Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 599(7886): 622-627, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34759320

RESUMO

Zero hunger and good health could be realized by 2030 through effective conservation, characterization and utilization of germplasm resources1. So far, few chickpea (Cicer arietinum) germplasm accessions have been characterized at the genome sequence level2. Here we present a detailed map of variation in 3,171 cultivated and 195 wild accessions to provide publicly available resources for chickpea genomics research and breeding. We constructed a chickpea pan-genome to describe genomic diversity across cultivated chickpea and its wild progenitor accessions. A divergence tree using genes present in around 80% of individuals in one species allowed us to estimate the divergence of Cicer over the last 21 million years. Our analysis found chromosomal segments and genes that show signatures of selection during domestication, migration and improvement. The chromosomal locations of deleterious mutations responsible for limited genetic diversity and decreased fitness were identified in elite germplasm. We identified superior haplotypes for improvement-related traits in landraces that can be introgressed into elite breeding lines through haplotype-based breeding, and found targets for purging deleterious alleles through genomics-assisted breeding and/or gene editing. Finally, we propose three crop breeding strategies based on genomic prediction to enhance crop productivity for 16 traits while avoiding the erosion of genetic diversity through optimal contribution selection (OCS)-based pre-breeding. The predicted performance for 100-seed weight, an important yield-related trait, increased by up to 23% and 12% with OCS- and haplotype-based genomic approaches, respectively.


Assuntos
Cicer/genética , Variação Genética , Genoma de Planta/genética , Análise de Sequência de DNA , Produtos Agrícolas/genética , Haplótipos/genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único/genética
2.
Proc Natl Acad Sci U S A ; 120(27): e2220570120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364097

RESUMO

Understanding the origins of variation in agricultural pathogens is of fundamental interest and practical importance, especially for diseases that threaten food security. Fusarium oxysporum is among the most important of soil-borne pathogens, with a global distribution and an extensive host range. The pathogen is considered to be asexual, with horizontal transfer of chromosomes providing an analog of assortment by meiotic recombination. Here, we challenge those assumptions based on the results of population genomic analyses, describing the pathogen's diversity and inferring its origins and functional consequences in the context of a single, long-standing agricultural system. We identify simultaneously low nucleotide distance among strains, and unexpectedly high levels of genetic and genomic variability. We determine that these features arise from a combination of genome-scale recombination, best explained by widespread sexual reproduction, and presence-absence variation consistent with chromosomal rearrangement. Pangenome analyses document an accessory genome more than twice the size of the core genome, with contrasting evolutionary dynamics. The core genome is stable, with low diversity and high genetic differentiation across geographic space, while the accessory genome is paradoxically more diverse and unstable but with lower genetic differentiation and hallmarks of contemporary gene flow at local scales. We suggest a model in which episodic sexual reproduction generates haplotypes that are selected and then maintained through clone-like dynamics, followed by contemporary genomic rearrangements that reassort the accessory genome among sympatric strains. Taken together, these processes contribute unique genome content, including reassortment of virulence determinants that may explain observed variation in pathogenic potential.


Assuntos
Fusarium , Fusarium/genética , Especificidade de Hospedeiro , Genômica , Agricultura , Doenças das Plantas/genética
3.
Mol Biol Evol ; 40(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37159511

RESUMO

According to archaeological records, chickpea (Cicer arietinum) was first domesticated in the Fertile Crescent about 10,000 years BP. Its subsequent diversification in Middle East, South Asia, Ethiopia, and the Western Mediterranean, however, remains obscure and cannot be resolved using only archeological and historical evidence. Moreover, chickpea has two market types: "desi" and "kabuli," for which the geographic origin is a matter of debate. To decipher chickpea history, we took the genetic data from 421 chickpea landraces unaffected by the green revolution and tested complex historical hypotheses of chickpea migration and admixture on two hierarchical spatial levels: within and between major regions of cultivation. For chickpea migration within regions, we developed popdisp, a Bayesian model of population dispersal from a regional representative center toward the sampling sites that considers geographical proximities between sites. This method confirmed that chickpea spreads within each geographical region along optimal geographical routes rather than by simple diffusion and estimated representative allele frequencies for each region. For chickpea migration between regions, we developed another model, migadmi, that takes allele frequencies of populations and evaluates multiple and nested admixture events. Applying this model to desi populations, we found both Indian and Middle Eastern traces in Ethiopian chickpea, suggesting the presence of a seaway from South Asia to Ethiopia. As for the origin of kabuli chickpeas, we found significant evidence for its origin from Turkey rather than Central Asia.


Assuntos
Cicer , Cicer/genética , Polimorfismo de Nucleotídeo Único , Teorema de Bayes , Frequência do Gene , Genômica
4.
Plant Physiol ; 193(2): 1197-1212, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37335936

RESUMO

Domestication is the long and complex process underlying the evolution of crops, in which artificial directional selection transformed wild progenitors into the desired form, affecting genomic variation and leaving traces of selection at targeted loci. However, whether genes controlling important domestication traits follow the same evolutionary pattern expected under the standard selective sweep model remains unclear. With whole-genome resequencing of mungbean (Vigna radiata), we investigated this issue by resolving its global demographic history and targeted dissection of the molecular footprints of genes underlying 2 key traits representing different stages of domestication. Mungbean originated in Asia, and the Southeast Asian wild population migrated to Australia about 50 thousand generations ago. Later in Asia, the cultivated form diverged from the wild progenitor. We identified the gene associated with the pod shattering resistance trait, VrMYB26a, with lower expression across cultivars and reduced polymorphism in the promoter region, reflecting a hard selective sweep. On the other hand, the stem determinacy trait was associated with VrDet1. We found that 2 ancient haplotypes of this gene have lower gene expression and exhibited intermediate frequencies in cultivars, consistent with selection favoring independent haplotypes in a soft selective sweep. In mungbean, contrasting signatures of selection were identified from the detailed dissection of 2 important domestication traits. The results suggest complex genetic architecture underlying the seemingly simple process of directional artificial selection and highlight the limitations of genome-scan methods relying on hard selective sweeps.


Assuntos
Fabaceae , Vigna , Vigna/genética , Locos de Características Quantitativas , Domesticação , Fabaceae/genética , Demografia , Seleção Genética
7.
Int J Mol Sci ; 24(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37511477

RESUMO

In celebration of the bicentennial of the birth of Gregor Johann Mendel, the genius of genetics, this Special Issue presents seven papers [...].


Assuntos
Genética , História do Século XIX , Genética/história , Pessoas Famosas
8.
Proc Natl Acad Sci U S A ; 116(30): 15200-15209, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31285337

RESUMO

Although microorganisms are known to dominate Earth's biospheres and drive biogeochemical cycling, little is known about the geographic distributions of microbial populations or the environmental factors that pattern those distributions. We used a global-level hierarchical sampling scheme to comprehensively characterize the evolutionary relationships and distributional limitations of the nitrogen-fixing bacterial symbionts of the crop chickpea, generating 1,027 draft whole-genome sequences at the level of bacterial populations, including 14 high-quality PacBio genomes from a phylogenetically representative subset. We find that diverse Mesorhizobium taxa perform symbiosis with chickpea and have largely overlapping global distributions. However, sampled locations cluster based on the phylogenetic diversity of Mesorhizobium populations, and diversity clusters correspond to edaphic and environmental factors, primarily soil type and latitude. Despite long-standing evolutionary divergence and geographic isolation, the diverse taxa observed to nodulate chickpea share a set of integrative conjugative elements (ICEs) that encode the major functions of the symbiosis. This symbiosis ICE takes 2 forms in the bacterial chromosome-tripartite and monopartite-with tripartite ICEs confined to a broadly distributed superspecies clade. The pairwise evolutionary relatedness of these elements is controlled as much by geographic distance as by the evolutionary relatedness of the background genome. In contrast, diversity in the broader gene content of Mesorhizobium genomes follows a tight linear relationship with core genome phylogenetic distance, with little detectable effect of geography. These results illustrate how geography and demography can operate differentially on the evolution of bacterial genomes and offer useful insights for the development of improved technologies for sustainable agriculture.


Assuntos
Cicer/microbiologia , Transferência Genética Horizontal , Genoma Bacteriano , Mesorhizobium/genética , Consórcios Microbianos/genética , Evolução Biológica , Conjugação Genética , Mesorhizobium/classificação , Metagenômica/métodos , Fixação de Nitrogênio/fisiologia , Filogenia , Filogeografia , Solo/classificação , Microbiologia do Solo , Simbiose/genética
9.
Int J Mol Sci ; 23(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35887057

RESUMO

Grain legumes are a rich source of dietary protein for millions of people globally and thus a key driver for securing global food security. Legume plant-based 'dietary protein' biofortification is an economic strategy for alleviating the menace of rising malnutrition-related problems and hidden hunger. Malnutrition from protein deficiency is predominant in human populations with an insufficient daily intake of animal protein/dietary protein due to economic limitations, especially in developing countries. Therefore, enhancing grain legume protein content will help eradicate protein-related malnutrition problems in low-income and underprivileged countries. Here, we review the exploitable genetic variability for grain protein content in various major grain legumes for improving the protein content of high-yielding, low-protein genotypes. We highlight classical genetics-based inheritance of protein content in various legumes and discuss advances in molecular marker technology that have enabled us to underpin various quantitative trait loci controlling seed protein content (SPC) in biparental-based mapping populations and genome-wide association studies. We also review the progress of functional genomics in deciphering the underlying candidate gene(s) controlling SPC in various grain legumes and the role of proteomics and metabolomics in shedding light on the accumulation of various novel proteins and metabolites in high-protein legume genotypes. Lastly, we detail the scope of genomic selection, high-throughput phenotyping, emerging genome editing tools, and speed breeding protocols for enhancing SPC in grain legumes to achieve legume-based dietary protein security and thus reduce the global hunger risk.


Assuntos
Fabaceae , Proteínas de Grãos , Desnutrição , Grão Comestível/genética , Grão Comestível/metabolismo , Fabaceae/genética , Segurança Alimentar , Estudo de Associação Genômica Ampla , Proteínas de Grãos/metabolismo , Humanos , Desnutrição/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/genética , Verduras/genética
10.
BMC Plant Biol ; 20(Suppl 1): 202, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33050872

RESUMO

BACKGROUND: Phenology data collected recently for about 300 accessions of Vigna radiata (mungbean) is an invaluable resource for investigation of impacts of climatic factors on plant development. RESULTS: We developed a new mathematical model that describes the dynamic control of time to flowering by daily values of maximal and minimal temperature, precipitation, day length and solar radiation. We obtained model parameters by adaptation to the available experimental data. The models were validated by cross-validation and used to demonstrate that the phenology of adaptive traits, like flowering time, is strongly predicted not only by local environmental factors but also by plant geographic origin and genotype. CONCLUSIONS: Of local environmental factors maximal temperature appeared to be the most critical factor determining how faithfully the model describes the data. The models were applied to forecast time to flowering of accessions grown in Taiwan in future years 2020-2030.


Assuntos
Clima , Flores/crescimento & desenvolvimento , Modelos Biológicos , Vigna/crescimento & desenvolvimento , Adaptação Fisiológica , Genótipo , Fatores de Tempo , Vigna/genética
11.
BMC Plant Biol ; 20(Suppl 1): 363, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33050907

RESUMO

BACKGROUND: Mungbean (Vigna radiata (L.) R. Wilczek, or green gram) is important tropical and sub-tropical legume and a rich source of dietary protein and micronutrients. In this study we employ GWAS to examine the genetic basis of variation in several important traits in mungbean, using the mini-core collection established by the World Vegetable Center, which includes 296 accessions that represent the major market classes. This collection has been grown in a common field plot in southern European part of Russia in 2018. RESULTS: We used 5041 SNPs in 293 accessions that passed strict filtering for genetic diversity, linkage disequilibrium, population structure and GWAS analysis. Polymorphisms were distributed among all chromosomes, but with variable density. Linkage disequilibrium decayed in approximately 105 kb. Four distinct subgroups were identified within 293 accessions with 70% of accessions attributed to one of the four populations. By performing GWAS on the mini-core collection we have found several loci significantly associated with two important agronomical traits. Four SNPs associated with possibility of maturation in Kuban territory of Southern Russia in 2018 were identified within a region of strong linkage which contains genes encoding zinc finger A20 and an AN1 domain stress-associated protein. CONCLUSIONS: The core collection of mungbean established by the World Vegetable Center is a valuable resource for mungbean breeding. The collection has been grown in southern European part of Russia in 2018 under incidental stresses caused by abnormally hot weather and different photoperiod. We have found several loci significantly associated with color of hypocotyl and possibility of maturation under these stressful conditions. SNPs associated with possibility of maturation localize to a region on chromosome 2 with strong linkage, in which genes encoding zinc finger A20 and AN1 domain stress associated protein (SAP) are located. Phenotyping of WorldVeg collection for maturation traits in temperate climatic locations is important as phenology remains a critical breeding target for mungbean. As demand rises for mungbean, production in temperate regions with shorter growing seasons becomes crucial to keep up with needs. Uncovering SNPs for phenology traits will speed breeding efforts.


Assuntos
Bancos de Espécimes Biológicos , Polimorfismo de Nucleotídeo Único , Vigna/genética , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação
12.
Int J Mol Sci ; 21(9)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397225

RESUMO

Legumes have played an important part in cropping systems since the dawn of agriculture, both as human food and as animal feed. The legume family is arguably one of the most abundantly domesticated crop plant families. Their ability to symbiotically fix nitrogen and improve soil fertility has been rewarded since antiquity and makes them a key protein source. The pea was the original model organism used in Mendel's discovery of the laws of inheritance, making it the foundation of modern plant genetics. This Special Issue provides up-to-date information on legume biology, genetic advances, and the legacy of Mendel.


Assuntos
Fabaceae/genética , Fabaceae/metabolismo , Genômica , Produtos Agrícolas/genética , Produtos Agrícolas/história , Produtos Agrícolas/metabolismo , Variação Genética , Hereditariedade , História do Século XIX , História Antiga , História Medieval , Humanos , Modelos Genéticos , Fixação de Nitrogênio/genética , Fixação de Nitrogênio/fisiologia , Fenótipo
13.
Int J Mol Sci ; 21(11)2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-32486400

RESUMO

A defining challenge of the 21st century is meeting the nutritional demands of the growing human population, under a scenario of limited land and water resources and under the specter of climate change. The Vavilov seed bank contains numerous landraces collected nearly a hundred years ago, and thus may contain 'genetic gems' with the potential to enhance modern breeding efforts. Here, we analyze 407 landraces, sampled from major historic centers of chickpea cultivation and secondary diversification. Genome-Wide Association Studies (GWAS) conducted on both phenotypic traits and bioclimatic variables at landraces sampling sites as extended phenotypes resulted in 84 GWAS hits associated to various regions. The novel haploblock-based test identified haploblocks enriched for single nucleotide polymorphisms (SNPs) associated with phenotypes and bioclimatic variables. Subsequent bi-clustering of traits sharing enriched haploblocks underscored both non-random distribution of SNPs among several haploblocks and their association with multiple traits. We hypothesize that these clusters of pleiotropic SNPs represent co-adapted genetic complexes to a range of environmental conditions that chickpea experienced during domestication and subsequent geographic radiation. Linking genetic variation to phenotypic data and a wealth of historic information preserved in historic seed banks are the keys for genome-based and environment-informed breeding intensification.


Assuntos
Cicer/genética , Produtos Agrícolas/genética , Melhoramento Vegetal , Sementes , Biodiversidade , Clima , Análise por Conglomerados , Conservação dos Recursos Naturais , Estudos de Associação Genética , Marcadores Genéticos , Variação Genética , Genoma de Planta , Genótipo , Geografia , Haplótipos , História do Século XX , História do Século XXI , Funções Verossimilhança , Desequilíbrio de Ligação , Fenótipo , Polimorfismo de Nucleotídeo Único , Banco de Sementes/história , Banco de Sementes/organização & administração
14.
BMC Plant Biol ; 19(Suppl 2): 94, 2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30890147

RESUMO

BACKGROUND: Accurate prediction of crop flowering time is required for reaching maximal farm efficiency. Several models developed to accomplish this goal are based on deep knowledge of plant phenology, requiring large investment for every individual crop or new variety. Mathematical modeling can be used to make better use of more shallow data and to extract information from it with higher efficiency. Cultivars of chickpea, Cicer arietanum, are currently being improved by introgressing wild C. reticulatum biodiversity with very different flowering time requirements. More understanding is required for how flowering time will depend on environmental conditions in these cultivars developed by introgression of wild alleles. RESULTS: We built a novel model for flowering time of wild chickpeas collected at 21 different sites in Turkey and grown in 4 distinct environmental conditions over several different years and seasons. We propose a general approach, in which the analytic forms of dependence of flowering time on climatic parameters, their regression coefficients, and a set of predictors are inferred automatically by stochastic minimization of the deviation of the model output from data. By using a combination of Grammatical Evolution and Differential Evolution Entirely Parallel method, we have identified a model that reflects the influence of effects of day length, temperature, humidity and precipitation and has a coefficient of determination of R2=0.97. CONCLUSIONS: We used our model to test two important hypotheses. We propose that chickpea phenology may be strongly predicted by accession geographic origin, as well as local environmental conditions at the site of growth. Indeed, the site of origin-by-growth environment interaction accounts for about 14.7% of variation in time period from sowing to flowering. Secondly, as the adaptation to specific environments is blueprinted in genomes, the effects of genes on flowering time may be conditioned on environmental factors. Genotype-by-environment interaction accounts for about 17.2% of overall variation in flowering time. We also identified several genomic markers associated with different reactions to climatic factor changes. Our methodology is general and can be further applied to extend existing crop models, especially when phenological information is limited.


Assuntos
Cicer/fisiologia , Mudança Climática , Flores/fisiologia , Interação Gene-Ambiente , Modelos Biológicos , Adaptação Biológica , Genótipo , Geografia , Modelos Estatísticos , Fenótipo , Análise de Regressão , Turquia
15.
New Phytol ; 222(4): 2023-2037, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30730057

RESUMO

Humans have domesticated diverse species from across the plant kingdom, yet much of our foundational knowledge of domestication has come from studies investigating relatively few of the most important annual food crops. Here, we examine the impacts of domestication on genetic diversity in a tropical perennial fruit species, mango (Mangifera indica). We used restriction site associated DNA sequencing to generate genomic single nucleotide polymorphism (SNP) data from 106 mango cultivars from seven geographical regions along with 52 samples of closely related species and unidentified cultivars to identify centers of mango genetic diversity and examine how post-domestication dispersal shaped the geographical distribution of diversity. We identify two gene pools of cultivated mango, representing Indian and Southeast Asian germplasm. We found no significant genetic bottleneck associated with the introduction of mango into new regions of the world. By contrast, we show that mango populations in introduced regions have elevated levels of diversity. Our results suggest that mango has a more complex history of domestication than previously supposed, perhaps including multiple domestication events, hybridization and regional selection. Our work has direct implications for mango breeding and genebank management, and also builds on recent efforts to understand how woody perennial crops respond to domestication.


Assuntos
Domesticação , Genômica , Mangifera/genética , Genética Populacional , Geografia , Funções Verossimilhança , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal
16.
Int J Mol Sci ; 20(22)2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703441

RESUMO

"Stay-green" crop phenotypes have been shown to impact drought tolerance and nutritional content of several crops. We aimed to genetically describe and functionally dissect the particular stay-green phenomenon found in chickpeas with a green cotyledon color of mature dry seed and investigate its potential use for improvement of chickpea environmental adaptations and nutritional value. We examined 40 stay-green accessions and a set of 29 BC2F4-5 stay-green introgression lines using a stay-green donor parent ICC 16340 and two Indian elite cultivars (KAK2, JGK1) as recurrent parents. Genetic studies of segregating populations indicated that the green cotyledon trait is controlled by a single recessive gene that is invariantly associated with the delayed degreening (extended chlorophyll retention). We found that the chickpea ortholog of Mendel's I locus of garden pea, encoding a SGR protein as very likely to underlie the persistently green cotyledon color phenotype of chickpea. Further sequence characterization of this chickpea ortholog CaStGR1 (CaStGR1, for carietinum stay-green gene 1) revealed the presence of five different molecular variants (alleles), each of which is likely a loss-of-function of the chickpea protein (CaStGR1) involved in chlorophyll catabolism. We tested the wild type and green cotyledon lines for components of adaptations to dry environments and traits linked to agronomic performance in different experimental systems and different levels of water availability. We found that the plant processes linked to disrupted CaStGR1 gene did not functionality affect transpiration efficiency or water usage. Photosynthetic pigments in grains, including provitaminogenic carotenoids important for human nutrition, were 2-3-fold higher in the stay-green type. Agronomic performance did not appear to be correlated with the presence/absence of the stay-green allele. We conclude that allelic variation in chickpea CaStGR1 does not compromise traits linked to environmental adaptation and agronomic performance, and is a promising genetic technology for biofortification of provitaminogenic carotenoids in chickpea.


Assuntos
Carotenoides/metabolismo , Cicer , Cotilédone , Produção Agrícola , Variação Genética , Fenótipo , Pigmentação/genética , Cicer/genética , Cicer/crescimento & desenvolvimento , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Fotossíntese/genética
17.
Mol Ecol ; 27(23): 4758-4774, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30325569

RESUMO

To establish and spread in a new location, an invasive species must be able to carry out its life cycle in novel environmental conditions. A key trait underlying fitness is the shift from vegetative to reproductive growth through floral development. In this study, we used a common garden experiment and genotyping-by-sequencing to test whether the latitudinal flowering cline of the North American invasive plant Medicago polymorpha was translocated from its European native range through multiple introductions, or whether the cline rapidly established due to evolution following a genetic bottleneck. Analysis of flowering time in 736 common garden plants showed a latitudinal flowering time cline in both the native and invaded ranges where genotypes from lower latitudes flowered earlier. Genotyping-by-sequencing of 9,658 SNPs in 446 individuals revealed two major subpopulations of M. polymorpha in the native range, only one of which is present in the invaded range. Additionally, native range populations have higher genetic diversity than invaded range populations, suggesting that a genetic bottleneck occurred during invasion. All invaded range individuals are closely related to plants collected from native range populations in Portugal and southern Spain, and population assignment tests assigned invaded range individuals to this same narrow source region. Taken together, our results suggest that latitudinal clinal variation in flowering time has rapidly evolved across the invaded range despite a genetic bottleneck following introduction.


Assuntos
Flores/fisiologia , Genética Populacional , Espécies Introduzidas , Medicago/genética , Genótipo , Medicago/fisiologia , América do Norte , Polimorfismo de Nucleotídeo Único
18.
BMC Evol Biol ; 17(1): 224, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29115917

RESUMO

BACKGROUND: Primulina Hance is an emerging model for studying evolutionary divergence, adaptation and speciation of the karst flora. However, phylogenetic relationships within the genus have not been resolved due to low variation detected in the cpDNA regions. Chloroplast genomes can provide important information for phylogenetic and population genetic studies. Recent advances in next-generation sequencing (NGS) techniques greatly facilitate sequencing whole chloroplast genomes for multiple individuals. Consequently, novel strategies for development of highly polymorphic loci for population genetic and phylogenetic studies based on NGS data are needed. METHODS: For development of high polymorphic loci for population genetic and phylogenetic studies, two novel strategies are proposed here. The first protocol develops lineage-specific highly variable markers from the true high variation regions (Con_Seas) across whole cp genomes, instead of traditional noncoding regions. The pipeline has been integrated into a single perl script, and named "Con_Sea_Identification_and_PIC_Calculation". The second method assembles chloroplast fragments (poTs) and sub-super-marker (CpContigs) through our "SACRing" pipeline. This approach can fundamentally alter the strategies used in phylogenetic and population genetic studies based on cp markers, facilitating a transition from traditional Sanger sequencing to RAD-Seq. Both of these scripts are available at https://github.com/scbgfengchao/ . RESULTS: Three complete Primulina chloroplast genomes were assembled from genome survey data, and then two novel strategies were developed to yield highly polymorphic markers. For experimental evaluation of the first protocol, a set of Primulina species were used for PCR amplification. The results showed that these newly developed markers are more variable than traditional ones, and seem to be a better choice for phylogenetic and population studies in Primulin a. The second method was also successfully applied in population genetic studies of 21 individuals from three natural populations of Primulina. CONCLUSIONS: These two novel strategies may provide a pathway for similar research in other non-model species. The newly developed high polymorphic loci in this study will promote further the phylogenetic and population genetic studies in Primulina and other genera of the family Gesneriaceae.


Assuntos
Mapeamento de Sequências Contíguas , Genoma de Cloroplastos , Lamiales/genética , Cloroplastos/genética , DNA de Cloroplastos/genética , Genética Populacional , Sequenciamento de Nucleotídeos em Larga Escala , Lamiales/citologia , Filogenia , Análise de Sequência de DNA
19.
J Sci Food Agric ; 97(14): 4987-4994, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28406526

RESUMO

BACKGROUND: There are 69 species of edible Mangifera recognized in Southeast Asia. Most of these species have not been characterized for nutritional properties. This paper describes the nutritional quality of the pulp of several Mangifera species - Mangifera casturi, Mangifera lalijiwa, Mangifera odorata, Mangifera zeylanica and two cultivars of Mangifera indica, 'Tommy-Kent' and 'Tommy Atkins' - at two maturity stages. RESULTS: The results showed that nutritional quality varied with maturity stage and among species. The immature pulp of all species had higher content of total dietary fibre, vitamin C, vitamin E, total soluble polyphenols and antioxidant capacity. In mature pulp, the protein, ash, fat, soluble carbohydrate and B vitamin values were higher in all species. The species with the best nutritional quality were, in order from highest to lowest, M. casturi, M. odorata, M. zeylanica, M. indica cultivars and M. lalijiwa. CONCLUSION: The fruit pulp of three species had higher nutritional quality at both maturity stages in comparison with M. indica cultivars. These other Mangifera species can be nutritionally important in communities facing food insecurity and have potential as emerging crops. The decline of these valuable species in their natural habitats is an increasing concern, and their nutritional properties justify greater efforts to protect them. © 2017 Society of Chemical Industry.


Assuntos
Frutas/crescimento & desenvolvimento , Mangifera/química , Antioxidantes/análise , Ácido Ascórbico/análise , Frutas/química , Frutas/classificação , Mangifera/classificação , Mangifera/crescimento & desenvolvimento , Valor Nutritivo , Polifenóis/análise
20.
New Phytol ; 211(4): 1440-51, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27193699

RESUMO

Chickpea (Cicer arietinum) is among the founder crops domesticated in the Fertile Crescent. One of two major forms of chickpea, the so-called kabuli type, has white flowers and light-colored seed coats, properties not known to exist in the wild progenitor. The origin of the kabuli form has been enigmatic. We genotyped a collection of wild and cultivated chickpea genotypes with 538 single nucleotide polymorphisms (SNPs) and examined patterns of molecular diversity relative to geographical sources and market types. In addition, we examined sequence and expression variation in candidate anthocyanin biosynthetic pathway genes. A reduction in genetic diversity and extensive genetic admixture distinguish cultivated chickpea from its wild progenitor species. Among germplasm, the kabuli form is polyphyletic. We identified a basic helix-loop-helix (bHLH) transcription factor at chickpea's B locus that conditions flower and seed colors, orthologous to Mendel's A gene of garden pea, whose loss of function is associated invariantly with the kabuli type of chickpea. From the polyphyletic distribution of the kabuli form in germplasm, an absence of nested variation within the bHLH gene and invariant association of loss of function of bHLH among the kabuli type, we conclude that the kabuli form arose multiple times during the phase of phenotypic diversification after initial domestication of cultivated chickpea.


Assuntos
Alelos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Cicer/genética , Domesticação , Variação Genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Cicer/anatomia & histologia , Produtos Agrícolas/genética , Ecótipo , Flores/anatomia & histologia , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Haplótipos/genética , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal , Sementes/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa