefalografia , Feminino , Ontologia Genética , Humanos , Hipotálamo/metabolismo , Luz , Masculino , Camundongos , Camundongos Transgênicos , Repetições Minissatélites , Polimorfismo Genético , Sono REM/fisiologia , Transcriptoma , Regulação para Cima
11.
Cell Host Microbe ; 32(4): 573-587.e5, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38569545

RESUMO

Microbiota assembly in the infant gut is influenced by diet. Breastfeeding and human breastmilk oligosaccharides promote the colonization of beneficial bifidobacteria. Infant formulas are supplemented with bifidobacteria or complex oligosaccharides, notably galacto-oligosaccharides (GOS), to mimic breast milk. To compare microbiota development across feeding modes, this randomized controlled intervention study (German Clinical Trial DRKS00012313) longitudinally sampled infant stool during the first year of life, revealing similar fecal bacterial communities between formula- and breast-fed infants (N = 210) but differences across age. Infant formula containing GOS sustained high levels of bifidobacteria compared with formula containing B. longum and B. breve or placebo. Metabolite and bacterial profiling revealed 24-h oscillations and circadian networks. Rhythmicity in bacterial diversity, specific taxa, and functional pathways increased with age and was strongest following breastfeeding and GOS supplementation. Circadian rhythms in dominant taxa were further maintained ex vivo in a chemostat model. Hence, microbiota rhythmicity develops early in life and is impacted by diet.


Assuntos
Fórmulas Infantis , Microbiota , Feminino , Humanos , Lactente , Bifidobacterium , Aleitamento Materno , Ritmo Circadiano , Fezes/microbiologia , Fórmulas Infantis/microbiologia , Leite Humano , Oligossacarídeos/metabolismo
12.
Curr Biol ; 33(7): 1321-1326.e3, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36822203

RESUMO

Circadian rhythms, metabolism, and nutrition are closely linked.1 Timing of a three-meal daily feeding pattern synchronizes some human circadian rhythms.2 Despite animal data showing anticipation of food availability, linked to a food-entrainable oscillator,3 it is unknown whether human physiology predicts mealtimes and restricted food availability. In a controlled laboratory protocol, we tested the hypothesis that the human circadian system anticipates large meals. Twenty-four male participants undertook an 8-day laboratory study, with strict sleep-wake schedules, light-dark schedules, and food intake. For 6 days, participants consumed either hourly small meals throughout the waking period or two large daily meals (7.5 and 14.5 h after wake-up). All participants then undertook a 37-h constant routine. Interstitial glucose was measured every 15 min throughout the protocol. Hunger was assessed hourly during waking periods. Saliva melatonin was measured in the constant routine. During the 6-day feeding pattern, both groups exhibited increasing glucose concentration early each morning. In the small meal group, glucose concentrations continued to increase across the day. However, in the large meal group, glucose concentrations decreased from 2 h after waking until the first meal. Average 24-h glucose concentration did not differ between groups. In the constant routine, there was no difference in melatonin onset between groups, but antiphasic glucose rhythms were observed, with low glucose at the time of previous meals in the large meal group. Moreover, in the large meal group, constant routine hunger scores increased before the predicted meal times. These data support the existence of human food anticipation.


Assuntos
Fome , Melatonina , Animais , Humanos , Masculino , Fome/fisiologia , Glucose , Comportamento Alimentar/fisiologia , Refeições
13.
Front Bioeng Biotechnol ; 11: 1232465, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456723

RESUMO

The unique structure and composition of articular cartilage is critical for its physiological function. However, this architecture may get disrupted by degeneration or trauma. Due to the low intrinsic regeneration properties of the tissue, the healing response is generally poor. Low-grade inflammation in patients with osteoarthritis advances cartilage degradation, resulting in pain, immobility, and reduced quality of life. Generating neocartilage using advanced tissue engineering approaches may address these limitations. The biocompatible microenvironment that is suitable for cartilage regeneration may not only rely on cells and scaffolds, but also on the spatial and temporal features of biomechanics. Cell-autonomous biological clocks that generate circadian rhythms in chondrocytes are generally accepted to be indispensable for normal cartilage homeostasis. While the molecular details of the circadian clockwork are increasingly well understood at the cellular level, the mechanisms that enable clock entrainment by biomechanical signals, which are highly relevant in cartilage, are still largely unknown. This narrative review outlines the role of the biomechanical microenvironment to advance cartilage tissue engineering via entraining the molecular circadian clockwork, and highlights how application of this concept may enhance the development and successful translation of biomechanically relevant tissue engineering interventions.

14.
Front Physiol ; 14: 1244497, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37904794

RESUMO

Intrinsically driven ultradian rhythms in the hourly range are often co-expressed with circadian rhythms in various physiological processes including metabolic processes such as feeding behaviour, gene expression and cellular metabolism. Several behavioural observations show that reduced energy intake or increased energy expenditure leads to a re-balancing of ultradian and circadian timing, favouring ultradian feeding and activity patterns when energy availability is limited. This suggests a close link between ultradian rhythmicity and metabolic homeostasis, but we currently lack models to test this hypothesis at a cellular level. We therefore transduced 3T3-L1 pre-adipocyte cells with a reporter construct that drives a destabilised luciferase via the Pdcd5 promotor, a gene we previously showed to exhibit robust ultradian rhythms in vitro. Ultradian rhythmicity in Pdcd5 promotor driven bioluminescence was observed in >80% of all cultures that were synchronised with dexamethasone, whereas significantly lower numbers exhibited ultradian rhythmicity in non-synchronised cultures (∼11%). Cosine fits to ultradian bioluminescence rhythms in cells cultured and measured in low glucose concentrations (2 mM and 5 mM), exhibited significantly higher amplitudes than all other cultures, and a shorter period (6.9 h vs. 8.2 h, N = 12). Our findings show substantial ultradian rhythmicity in Pdcd5 promotor activity in cells in which the circadian clocks have been synchronised in vitro, which is in line with observations of circadian synchronisation of behavioural ultradian rhythms. Critically, we show that the amplitude of ultradian rhythms is enhanced in low glucose conditions, suggesting that low energy availability enhances ultradian rhythmicity at the cellular level in vitro.

15.
J Pineal Res ; 53(1): 47-59, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22017511

RESUMO

The effect of light on circadian rhythms and sleep is mediated by a multi-component photoreceptive system of rods, cones and melanopsin-expressing intrinsically photosensitive retinal ganglion cells. The intensity and spectral sensitivity characteristics of this system are to be fully determined. Whether the intensity and spectral composition of light exposure at home in the evening is such that it delays circadian rhythms and sleep also remains to be established. We monitored light exposure at home during 6-8wk and assessed light effects on sleep and circadian rhythms in the laboratory. Twenty-two women and men (23.1±4.7yr) participated in a six-way, cross-over design using polychromatic light conditions relevant to the light exposure at home, but with reduced, intermediate or enhanced efficacy with respect to the photopic and melanopsin systems. The evening rise of melatonin, sleepiness and EEG-assessed sleep onset varied significantly (P<0.01) across the light conditions, and these effects appeared to be largely mediated by the melanopsin, rather than the photopic system. Moreover, there were individual differences in the sensitivity to the disruptive effect of light on melatonin, which were robust against experimental manipulations (intra-class correlation=0.44). The data show that light at home in the evening affects circadian physiology and imply that the spectral composition of artificial light can be modified to minimize this disruptive effect on sleep and circadian rhythms. These findings have implications for our understanding of the contribution of artificial light exposure to sleep and circadian rhythm disorders such as delayed sleep phase disorder.


Assuntos
Relógios Circadianos , Melatonina/metabolismo , Fotoperíodo , Opsinas de Bastonetes/metabolismo , Transtornos do Sono do Ritmo Circadiano , Sono , Adulto , Estudos Transversais , Eletroencefalografia , Feminino , Humanos , Masculino , Estimulação Luminosa , Transtornos do Sono do Ritmo Circadiano/etiologia , Transtornos do Sono do Ritmo Circadiano/metabolismo , Transtornos do Sono do Ritmo Circadiano/fisiopatologia , Fatores de Tempo
16.
Neurology ; 98(5): e493-e505, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34845055

RESUMO

BACKGROUND AND OBJECTIVES: Narcolepsy type 1 (NT1) is an orphan brain disorder caused by the irreversible destruction of orexin neurons. Metabolic disturbances are common in patients with NT1 who have a body mass index (BMI) 10% to 20% higher than the general population, with one-third being obese (BMI >30 kg/m2). Besides the destruction of orexin neurons in NT1, the metabolic alterations in obese and nonobese patients with NT1 remain unknown. The aim of this study was to identify possible differences in plasma metabolic profiles between patients with NT1 and controls as a function of their BMI status. METHODS: We used a targeted liquid chromatography-mass spectrometry metabolomics approach to measure 141 circulating, low-molecular-weight metabolites in drug-free fasted plasma samples from 117 patients with NT1 (including 41 obese individuals) compared with 116 BMI-matched controls (including 57 obese individuals). RESULTS: Common metabolites driving the difference between patients with NT1 and controls, regardless of BMI, were identified, namely sarcosine, glutamate, nonaylcarnitine (C9), 5 long-chain lysophosphatidylcholine acyls, 1 sphingolipid, 12 phosphatidylcholine diacyls, and 11 phosphatidylcholine acyl-akyls, all showing increased concentrations in NT1. Metabolite concentrations significantly affected by NT1 (n = 42) and BMI category (n = 40) showed little overlap (n = 5). Quantitative enrichment analysis revealed common metabolic pathways that were implicated in the NT1/control differences in both normal BMI and obese comparisons, namely glycine and serine, arachidonic acid, and tryptophan metabolism. The metabolites driving these differences were glutamate, sarcosine, and ornithine (glycine and serine metabolism); glutamate and PC aa C34:4 (arachidonic acid metabolism); and glutamate, serotonin, and tryptophan (tryptophan metabolism). Linear metabolite-endophenotype regression analyses highlight that as part of the NT1 metabolic phenotype, most of the relationships between the sleep parameters (i.e., slow-wave sleep duration, sleep latency, and periodic leg movement) and metabolite concentrations seen in the controls were lost. DISCUSSION: These results represent the most comprehensive metabolic profiling of patients with NT1 as a function of BMI and propose some metabolic diagnostic biomarkers for NT1, namely glutamate, sarcosine, serotonin, tryptophan, nonaylcarnitine, and some phosphatidylcholines. The metabolic pathways identified offer, if confirmed, possible targets for treatment of obesity in NT1. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that a distinct metabolic profile can differentiate patients with NT1 from patients without the disorder.


Assuntos
Narcolepsia , Índice de Massa Corporal , Humanos , Metaboloma , Metabolômica , Narcolepsia/diagnóstico , Latência do Sono
17.
Front Pharmacol ; 13: 867070, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387328

RESUMO

Angiogenesis, the formation of new capillaries from existing ones, is a fundamental process in regenerative medicine and tissue engineering. While it is known to be affected by circadian rhythms in vivo, its peripheral regulation within the vasculature and the role it performs in regulating the interplay between vascular cells have not yet been investigated. Peripheral clocks within the vasculature have been described in the endothelium and in smooth muscle cells. However, to date, scarce evidence has been presented regarding pericytes, a perivascular cell population deeply involved in the regulation of angiogenesis and vessel maturation, as well as endothelial function and homeostasis. More crucially, pericytes are also a promising source of cells for cell therapy and tissue engineering. Here, we established that human primary pericytes express key circadian genes and proteins in a rhythmic fashion upon synchronization. Conversely, we did not detect the same patterns in cultured endothelial cells. In line with these results, pericytes' viability was disproportionately affected by circadian cycle disruption, as compared to endothelial cells. Interestingly, endothelial cells' rhythm could be induced following exposure to synchronized pericytes in a contact co-culture. We propose that this mechanism could be linked to the altered release/uptake pattern of lactate, a known mediator of cell-cell interaction which was specifically altered in pericytes by the knockout of the key circadian regulator Bmal1. In an angiogenesis assay, the maturation of vessel-like structures was affected only when both endothelial cells and pericytes did not express Bmal1, indicating a compensation system. In a 3D tissue engineering scaffold, a synchronized clock supported a more structured organization of cells around the scaffold pores, and a maturation of vascular structures. Our results demonstrate that pericytes play a critical role in regulating the circadian rhythms in endothelial cells, and that silencing this system disproportionately affects their pro-angiogenic function. Particularly, in the context of tissue engineering and regenerative medicine, considering the effect of circadian rhythms may be critical for the development of mature vascular structures and to obtain the maximal reparative effect.

18.
Am J Physiol Regul Integr Comp Physiol ; 301(6): R1821-30, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21957163

RESUMO

Sleep homeostasis and circadian rhythmicity interact to determine the timing of behavioral activity. Circadian clock genes contribute to circadian rhythmicity centrally and in the periphery, but some also have roles within sleep regulation. The clock gene Period3 (Per3) has a redundant function within the circadian system and is associated with sleep homeostasis in humans. This study investigated the role of PER3 in sleep/wake activity and sleep homeostasis in mice by recording wheel-running activity under baseline conditions in wild-type (WT; n = 54) and in PER3-deficient (Per3(-/-); n = 53) mice, as well as EEG-assessed sleep before and after 6 h of sleep deprivation in WT (n = 7) and Per3(-/-) (n = 8) mice. Whereas total activity and vigilance states did not differ between the genotypes, the temporal distribution of wheel-running activity, vigilance states, and EEG delta activity was affected by genotype. In Per3(-/-) mice, running wheel activity was increased, and REM sleep and NREM sleep were reduced in the middle of the dark phase, and delta activity was enhanced at the end of the dark phase. At the beginning of the baseline light period, there was less wakefulness and more REM and NREM sleep in Per3(-/-) mice. Per3(-/-) mice spent less time in wakefulness and more time in NREM sleep in the light period immediately after sleep deprivation, and REM sleep accumulated more slowly during the recovery dark phase. These data confirm a role for PER3 in sleep-wake timing and sleep homeostasis.


Assuntos
Comportamento Animal/fisiologia , Atividade Motora/fisiologia , Proteínas Circadianas Period/metabolismo , Sono/fisiologia , Animais , Ritmo Circadiano , Regulação da Expressão Gênica/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/genética , Proteínas Circadianas Period/genética , Sono/genética
19.
Front Mol Neurosci ; 13: 15, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116548

RESUMO

Polymorphisms in the human circadian clock gene PERIOD3 (PER3) are associated with a wide variety of phenotypes such as diurnal preference, delayed sleep phase disorder, sleep homeostasis, cognitive performance, bipolar disorder, type 2 diabetes, cardiac regulation, cancer, light sensitivity, hormone and cytokine secretion, and addiction. However, the molecular mechanisms underlying these phenotypic associations remain unknown. Per3 knockout mice (Per3-/- ) have phenotypes related to activity, sleep homeostasis, anhedonia, metabolism, and behavioral responses to light. Using a protocol that induces behavioral differences in response to light in wild type and Per3-/- mice, we compared genome-wide expression in the eye and hypothalamus in the two genotypes. Differentially expressed transcripts were related to inflammation, taste, olfactory and melatonin receptors, lipid metabolism, cell cycle, ubiquitination, and hormones, as well as receptors and channels related to sleep regulation. Differentially expressed transcripts in both tissues co-localized with Per3 on an ∼8Mbp region of distal chromosome 4. The most down-regulated transcript is Prdm16, which is involved in adipocyte differentiation and may mediate altered body mass accumulation in Per3-/- mice. eQTL analysis with BXD mouse strains showed that the expression of some of these transcripts and also others co-localized at distal chromosome 4, is correlated with brain tissue expression levels of Per3 with a highly significant linkage to genetic variation in that region. These data identify a cluster of transcripts on mouse distal chromosome 4 that are co-regulated with Per3 and whose expression levels correlate with those of Per3. This locus lies within a topologically associating domain island that contains many genes with functional links to several of the diverse non-circadian phenotypes associated with polymorphisms in human PER3.

20.
Sci Rep ; 9(1): 10905, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358780

RESUMO

Infection can dramatically alter behavioural and physiological traits as hosts become sick and subsequently return to health. Such "sickness behaviours" include disrupted circadian rhythms in both locomotor activity and body temperature. Host sickness behaviours vary in pathogen species-specific manners but the influence of pathogen intraspecific variation is rarely studied. We examine how infection with the murine malaria parasite, Plasmodium chabaudi, shapes sickness in terms of parasite genotype-specific effects on host circadian rhythms. We reveal that circadian rhythms in host locomotor activity patterns and body temperature become differentially disrupted and in parasite genotype-specific manners. Locomotor activity and body temperature in combination provide more sensitive measures of health than commonly used virulence metrics for malaria (e.g. anaemia). Moreover, patterns of host disruption cannot be explained simply by variation in replication rate across parasite genotypes or the severity of anaemia each parasite genotype causes. It is well known that disruption to circadian rhythms is associated with non-infectious diseases, including cancer, type 2 diabetes, and obesity. Our results reveal that disruption of host circadian rhythms is a genetically variable virulence trait of pathogens with implications for host health and disease tolerance.


Assuntos
Temperatura Corporal , Ritmo Circadiano , Interações Hospedeiro-Parasita , Malária/parasitologia , Plasmodium chabaudi , Animais , Masculino , Camundongos , Virulência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa