Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 917
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 183(7): 1801-1812.e13, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33308477

RESUMO

Cellular stress leads to reprogramming of mRNA translation and formation of stress granules (SGs), membraneless organelles consisting of mRNA and RNA-binding proteins. Although the function of SGs remains largely unknown, it is widely assumed they contain exclusively non-translating mRNA. Here, we re-examine this hypothesis using single-molecule imaging of mRNA translation in living cells. Although we observe non-translating mRNAs are preferentially recruited to SGs, we find unequivocal evidence that mRNAs localized to SGs can undergo translation. Our data indicate that SG-associated translation is not rare, and the entire translation cycle (initiation, elongation, and termination) can occur on SG-localized transcripts. Furthermore, translating mRNAs can be observed transitioning between the cytosol and SGs without changing their translational status. Together, these results demonstrate that mRNA localization to SGs is compatible with translation and argue against a direct role for SGs in inhibition of protein synthesis.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Biossíntese de Proteínas/genética , Transporte de RNA/genética , Imagem Individual de Molécula , Estresse Fisiológico , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Citosol/metabolismo , Células HeLa , Humanos , Fases de Leitura Aberta/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Mol Cell ; 70(1): 175-187.e8, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29576526

RESUMO

Upon stress, cytoplasmic mRNA is sequestered to insoluble ribonucleoprotein (RNP) granules, such as the stress granule (SG). Partially due to the belief that translationally suppressed mRNAs are recruited to SGs in bulk, stress-induced dynamic redistribution of mRNA has not been thoroughly characterized. Here, we report that endoplasmic reticulum (ER) stress targets only a small subset of translationally suppressed mRNAs into the insoluble RNP granule fraction (RG). This subset, characterized by extended length and adenylate-uridylate (AU)-rich motifs, is highly enriched with genes critical for cell survival and proliferation. This pattern of RG targeting was conserved for two other stress types, heat shock and arsenite toxicity, which induce distinct responses in the total cytoplasmic transcriptome. Nevertheless, stress-specific RG-targeting motifs, such as guanylate-cytidylate (GC)-rich motifs in heat shock, were also identified. Previously underappreciated, transcriptome profiling in the RG may contribute to understanding human diseases associated with RNP dysfunction, such as cancer and neurodegeneration.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Estresse do Retículo Endoplasmático , Resposta ao Choque Térmico , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo , Transcriptoma , Elementos Ricos em Adenilato e Uridilato , Animais , Arsenitos/toxicidade , Sítios de Ligação , Grânulos Citoplasmáticos/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células HCT116 , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Ligação Proteica , Proto-Oncogenes , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/genética , Solubilidade , Tapsigargina/toxicidade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/efeitos dos fármacos
3.
Plant J ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39378328

RESUMO

Cytokinin is central to coordinating plant adaptation to environmental stresses. Here, we first demonstrated the involvement of cytokinin in Arabidopsis responses to arsenite [As(III)] stress. As(III) treatment reduced cytokinin contents, while cytokinin treatment repressed further primary root growth in Arabidopsis plants under As(III) stress. Subsequently, we revealed that the cytokinin signaling members ARR1 and ARR12, the type-B ARABIDOPSIS RESPONSE REGULATORs, participate in cytokinin signaling-mediated As(III) responses in plants as negative regulators. A comprehensive transcriptome analysis of the arr1 and arr12 single and arr1,12 double mutants was then performed to decipher the cytokinin signaling-mediated mechanisms underlying plant As(III) stress adaptation. Results revealed important roles for ARR1 and ARR12 in ion transport, nutrient responses, and secondary metabolite accumulation. Furthermore, using hierarchical clustering and regulatory network analyses, we identified two NODULIN 26-LIKE INTRINSIC PROTEIN (NIP)-encoding genes, NIP1;1 and NIP6;1, potentially involved in ARR1/12-mediated As(III) uptake and transport in Arabidopsis. By analyzing various combinations of arr and nip mutants, including high-order triple and quadruple mutants, we demonstrated that ARR1 and ARR12 redundantly function as negative regulators of As(III) tolerance by acting upstream of NIP1;1 and NIP6;1 to modulate their function in arsenic accumulation. ChIP-qPCR, EMSA, and transient dual-LUC reporter assays revealed that ARR1 and ARR12 transcriptionally activate the expression of NIP1;1 and NIP6;1 by directly binding to their promoters and upregulating their expression, leading to increased arsenic accumulation under As(III) stress. These findings collectively provide insights into cytokinin signaling-mediated plant adaptation to excessive As(III), contributing to the development of crops with low arsenic accumulation.

4.
Genes Cells ; 29(7): 589-598, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38715219

RESUMO

Calcineurin (CN) is a conserved Ca2+/calmodulin-dependent phosphoprotein phosphatase that plays a key role in Ca2+ signaling. Regulator of calcineurin 1 (RCAN1), also known as Down syndrome critical region gene 1 (DSCR1), interacts with calcineurin and inhibits calcineurin-dependent signaling in various organisms. Ppb1, the fission yeast calcineurin regulates Cl--homeostasis, and Ppb1 deletion induces MgCl2 hypersensitivity. Here, we characterize the conserved and novel roles of the fission yeast RCAN1 homolog rcn1+. Consistent with its role as an endogenous calcineurin inhibitor, Rcn1 overproduction reproduced the calcineurin-null phenotypes, including MgCl2 hypersensitivity and inhibition of calcineurin signaling upon extracellular Ca2+ stimuli as evaluated by the nuclear translocation and transcriptional activation of the calcineurin substrate Prz1. Notably, overexpression of rcn1+ causes hypersensitivity to arsenite, whereas calcineurin deletion induces arsenite tolerance, showing a phenotypic discrepancy between Rcn1 overexpression and calcineurin deletion. Importantly, although Rcn1 deletion induces modest sensitivities to arsenite and MgCl2 in wild-type cells, the arsenite tolerance, but not MgCl2 sensitivity, associated with Ppb1 deletion was markedly suppressed by Rcn1 deletion. Collectively, our findings reveal a previously unrecognized functional collaboration between Rcn1 and calcineurin, wherein Rcn1 not only negatively regulates calcineurin in the Cl- homeostasis, but also Rcn1 mediates calcineurin signaling to modulate arsenite cytotoxicity.


Assuntos
Arsenitos , Calcineurina , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Calcineurina/metabolismo , Calcineurina/genética , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Arsenitos/toxicidade , Arsenitos/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Transdução de Sinais , Proteínas de Ligação a DNA , Proteínas Musculares
5.
Cell Mol Life Sci ; 81(1): 430, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39387926

RESUMO

Stress granules (SGs) are non-membranous organelles composed of mRNA and proteins that assemble in the cytosol when the cell is under stress. Although the composition of mammalian SGs is both cell-type and stress-dependent, they consistently contain core components, such as Ras GTPase activating protein SH3 domain binding protein 1 (G3BP1). Upon stress, living cells rapidly assemble micrometric SGs, sometimes within a few minutes, suggesting that SG components may be actively transported by the microtubule and/or actin cytoskeleton. Indeed, SG assembly has been shown to depend on the microtubule cytoskeleton and the associated motor proteins. However, the role of the actin cytoskeleton and associated myosin motor proteins remains controversial. Here, we identified G3BP1 as a novel binding protein of unconventional myosin-5a (Myo5a). G3BP1 uses its C-terminal RNA-binding domain to interact with the middle portion of Myo5a tail domain (Myo5a-MTD). Suppressing Myo5a function in mammalian cells, either by overexpressing Myo5a-MTD, eliminating Myo5a gene expression, or treatment with myosin-5 inhibitor, inhibits the arsenite-induced formation of both small and large SGs. This is different from the effect of microtubule disruption, which abolishes the formation of large SGs but enhances the formation of small SGs under stress conditions. We therefore propose that, under stress conditions, Myo5a facilitates the formation of SGs at an earlier stage than the microtubule-dependent process.


Assuntos
DNA Helicases , Miosina Tipo V , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Grânulos de Estresse , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , RNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Humanos , DNA Helicases/metabolismo , DNA Helicases/genética , Miosina Tipo V/metabolismo , Miosina Tipo V/genética , Grânulos de Estresse/metabolismo , Ligação Proteica , Células HeLa , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Microtúbulos/metabolismo , Células HEK293 , Animais , Arsenitos/farmacologia , Grânulos Citoplasmáticos/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(38): e2123529119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095201

RESUMO

Cells respond to environmental stress by regulating gene expression at the level of both transcription and translation. The ∼50 modified ribonucleotides of the human epitranscriptome contribute to the latter, with mounting evidence that dynamic regulation of transfer RNA (tRNA) wobble modifications leads to selective translation of stress response proteins from codon-biased genes. Here we show that the response of human hepatocellular carcinoma cells to arsenite exposure is regulated by the availability of queuine, a micronutrient and essential precursor to the wobble modification queuosine (Q) on tRNAs reading GUN codons. Among oxidizing and alkylating agents at equitoxic concentrations, arsenite exposure caused an oxidant-specific increase in Q that correlated with up-regulation of proteins from codon-biased genes involved in energy metabolism. Limiting queuine increased arsenite-induced cell death, altered translation, increased reactive oxygen species levels, and caused mitochondrial dysfunction. In addition to demonstrating an epitranscriptomic facet of arsenite toxicity and response, our results highlight the links between environmental exposures, stress tolerance, RNA modifications, and micronutrients.


Assuntos
Arsenitos , Epigênese Genética , Guanina , RNA de Transferência , Transcriptoma , Arsenitos/toxicidade , Linhagem Celular Tumoral , Códon/genética , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Oxirredução , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , RNA de Transferência/genética
7.
Proc Natl Acad Sci U S A ; 119(25): e2122482119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35704754

RESUMO

Heat shock (HS) promotes protein unfolding, and cells respond by stimulating HS gene expression, ubiquitination of cell proteins, and proteolysis by the proteasome. Exposing HeLa and other cells to 43 °C for 2 h caused a twofold increase in the 26S proteasomes' peptidase activity assayed at 37 °C. This increase in activity occurred without any change in proteasome amount and did not require new protein synthesis. After affinity-purification from HS cells, 26S proteasomes still hydrolyzed peptides, adenosine 5'-triphosphate, and ubiquitinated substrates more rapidly without any evident change in subunit composition, postsynthetic modification, or association with reported proteasome-activating proteins. After returning HS cells to 37 °C, ubiquitin conjugates and proteolysis fell rapidly, but proteasome activity remained high for at least 16 h. Exposure to arsenite, which also causes proteotoxic stress in the cytosol, but not tunicamycin, which causes endoplasmic reticulum stress, also increased ubiquitin conjugate levels and 26S proteasome activity. Although the molecular basis for the enhanced proteasomal activity remains elusive, we studied possible signaling mechanisms. Proteasome activation upon proteotoxic stress required the accumulation of ubiquitinated proteins since blocking ubiquitination by E1 inhibition during HS or arsenite exposure prevented the stimulation of 26S activity. Furthermore, increasing cellular content of ubiquitin conjugates at 37 °C by inhibiting deubiquitinating enzymes with RA190 or b-AP15 also caused proteasome activation. Thus, cells respond to proteotoxic stresses, apparently in response to the accumulation of ubiquitinated proteins, by activating 26S proteasomes, which should help promote the clearance of damaged cell proteins.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Trifosfato de Adenosina/metabolismo , Arsenitos/metabolismo , Arsenitos/farmacologia , Ativação Enzimática/efeitos dos fármacos , Células HeLa , Resposta ao Choque Térmico , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Transdução de Sinais , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/metabolismo , Ubiquitinação
8.
J Biol Chem ; 299(8): 105036, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37442232

RESUMO

Arsenic contamination of groundwater is among one of the biggest health threats affecting millions of people in the world. There is an urgent need for efficient arsenic biosensors where the use of arsenic metabolizing enzymes can be explored. In this work, we have solved four crystal structures of arsenite oxidase (Aio) in complex with arsenic and antimony oxyanions and the structures determined correspond to intermediate states of the enzymatic mechanism. These structural data were complemented with density-functional theory calculations providing a unique view of the molybdenum active site at different time points that, together with mutagenesis data, enabled to clarify the enzymatic mechanism and the molecular determinants for the oxidation of As(III) to the less toxic As(V) species.


Assuntos
Arsênio , Arsenitos , Humanos , Antimônio , Oxirredução
9.
Biochem Biophys Res Commun ; 725: 150258, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897041

RESUMO

OBJECTIVE: Long-term exposure to arsenic has been linked to several illnesses, including hypertension, diabetes, hepatic and renal diseases and cardiovascular malfunction. The aim of the current investigation was to determine whether zingerone (ZN) could shield rats against the hepatotoxicity that sodium arsenite (SA) causes. METHODS: The following five groups of thirty-five male Sprague Dawley rats were created: I) Control; received normal saline, II) ZN; received ZN, III) SA; received SA, IV) SA + ZN 25; received 10 mg/kg body weight SA + 25 mg/kg body weight ZN, and V) SA + ZN 50; received 10 mg/kg body weight SA + 50 mg/kg body weight ZN. The experiment lasted 14 days, and the rats were sacrificed on the 15th day. While oxidative stress parameters were studied by spectrophotometric method, apoptosis, inflammation and endoplasmic reticulum stress parameters were measured by RT-PCR method. RESULTS: The SA disrupted the histological architecture and integrity of the liver and enhanced oxidative damage by lowering antioxidant enzyme activity, such as those of glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), glutathione (GSH) level and increasing malondialdehyde (MDA) level in the liver tissue. Additionally, SA increased the mRNA transcript levels of Bcl2 associated x (Bax), caspases (-3, -6, -9), apoptotic protease-activating factor 1 (Apaf-1), p53, tumor necrosis factor-α (TNF-α), nuclear factor kappa B (NF-κB), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), c-Jun NH2-terminal kinase (JNK), mitogen-activated protein kinase 14 (MAPK14), MAPK15, receptor for advanced glycation endproducts (RAGE) and nod-like receptor family pyrin domain-containing 3 (NLRP3) in the liver tissue. Also produced endoplasmic reticulum stress by raising the mRNA transcript levels of activating transcription factor 6 (ATF-6), protein kinase RNA-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1), and glucose-regulated protein 78 (GRP-78). These factors together led to inflammation, apoptosis, and endoplasmic reticulum stress. On the other hand, liver tissue treated with ZN at doses of 25 and 50 mg/kg showed significant improvement in oxidative stress, inflammation, apoptosis and endoplasmic reticulum stress. CONCLUSIONS: Overall, the study's data suggest that administering ZN may be able to lessen the liver damage caused by SA toxicity.


Assuntos
Arsenitos , Doença Hepática Induzida por Substâncias e Drogas , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos Sprague-Dawley , Transdução de Sinais , Compostos de Sódio , Fator de Necrose Tumoral alfa , Animais , Masculino , Transdução de Sinais/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Arsenitos/toxicidade , Compostos de Sódio/toxicidade , Ratos , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Caspase 3/metabolismo , Caspase 3/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Chaperona BiP do Retículo Endoplasmático , Endorribonucleases , Complexos Multienzimáticos , Proteínas Serina-Treonina Quinases
10.
Arch Microbiol ; 206(4): 194, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38538852

RESUMO

The simultaneous development of antibiotic resistance in bacteria due to metal exposure poses a significant threat to the environment and human health. This study explored how exposure to both arsenic and antibiotics affects the ability of an arsenite oxidizer, Achromobacter xylosoxidans CAW4, to transform arsenite and its antibiotic resistance patterns. The bacterium was isolated from arsenic-contaminated groundwater in the Chandpur district of Bangladesh. We determined the minimum inhibitory concentration (MIC) of arsenite, cefotaxime, and tetracycline for A. xylosoxidans CAW4, demonstrating a multidrug resistance (MDR) trait. Following this determination, we aimed to mimic an environment where A. xylosoxidans CAW4 was exposed to both arsenite and antibiotics. We enabled the strain to grow in sub-MIC concentrations of 1 mM arsenite, 40 µg/mL cefotaxime, and 20 µg/mL tetracycline. The expression dynamics of the arsenite oxidase (aioA) gene in the presence or absence of antibiotics were analyzed. The findings indicated that simultaneous exposure to arsenite and antibiotics adversely affected the bacteria's capacity to metabolize arsenic. However, when arsenite was present in antibiotics-containing media, it promoted bacterial growth. The study observed a global downregulation of the aioA gene in arsenic-antibiotic conditions, indicating the possibility of increased susceptibility through co-resistance across the entire bacterial population of the environment. This study interprets that bacterial arsenic-metabolizing ability can rescue the bacteria from antibiotic stress, further disseminating environmental cross-resistance. Therefore, the co-selection of metal-driven antibiotic resistance in bacteria highlights the need for effective measures to address this emerging threat to human health and the environment.


Assuntos
Arsênio , Arsenitos , Humanos , Arsênio/farmacologia , Arsênio/metabolismo , Arsenitos/farmacologia , Arsenitos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Bactérias , Metais/farmacologia , Metais/metabolismo , Resistência Microbiana a Medicamentos , Cefotaxima/metabolismo , Cefotaxima/farmacologia , Tetraciclinas/metabolismo , Tetraciclinas/farmacologia
11.
Environ Sci Technol ; 58(26): 11534-11541, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38865317

RESUMO

Pteris vittata is the first-reported arsenic (As) hyperaccumulator, which has been applied to phytoremediation of As-contaminated soil. PvACR3, a key arsenite (AsIII) antiporter, plays an important role in As hyperaccumulation in P. vittata. However, its functions in plants are not fully understood. In this study, the PvACR3 gene was heterologously expressed in tobacco, driven by its native promoter (ProPvACR3). After growing at 5 µM AsIII or 10 µM AsV in hydroponics for 1-5 days, PvACR3-expression enhanced the As levels in leaves by 66.4-113 and 51.8-101%, without impacting the As contents in the roots or stems. When cultivated in As-contaminated soil, PvACR3-expressed transgenic plants accumulated 47.9-85.5% greater As in the leaves than wild-type plants. In addition, PvACR3-expression increased the As resistance in transgenic tobacco, showing that enhanced leaf As levels are not detrimental to its overall As tolerance. PvACR3 was mainly expressed in tobacco leaf veins and was likely to unload AsIII from the vein xylem vessels to the mesophyll cells, thus elevating the leaf As levels. This work demonstrates that heterologously expressing PvACR3 under its native promoter specifically enhances leaf As accumulation in tobacco, which helps to reveal the As-hyperaccumulation mechanism in P. vittata and to enhance the As accumulation in plant leaves for phytoremediation.


Assuntos
Arsênio , Nicotiana , Folhas de Planta , Plantas Geneticamente Modificadas , Nicotiana/metabolismo , Nicotiana/genética , Arsênio/metabolismo , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Biodegradação Ambiental , Poluentes do Solo/metabolismo
12.
Environ Sci Technol ; 58(3): 1669-1679, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38183301

RESUMO

Peatlands are known sinks for arsenic (As). In the present study, seasonal As mobilization was observed in an acidic, minerotrophic peatland (called Lehstenbach) in late summer, accompanied by a peak in dissolved sulfide (S(-II)). Arsenic speciation revealed the lowest seasonal porewater concentrations of arsenite and arsenate, likely due to As(III)-S-bridging to natural organic matter. Arsenic mobilization was driven by the formation of arsenite-S(-II) colloids and formation of methylthiolated arsenates (up to 59% of the sum of As species) and to a minor extent also of inorganic thioarsenates (6%-30%) and oxymethylated arsenates (5%-24%). Sorption experiments using a purified model peat, the Lehstenbach peat, natural (to mimic winter conditions) and reacted with S(-II) (to mimic late summer conditions) at acidic and neutral pH confirmed low sorption of methylthiolated arsenates. At acidic pH and in the presence of S(-II), oxymethylated arsenates were completely thiolated. This methylthiolation decreased As sorption up to 10 and 20 times compared with oxymethylated arsenates and arsenite, respectively. At neutral pH, thiolation of monomethylated arsenates was incomplete, and As could be partially retained as oxymethylated arsenates. Dimethylated arsenate was still fully thiolated and highly mobile. Misidentification of methylthiolated arsenates as oxymethylated arsenates might explain previous contradictory reports of methylation decreasing or increasing As mobility.


Assuntos
Arsênio , Arsenitos , Arseniatos , Estações do Ano , Solo
13.
Environ Sci Technol ; 58(9): 4204-4213, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38373240

RESUMO

Arsenic (As) is widely present in the environment, and virtually all bacteria possess a conserved ars operon to resist As toxicity. High selenium (Se) concentrations tend to be cytotoxic. Se has an uneven regional distribution and is added to mitigate As contamination in Se-deficient areas. However, the bacterial response to exogenous Se remains poorly understood. Herein, we found that As(III) presence was crucial for Enterobacter sp. Z1 to develop resistance against Se(IV). Se(IV) reduction served as a detoxification mechanism in bacteria, and our results demonstrated an increase in the production of Se nanoparticles (SeNPs) in the presence of As(III). Tandem mass tag proteomics analysis revealed that the induction of As(III) activated the inositol phosphate, butanoyl-CoA/dodecanoyl-CoA, TCA cycle, and tyrosine metabolism pathways, thereby enhancing bacterial metabolism to resist Se(IV). Additionally, arsHRBC, sdr-mdr, purHD, and grxA were activated to participate in the reduction of Se(IV) into SeNPs. Our findings provide innovative perspectives for exploring As-induced Se biotransformation in prokaryotes.


Assuntos
Arsênio , Arsenitos , Selênio , Selênio/farmacologia , Selênio/metabolismo , Ácido Selenioso/farmacologia , Ácido Selenioso/metabolismo , Enterobacter/metabolismo , Oxirredução
14.
Environ Sci Technol ; 58(8): 3858-3868, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38356137

RESUMO

Phytate, the principal P storage in plant seeds, is also an important organic P in soils, but it is unavailable for plant uptake. However, the As-hyperaccumulator Pteris vittata can effectively utilize soluble Na-phytate, while its ability to utilize insoluble Ca/Fe-phytate is unclear. Here, we investigated phytate uptake and the underlying mechanisms based on the phytase activity, nutrient uptake, and expression of genes involved in As metabolisms. P. vittata plants were cultivated hydroponically in 0.2-strength Hoagland nutrient solution containing 50 µM As and 0.2 mM Na/Ca/Fe-phytate, with 0.2 mM soluble-P as the control. As the sole P source, all three phytates supported P. vittata growth, with its biomass being 3.2-4.1 g plant-1 and Ca/Fe-phytate being 19-29% more effective than Na-phytate. Phytate supplied soluble P to P. vittata probably via phytase hydrolysis, which was supported by 0.4-0.7 nmol P min-1 g-1 root fresh weight day-1 phytase activity in its root exudates, with 29-545 µM phytate-P being released into the growth media. Besides, compared to Na-phytate, Ca/Fe-phytate enhanced the As contents by 102-140% to 657-781 mg kg-1 in P. vittata roots and by 43-86% to 1109-1447 mg kg-1 in the fronds, which was accompanied by 21-108% increase in Ca and Fe uptake. The increased plant As is probably attributed to 1.3-2.6 fold upregulation of P transporters PvPht1;3/4 for root As uptake, and 1.8-4.3 fold upregulation of arsenite antiporters PvACR3/3;1/3;3 for As translocation to and As sequestration into the fronds. This is the first report to show that, besides soluble Na-phytate, P. vittata can also effectively utilize insoluble Ca/Fe-phytate as the sole P source, which sheds light onto improving its application in phytoremediation of As-contaminated sites.


Assuntos
6-Fitase , Arsênio , Pteris , Poluentes do Solo , 6-Fitase/metabolismo , Pteris/metabolismo , Ácido Fítico/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Biodegradação Ambiental
15.
Environ Sci Technol ; 58(18): 7870-7879, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38647530

RESUMO

Sparingly-soluble phosphate rock (PR), a raw material for P-fertilizer production, can be effectively utilized by the As-hyperaccumulator Pteris vittata but not most plants. In this study, we investigated the associated mechanisms by measuring dissolved organic carbon (DOC) and acid phosphatase in the rhizosphere, and nutrient uptake and gene expression related to the As metabolism in P. vittata. The plants were grown in a soil containing 200 mg kg-1 As and/or 1.5% PR for 30 days. Compared to the As treatment, the P. vittata biomass was increased by 33% to 4.6 g plant-1 in the As+PR treatment, corresponding to 27% decrease in its frond oxidative stress as measured by malondialdehyde. Due to PR-enhanced DOC production in the rhizosphere, the Ca, P, and As contents in P. vittata fronds were increased by 17% to 9.7 g kg-1, 29% to 5.0 g kg-1, and 57% to 1045 mg kg-1 in the As+PR treatment, thereby supporting its better growth. Besides, PR-induced rhizosphere pH increase from 5.0 to 6.9 promoted greater P uptake by P. vittata probably via upregulating low-affinity P transporters PvPTB1;1/1;2 by 3.7-4.1 folds. Consequently, 29% lower available-P induced the 3.3-fold upregulation of high-affinity P transporter PvPht1;3 in the As+PR treatment, which was probably responsible for the 58% decrease in available-As content in the rhizosphere. Consistent with the enhanced As translocation and sequestration, arsenite antiporters PvACR3/3;3 were upregulated by 1.8-4.4 folds in the As+PR than As treatment. In short, sparingly-soluble PR enhanced the Ca, P, and As availability in P. vittata rhizosphere and improved their uptake via upregulating genes related to As metabolism, suggesting its potential application for improving phytoremediation in As-contaminated soils.


Assuntos
Arsênio , Fosfatos , Pteris , Rizosfera , Arsênio/metabolismo , Pteris/metabolismo , Fosfatos/metabolismo , Poluentes do Solo/metabolismo , Solo/química
16.
Biometals ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822902

RESUMO

The indigenous halophilic arsenite-resistant bacterium Halomonas elongata strain SEK2 isolated from the high saline soil of Malek Mohammad hole, Lut Desert, Iran, could tolerate high concentrations of arsenate (As5+) and arsenite (As3+) up to 800 and 40 mM in the SW-10 agar medium, respectively. The isolated strain was able to tolerate considerable concentrations of other toxic heavy metals and oxyanions, including Cadmium (Cd2+), Chromate (Cr6+), lead (Pb2+), and selenite (Se4+), regarding the high salinity of the culture media (with a total salt concentration of 10% (w/v)), the tolerance potential of the isolate SEK2 was unprecedented. The bioremoval potential of the isolate SEK2 was examined through the Silver diethyldithiocarbamate (SDDC) method and demonstrated that the strain SEK2 could remove 60% of arsenite from arsenite-containing growth medium after 48 h of incubation without converting it to arsenate. The arsenite adsorption or uptake by the halophilic bacterium was investigated and substantiated through Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscope (SEM), and Energy Dispersive X-ray (EDX) analyses. Furthermore, Transmission electron microscope (TEM) analysis revealed ultra-structural alterations in the presence of arsenite that could be attributed to intracellular accumulation of arsenite by the bacterial cell. Genome sequencing analysis revealed the presence of arsenite resistance as well as other heavy metals/oxyanion resistance genes in the genome of this bacterial strain. Therefore, Halomonas elongata strain SEK2 was identified as an arsenite-resistant halophilic bacterium for the first time that could be used for arsenite bioremediation in saline arsenite-polluted environments.

17.
J Biochem Mol Toxicol ; 38(10): e23863, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39318027

RESUMO

Arsenic is a toxic environmental pollutant heavy metal, and one of its critical target tissues in the body is the liver. Carvacrol is a natural phytocompound that stands out with its antioxidant, anti-inflammatory, and antiapoptotic properties. The current study aims to investigate the protective feature of carvacrol against sodium arsenite-induced liver toxicity. Thirty-five Sprague-Dawley male rats were divided into five groups: Control, Sodium arsenite (SA), CRV, SA + CRV25, and SA + CRV50. Sodium arsenite was administered via oral gavage at a dose of 10 mg/kg for 14 days, and 30 min later, CRV 25 or 50 mg/kg was administered via oral gavage. Oxidative stress, inflammation, apoptosis, autophagy damage pathways parameters, and liver tissue integrity were analyzed using biochemical, molecular, western blot, histological, and immunohistological methods. Carvacrol decreased sodium arsenite-induced oxidative stress by suppressing malondialdehyde levels and increasing superoxide dismutase, catalase, glutathione peroxidase activities, and glutathione levels. Carvacrol reduced inflammation damage by reducing sodium arsenite-induced increased levels of NF-κB and the cytokines (TNF-α, IL-1ß, IL-6, RAGE, and NLRP3) it stimulates. Carvacrol also reduced sodium arsenite-induced autophagic (Beclin-1, LC3A, and LC3B) and apoptotic (P53, Apaf-1, Casp-3, Casp-6, Casp-9, and Bax) parameters. Carvacrol preserved sodium arsenite-induced impaired liver tissue structure. Carvacrol alleviated toxic damage by reducing sodium arsenite-induced increases in oxidative stress, inflammation, apoptosis, and autophagic damage parameters in rat liver tissues. Carvacrol was also beneficial in preserving liver tissue integrity.


Assuntos
Arsenitos , Caspase 3 , Doença Hepática Induzida por Substâncias e Drogas , Cimenos , Fator 2 Relacionado a NF-E2 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos Sprague-Dawley , Compostos de Sódio , Animais , Masculino , Ratos , Compostos de Sódio/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Cimenos/farmacologia , Arsenitos/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Caspase 3/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Proteína Beclina-1/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Proteína X Associada a bcl-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Estresse Oxidativo/efeitos dos fármacos
18.
Biometals ; 37(3): 587-607, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38267778

RESUMO

Inorganic arsenic is a well-known environmental toxicant, and exposure to this metalloid is strongly linked with severe and extensive toxic effects in various organs including the lungs. In the present study, we aimed to investigate the acute and chronic effects of arsenite exposure on pulmonary tissue in young and adult mice. In brief, young and adult female Balb/C mice were exposed to 3 and 30 ppm arsenite daily via drinking water for 30 and 90 days. Subsequently, the animals were sacrificed and various histological and immunohistochemistry (IHC) analyses were performed using lung tissues. Our findings showed arsenite was found to cause dose-dependent pathological changes such as thickening of the alveolar septum, inflammatory cell infiltrations and lung fibrosis in young and adult mice. In addition, arsenite exposure significantly increased the expression of inflammatory markers NF-κB and TNF-α, indicating that arsenite-exposed mice suffered from severe lung inflammation. Moreover, the IHC analysis of fibrotic proteins demonstrated an increased expression of TGF-ß1, α-SMA, vimentin and collagen-I in the arsenite-exposed mice compared to the control mice. This was accompanied by apoptosis, which was indicated by the upregulated expression of caspase-3 in arsenite-exposed mice compared to the control. Adult mice were generally found to be more prone to arsenite toxicity during chronic exposure relative to their younger counterparts. Overall, our findings suggest that arsenite in drinking water may induce dose-dependent and age-dependent structural and functional impairment in the lungs through elevating inflammation and fibrotic proteins.


Assuntos
Apoptose , Arsenitos , Pulmão , Camundongos Endogâmicos BALB C , Animais , Arsenitos/toxicidade , Arsenitos/administração & dosagem , Apoptose/efeitos dos fármacos , Feminino , Camundongos , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Administração Oral , Inflamação/induzido quimicamente , Inflamação/patologia , Inflamação/metabolismo
19.
Environ Res ; 260: 119660, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39048066

RESUMO

The knowledge about co-transport of goethite and As3+ to investigate the effect of goethite colloids on As3+ transport under various degrees of seawater intrusion, particular extremely conditions, in groundwater environment is still limited. The main objective is to investigate the influence of seawater intrusion on the sorption, migration, and reaction of As3+and goethite colloids into sand aquifer media under anoxic conditions by using the bench-scale and reactive geochemical modeling. The research consisted of two parts as follows: 1) column transport experiments consisting of 8 columns, which were packed by using synthesis groundwater at IS of 0.5, 50, 200, and 400 mM referring to the saline of seawater system in the study area, and 2) reactive transport modeling, the mathematical model (HYDRUS-1D) was applied to describe the co-transport of As3+ and goethite. Finally, to explain the interaction of goethite and As3+, the Derjaguin-Landau-Verwey-Overbeek (DLVO) calculation was considered to support the experimental results and HYDRUS-1D model. The results of column experiments showed goethite colloids can significantly inhibit the mobility of As3+ under high IS conditions (>200 mM). The Rf of As3+ bound to goethite grows to higher sizes (47.5 and 65.0 µm for 200 and 400 mM, respectively) of goethite colloid, inhibiting As3+ migration through the sand columns. In contrast, based on Rf value, goethite colloids transport As3+ more rapidly than a solution with a lower IS (0.5 and 50 mM). The knowledge gained from this study would help to better understand the mechanisms of As3+ contamination in urbanized coastal groundwater aquifers and to assess the transport of As3+ in groundwater, which is useful for groundwater management, including the optimum pumping rate and long-term monitoring of groundwater quality.


Assuntos
Arsenitos , Coloides , Compostos de Ferro , Minerais , Compostos de Ferro/química , Coloides/química , Minerais/química , Concentração Osmolar , Arsenitos/química , Arsenitos/análise , Água Subterrânea/química , Areia/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Modelos Químicos , Modelos Teóricos , Água do Mar/química
20.
Arch Toxicol ; 98(5): 1369-1381, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38485781

RESUMO

Chronic arsenic exposure is considered to increase the risk of breast cancer. p62 is a multifunctional adaptor protein that controls myriad cellular processes and is overexpressed in breast cancer tissues. Although previous studies have indicated the involvement of p62 accumulation in arsenic tumorigenesis, the underlying mechanism remains obscure. Here, we found that 0.1 µM or 0.5 µM arsenite exposure for 24 weeks induced oncogenic phenotypes in human mammary epithelial cells. Elevated aerobic glycolysis, cell proliferation capacity, and activation of p62-mTOR pathway, as indicated by increased protein levels of p62, phosphorylated-mTOR (p-mTOR) and hypoxia-inducible factor 1α (HIF1α), were observed in chronically arsenite-exposed cells, and of note in advance of the onset of oncogenic phenotypes. Moreover, p62 silencing inhibited acquisition of oncogenic phenotypes in arsenite-exposed cells. The protein levels of p-mTOR and HIF1α, as well as aerobic glycolysis and cell proliferation, were suppressed by p62 knockdown. In addition, re-activation of p­mTOR reversed the inhibitory effects of p62 knockdown. Collectively, our data suggest that p62 exerts an oncogenic role via mTORC1 activation and acts as a key player in glucose metabolism during arsenite-induced malignant transformation, which provides a new mechanistic clue for the arsenite carcinogenesis.


Assuntos
Arsênio , Arsenitos , Neoplasias da Mama , Humanos , Feminino , Arsênio/toxicidade , Arsenitos/toxicidade , Glicólise , Serina-Treonina Quinases TOR/metabolismo , Carcinogênese , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/metabolismo , Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/metabolismo , Células Epiteliais/metabolismo , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa