Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 316
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38960405

RESUMO

Plasmids are extrachromosomal DNA found in microorganisms. They often carry beneficial genes that help bacteria adapt to harsh conditions. Plasmids are also important tools in genetic engineering, gene therapy, and drug production. However, it can be difficult to identify plasmid sequences from chromosomal sequences in genomic and metagenomic data. Here, we have developed a new tool called PlasmidHunter, which uses machine learning to predict plasmid sequences based on gene content profile. PlasmidHunter can achieve high accuracies (up to 97.6%) and high speeds in benchmark tests including both simulated contigs and real metagenomic plasmidome data, outperforming other existing tools.


Assuntos
Aprendizado de Máquina , Plasmídeos , Plasmídeos/genética , Análise de Sequência de DNA/métodos , Software , Biologia Computacional/métodos , Algoritmos
2.
Breast Cancer Res ; 26(1): 31, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395930

RESUMO

BACKGROUND: Accurate classification of breast cancer molecular subtypes is crucial in determining treatment strategies and predicting clinical outcomes. This classification largely depends on the assessment of human epidermal growth factor receptor 2 (HER2), estrogen receptor (ER), and progesterone receptor (PR) status. However, variability in interpretation among pathologists pose challenges to the accuracy of this classification. This study evaluates the role of artificial intelligence (AI) in enhancing the consistency of these evaluations. METHODS: AI-powered HER2 and ER/PR analyzers, consisting of cell and tissue models, were developed using 1,259 HER2, 744 ER, and 466 PR-stained immunohistochemistry (IHC) whole-slide images of breast cancer. External validation cohort comprising HER2, ER, and PR IHCs of 201 breast cancer cases were analyzed with these AI-powered analyzers. Three board-certified pathologists independently assessed these cases without AI annotation. Then, cases with differing interpretations between pathologists and the AI analyzer were revisited with AI assistance, focusing on evaluating the influence of AI assistance on the concordance among pathologists during the revised evaluation compared to the initial assessment. RESULTS: Reevaluation was required in 61 (30.3%), 42 (20.9%), and 80 (39.8%) of HER2, in 15 (7.5%), 17 (8.5%), and 11 (5.5%) of ER, and in 26 (12.9%), 24 (11.9%), and 28 (13.9%) of PR evaluations by the pathologists, respectively. Compared to initial interpretations, the assistance of AI led to a notable increase in the agreement among three pathologists on the status of HER2 (from 49.3 to 74.1%, p < 0.001), ER (from 93.0 to 96.5%, p = 0.096), and PR (from 84.6 to 91.5%, p = 0.006). This improvement was especially evident in cases of HER2 2+ and 1+, where the concordance significantly increased from 46.2 to 68.4% and from 26.5 to 70.7%, respectively. Consequently, a refinement in the classification of breast cancer molecular subtypes (from 58.2 to 78.6%, p < 0.001) was achieved with AI assistance. CONCLUSIONS: This study underscores the significant role of AI analyzers in improving pathologists' concordance in the classification of breast cancer molecular subtypes.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Receptores de Estrogênio/metabolismo , Biomarcadores Tumorais/metabolismo , Inteligência Artificial , Variações Dependentes do Observador , Receptores de Progesterona/metabolismo , Receptor ErbB-2/metabolismo
3.
Small ; : e2401238, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602230

RESUMO

Multifunctional devices integrated with electrochromic and supercapacitance properties are fascinating because of their extensive usage in modern electronic applications. In this work, vanadium-doped cobalt chloride carbonate hydroxide hydrate nanostructures (V-C3H NSs) are successfully synthesized and show unique electrochromic and supercapacitor properties. The V-C3H NSs material exhibits a high specific capacitance of 1219.9 F g-1 at 1 mV s-1 with a capacitance retention of 100% over 30 000 CV cycles. The electrochromic performance of the V-C3H NSs material is confirmed through in situ spectroelectrochemical measurements, where the switching time, coloration efficiency (CE), and optical modulation (∆T) are found to be 15.7 and 18.8 s, 65.85 cm2 C-1 and 69%, respectively. A coupled multilayer artificial neural network (ANN) model is framed to predict potential and current from red (R), green (G), and blue (B) color values. The optimized V-C3H NSs are used as the active materials in the fabrication of flexible/wearable electrochromic micro-supercapacitor devices (FEMSDs) through a cost-effective mask-assisted vacuum filtration method. The fabricated FEMSD exhibits an areal capacitance of 47.15 mF cm-2 at 1 mV s-1 and offers a maximum areal energy and power density of 104.78 Wh cm-2 and 0.04 mW cm-2, respectively. This material's interesting energy storage and electrochromic properties are promising in multifunctional electrochromic energy storage applications.

4.
J Med Virol ; 96(1): e29355, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38179882

RESUMO

It is widely acknowledged that infectious diseases have wrought immense havoc on human society, being regarded as adversaries from which humanity cannot elude. In recent years, the advancement of Artificial Intelligence (AI) technology has ushered in a revolutionary era in the realm of infectious disease prevention and control. This evolution encompasses early warning of outbreaks, contact tracing, infection diagnosis, drug discovery, and the facilitation of drug design, alongside other facets of epidemic management. This article presents an overview of the utilization of AI systems in the field of infectious diseases, with a specific focus on their role during the COVID-19 pandemic. The article also highlights the contemporary challenges that AI confronts within this domain and posits strategies for their mitigation. There exists an imperative to further harness the potential applications of AI across multiple domains to augment its capacity in effectively addressing future disease outbreaks.


Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , Inteligência Artificial , Pandemias , Busca de Comunicante , Doenças Transmissíveis/diagnóstico
5.
Histopathology ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39104219

RESUMO

AIM: Manual detection and scoring of Ki67 hotspots is difficult and prone to variability, limiting its clinical utility. Automated hotspot detection and scoring by digital image analysis (DIA) could improve the assessment of the Ki67 hotspot proliferation index (PI). This study compared the clinical performance of Ki67 hotspot detection and scoring DIA algorithms based on virtual dual staining (VDS) and deep learning (DL) with manual Ki67 hotspot PI assessment. METHODS: Tissue sections of 135 consecutive invasive breast carcinomas were immunohistochemically stained for Ki67. Two DIA algorithms, based on VDS and DL, automatically determined the Ki67 hotspot PI. For manual assessment; two independent observers detected hotspots and calculated scores using a validated scoring protocol. RESULTS: Automated hotspot detection and assessment by VDS and DL could be performed in 73% and 100% of the cases, respectively. Automated hotspot detection by VDS and DL led to higher Ki67 hotspot PIs (mean 39.6% and 38.3%, respectively) compared to manual consensus Ki67 PIs (mean 28.8%). Comparing manual consensus Ki67 PIs with VDS Ki67 PIs revealed substantial correlation (r = 0.90), while manual consensus versus DL Ki67 PIs demonstrated high correlation (r = 0.95). CONCLUSION: Automated Ki67 hotspot detection and analysis correlated strongly with manual Ki67 assessment and provided higher PIs compared to manual assessment. The DL-based algorithm outperformed the VDS-based algorithm in clinical applicability, because it did not depend on virtual alignment of slides and correlated stronger with manual scores. Use of a DL-based algorithm may allow clearer Ki67 PI cutoff values, thereby improving the clinical usability of Ki67.

6.
Reprod Biol Endocrinol ; 22(1): 101, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118049

RESUMO

PURPOSE: To determine the factors influencing the likelihood of biochemical pregnancy loss (BPL) after transfer of a euploid embryo from preimplantation genetic testing for aneuploidy (PGT-A) cycles. METHODS: The study employed an observational, retrospective cohort design, encompassing 6020 embryos from 2879 PGT-A cycles conducted between February 2013 and September 2021. Trophectoderm biopsies in day 5 (D5) or day 6 (D6) blastocysts were analyzed by next generation sequencing (NGS). Only single embryo transfers (SET) were considered, totaling 1161 transfers. Of these, 49.9% resulted in positive pregnancy tests, with 18.3% experiencing BPL. To establish a predictive model for BPL, both classical statistical methods and five different supervised classification machine learning algorithms were used. A total of forty-seven factors were incorporated as predictor variables in the machine learning models. RESULTS: Throughout the optimization process for each model, various performance metrics were computed. Random Forest model emerged as the best model, boasting the highest area under the ROC curve (AUC) value of 0.913, alongside an accuracy of 0.830, positive predictive value of 0.857, and negative predictive value of 0.807. For the selected model, SHAP (SHapley Additive exPlanations) values were determined for each of the variables to establish which had the best predictive ability. Notably, variables pertaining to embryo biopsy demonstrated the greatest predictive capacity, followed by factors associated with ovarian stimulation (COS), maternal age, and paternal age. CONCLUSIONS: The Random Forest model had a higher predictive power for identifying BPL occurrences in PGT-A cycles. Specifically, variables associated with the embryo biopsy procedure (biopsy day, number of biopsied embryos, and number of biopsied cells) and ovarian stimulation (number of oocytes retrieved and duration of stimulation), exhibited the strongest predictive power.


Assuntos
Aborto Espontâneo , Aneuploidia , Testes Genéticos , Aprendizado de Máquina , Diagnóstico Pré-Implantação , Humanos , Feminino , Gravidez , Diagnóstico Pré-Implantação/métodos , Estudos Retrospectivos , Adulto , Testes Genéticos/métodos , Aborto Espontâneo/diagnóstico , Aborto Espontâneo/genética , Aborto Espontâneo/epidemiologia , Transferência Embrionária/métodos , Blastocisto
7.
Biotechnol Bioeng ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054738

RESUMO

Nanobodies, derived from camelids and sharks, offer compact, single-variable heavy-chain antibodies with diverse biomedical potential. This review explores their generation methods, including display techniques on phages, yeast, or bacteria, and computational methodologies. Integrating experimental and computational approaches enhances understanding of nanobody structure and function. Future trends involve leveraging next-generation sequencing, machine learning, and artificial intelligence for efficient candidate selection and predictive modeling. The convergence of traditional and computational methods promises revolutionary advancements in precision biomedical applications such as targeted drug delivery and diagnostics. Embracing these technologies accelerates nanobody development, driving transformative breakthroughs in biomedicine and paving the way for precision medicine and biomedical innovation.

8.
J Neurooncol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958849

RESUMO

PURPOSE: Artificial Intelligence (AI) has become increasingly integrated clinically within neurosurgical oncology. This report reviews the cutting-edge technologies impacting tumor treatment and outcomes. METHODS: A rigorous literature search was performed with the aid of a research librarian to identify key articles referencing AI and related topics (machine learning (ML), computer vision (CV), augmented reality (AR), virtual reality (VR), etc.) for neurosurgical care of brain or spinal tumors. RESULTS: Treatment of central nervous system (CNS) tumors is being improved through advances across AI-such as AL, CV, and AR/VR. AI aided diagnostic and prognostication tools can influence pre-operative patient experience, while automated tumor segmentation and total resection predictions aid surgical planning. Novel intra-operative tools can rapidly provide histopathologic tumor classification to streamline treatment strategies. Post-operative video analysis, paired with rich surgical simulations, can enhance training feedback and regimens. CONCLUSION: While limited generalizability, bias, and patient data security are current concerns, the advent of federated learning, along with growing data consortiums, provides an avenue for increasingly safe, powerful, and effective AI platforms in the future.

9.
World J Urol ; 42(1): 455, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073590

RESUMO

PURPOSE: Large language models (LLMs) are a form of artificial intelligence (AI) that uses deep learning techniques to understand, summarize and generate content. The potential benefits of LLMs in healthcare is predicted to be immense. The objective of this study was to examine the quality of patient information leaflets (PILs) produced by 3 LLMs on urological topics. METHODS: Prompts were created to generate PILs from 3 LLMs: ChatGPT-4, PaLM 2 (Google Bard) and Llama 2 (Meta) across four urology topics (circumcision, nephrectomy, overactive bladder syndrome, and transurethral resection of the prostate). PILs were evaluated using a quality assessment checklist. PIL readability was assessed by the Average Reading Level Consensus Calculator. RESULTS: PILs generated by PaLM 2 had the highest overall average quality score (3.58), followed by Llama 2 (3.34) and ChatGPT-4 (3.08). PaLM 2 generated PILs were of the highest quality in all topics except TURP and was the only LLM to include images. Medical inaccuracies were present in all generated content including instances of significant error. Readability analysis identified PaLM 2 generated PILs as the simplest (age 14-15 average reading level). Llama 2 PILs were the most difficult (age 16-17 average). CONCLUSION: While LLMs can generate PILs that may help reduce healthcare professional workload, generated content requires clinician input for accuracy and inclusion of health literacy aids, such as images. LLM-generated PILs were above the average reading level for adults, necessitating improvement in LLM algorithms and/or prompt design. How satisfied patients are to LLM-generated PILs remains to be evaluated.


Assuntos
Inteligência Artificial , Urologia , Humanos , Educação de Pacientes como Assunto/métodos , Idioma , Doenças Urológicas/cirurgia
10.
Scand J Gastroenterol ; 59(8): 925-932, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38950889

RESUMO

OBJECTIVES: Recently, artificial intelligence (AI) has been applied to clinical diagnosis. Although AI has already been developed for gastrointestinal (GI) tract endoscopy, few studies have applied AI to endoscopic ultrasound (EUS) images. In this study, we used a computer-assisted diagnosis (CAD) system with deep learning analysis of EUS images (EUS-CAD) and assessed its ability to differentiate GI stromal tumors (GISTs) from other mesenchymal tumors and their risk classification performance. MATERIALS AND METHODS: A total of 101 pathologically confirmed cases of subepithelial lesions (SELs) arising from the muscularis propria layer, including 69 GISTs, 17 leiomyomas and 15 schwannomas, were examined. A total of 3283 EUS images were used for training and five-fold-cross-validation, and 827 images were independently tested for diagnosing GISTs. For the risk classification of 69 GISTs, including very-low-, low-, intermediate- and high-risk GISTs, 2,784 EUS images were used for training and three-fold-cross-validation. RESULTS: For the differential diagnostic performance of GIST among all SELs, the accuracy, sensitivity, specificity and area under the receiver operating characteristic (ROC) curve were 80.4%, 82.9%, 75.3% and 0.865, respectively, whereas those for intermediate- and high-risk GISTs were 71.8%, 70.2%, 72.0% and 0.771, respectively. CONCLUSIONS: The EUS-CAD system showed a good diagnostic yield in differentiating GISTs from other mesenchymal tumors and successfully demonstrated the GIST risk classification feasibility. This system can determine whether treatment is necessary based on EUS imaging alone without the need for additional invasive examinations.


Assuntos
Aprendizado Profundo , Diagnóstico por Computador , Endossonografia , Neoplasias Gastrointestinais , Tumores do Estroma Gastrointestinal , Curva ROC , Humanos , Diagnóstico Diferencial , Tumores do Estroma Gastrointestinal/diagnóstico por imagem , Tumores do Estroma Gastrointestinal/patologia , Tumores do Estroma Gastrointestinal/diagnóstico , Neoplasias Gastrointestinais/diagnóstico por imagem , Neoplasias Gastrointestinais/diagnóstico , Feminino , Pessoa de Meia-Idade , Masculino , Idoso , Adulto , Medição de Risco , Sensibilidade e Especificidade , Idoso de 80 Anos ou mais
11.
Clin Chem Lab Med ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38641917

RESUMO

OBJECTIVES: To survey the World Wide Web for critical limits/critical values, assess changes in quantitative low/high thresholds since 1990-93, streamline urgent notification practices, and promote global accessibility. METHODS: We identified Web-posted lists of critical limits/values at university hospitals. We compared 2023 to 1990-93 archived notification thresholds. RESULTS: We found critical notification lists for 26 university hospitals. Laboratory disciplines ranged widely (1-10). The median number of tests was 62 (range 21-116); several posted policies. The breadth of listings increased. Statistically significant differences in 2023 vs. 1990 critical limits were observed for blood gas (pO2, pCO2), chemistry (glucose, calcium, magnesium), and hematology (hemoglobin, platelets, PTT, WBC) tests, and for newborn glucose, potassium, pO2, and hematocrit. Twenty hospitals listed ionized calcium critical limits, which have not changed. Fourteen listed troponin (6), troponin I (3), hs-TnI (3), or troponin T (2). Qualitative critical values expanded across disciplines, encompassing anatomic/surgical pathology. Bioterrorism agents were listed frequently, as were contagious pathogens, although only three hospitals listed COVID-19. Only one notification list detailed point-of-care tests. Two children's hospital lists were Web-accessible. CONCLUSIONS: Urgent notifications should focus on life-threatening conditions. We recommend that hospital staff evaluate changes over the past three decades for clinical impact. Notification lists expanded, especially qualitative tests, suggesting that automation might improve efficiency. Sharing notification lists and policies on the Web will improve accessibility. If not dependent on the limited scope of secondary sources, artificial intelligence could enhance knowledge of urgent notification and critical care practices in the 21st Century.

12.
J Intensive Care Med ; : 8850666241277134, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150821

RESUMO

BACKGROUND AND OBJECTIVE: Healthcare professionals may be able to anticipate more accurately a patient's timing of death and assess their possibility of recovery by implementing a real-time clinical decision support system. Using such a tool, the healthcare system can better understand a patient's condition and make more informed judgements about distributing limited resources. This scoping review aimed to analyze various death prediction AI (Artificial Intelligence) algorithms that have been used in ICU (Intensive Care Unit) patient populations. METHODS: The search strategy of this study involved keyword combinations of outcome and patient setting such as mortality, survival, ICU, terminal care. These terms were used to perform database searches in MEDLINE, Embase, and PubMed up to July 2022. The variables, characteristics, and performance of the identified predictive models were summarized. The accuracy of the models was compared using their Area Under the Curve (AUC) values. RESULTS: Databases search yielded an initial pool of 8271 articles. A two-step screening process was then applied: first, titles and abstracts were reviewed for relevance, reducing the pool to 429 articles. Next, a full-text review was conducted, further narrowing down the selection to 400 key studies. Out of 400 studies on different tools or models for prediction of mortality in ICUs, 16 papers focused on AI-based models which were ultimately included in this study that have deployed different AI-based and machine learning models to make a prediction about negative patient outcome. The accuracy and performance of the different models varied depending on the patient populations and medical conditions. It was found that AI models compared with traditional tools like SAP3 or APACHE IV score were more accurate in death prediction, with some models achieving an AUC of up to 92.9%. The overall mortality rate ranged from 5% to more than 60% in different studies. CONCLUSION: We found that AI-based models exhibit varying performance across different patient populations. To enhance the accuracy of mortality prediction, we recommend customizing models for specific patient groups and medical contexts. By doing so, healthcare professionals may more effectively assess mortality risk and tailor treatments accordingly. Additionally, incorporating additional variables-such as genetic information-into new models can further improve their accuracy.

13.
Age Ageing ; 53(5)2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38776213

RESUMO

INTRODUCTION: Post-operative delirium (POD) is a common complication in older patients, with an incidence of 14-56%. To implement preventative procedures, it is necessary to identify patients at risk for POD. In the present study, we aimed to develop a machine learning (ML) model for POD prediction in older patients, in close cooperation with the PAWEL (patient safety, cost-effectiveness and quality of life in elective surgery) project. METHODS: The model was trained on the PAWEL study's dataset of 878 patients (no intervention, age ≥ 70, 209 with POD). Presence of POD was determined by the Confusion Assessment Method and a chart review. We selected 15 features based on domain knowledge, ethical considerations and a recursive feature elimination. A logistic regression and a linear support vector machine (SVM) were trained, and evaluated using receiver operator characteristics (ROC). RESULTS: The selected features were American Society of Anesthesiologists score, multimorbidity, cut-to-suture time, estimated glomerular filtration rate, polypharmacy, use of cardio-pulmonary bypass, the Montreal cognitive assessment subscores 'memory', 'orientation' and 'verbal fluency', pre-existing dementia, clinical frailty scale, age, recent falls, post-operative isolation and pre-operative benzodiazepines. The linear SVM performed best, with an ROC area under the curve of 0.82 [95% CI 0.78-0.85] in the training set, 0.81 [95% CI 0.71-0.88] in the test set and 0.76 [95% CI 0.71-0.79] in a cross-centre validation. CONCLUSION: We present a clinically useful and explainable ML model for POD prediction. The model will be deployed in the Supporting SURgery with GEriatric Co-Management and AI project.


Assuntos
Delírio , Avaliação Geriátrica , Aprendizado de Máquina , Humanos , Idoso , Feminino , Masculino , Delírio/diagnóstico , Delírio/epidemiologia , Idoso de 80 Anos ou mais , Avaliação Geriátrica/métodos , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Medição de Risco , Fatores de Risco , Valor Preditivo dos Testes , Fatores Etários , Máquina de Vetores de Suporte , Algoritmos
14.
Surg Endosc ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073558

RESUMO

BACKGROUND: Artificial intelligence (AI) has the potential to enhance surgical practice by predicting anatomical structures within the surgical field, thereby supporting surgeons' experiences and cognitive skills. Preserving and utilising nerves as critical guiding structures is paramount in rectal cancer surgery. Hence, we developed a deep learning model based on U-Net to automatically segment nerves. METHODS: The model performance was evaluated using 60 randomly selected frames, and the Dice and Intersection over Union (IoU) scores were quantitatively assessed by comparing them with ground truth data. Additionally, a questionnaire was administered to five colorectal surgeons to gauge the extent of underdetection, overdetection, and the practical utility of the model in rectal cancer surgery. Furthermore, we conducted an educational assessment of non-colorectal surgeons, trainees, physicians, and medical students. We evaluated their ability to recognise nerves in mesorectal dissection scenes, scored them on a 12-point scale, and examined the score changes before and after exposure to the AI analysis videos. RESULTS: The mean Dice and IoU scores for the 60 test frames were 0.442 (range 0.0465-0.639) and 0.292 (range 0.0238-0.469), respectively. The colorectal surgeons revealed an under-detection score of 0.80 (± 0.47), an over-detection score of 0.58 (± 0.41), and a usefulness evaluation score of 3.38 (± 0.43). The nerve recognition scores of non-colorectal surgeons, rotating residents, and medical students significantly improved by simply watching the AI nerve recognition videos for 1 min. Notably, medical students showed a more substantial increase in nerve recognition scores when exposed to AI nerve analysis videos than when exposed to traditional lectures on nerves. CONCLUSIONS: In laparoscopic and robot-assisted rectal cancer surgeries, the AI-based nerve recognition model achieved satisfactory recognition levels for expert surgeons and demonstrated effectiveness in educating junior surgeons and medical students on nerve recognition.

15.
Curr Osteoporos Rep ; 22(1): 115-121, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38227177

RESUMO

PURPOSE OF REVIEW: With the recent explosion in the use of artificial intelligence (AI) and specifically ChatGPT, we sought to determine whether ChatGPT could be used to assist in writing credible, peer-reviewed, scientific review articles. We also sought to assess, in a scientific study, the advantages and limitations of using ChatGPT for this purpose. To accomplish this, 3 topics of importance in musculoskeletal research were selected: (1) the intersection of Alzheimer's disease and bone; (2) the neural regulation of fracture healing; and (3) COVID-19 and musculoskeletal health. For each of these topics, 3 approaches to write manuscript drafts were undertaken: (1) human only; (2) ChatGPT only (AI-only); and (3) combination approach of #1 and #2 (AI-assisted). Articles were extensively fact checked and edited to ensure scientific quality, resulting in final manuscripts that were significantly different from the original drafts. Numerous parameters were measured throughout the process to quantitate advantages and disadvantages of approaches. RECENT FINDINGS: Overall, use of AI decreased the time spent to write the review article, but required more extensive fact checking. With the AI-only approach, up to 70% of the references cited were found to be inaccurate. Interestingly, the AI-assisted approach resulted in the highest similarity indices suggesting a higher likelihood of plagiarism. Finally, although the technology is rapidly changing, at the time of study, ChatGPT 4.0 had a cutoff date of September 2021 rendering identification of recent articles impossible. Therefore, all literature published past the cutoff date was manually provided to ChatGPT, rendering approaches #2 and #3 identical for contemporary citations. As a result, for the COVID-19 and musculoskeletal health topic, approach #2 was abandoned midstream due to the extensive overlap with approach #3. The main objective of this scientific study was to see whether AI could be used in a scientifically appropriate manner to improve the scientific writing process. Indeed, AI reduced the time for writing but had significant inaccuracies. The latter necessitates that AI cannot currently be used alone but could be used with careful oversight by humans to assist in writing scientific review articles.


Assuntos
Inteligência Artificial , COVID-19 , Humanos , Consolidação da Fratura , Redação
16.
Artigo em Inglês | MEDLINE | ID: mdl-38573349

RESUMO

PURPOSE: The aim of this study was to define the capability of ChatGPT-4 and Google Gemini in analyzing detailed glaucoma case descriptions and suggesting an accurate surgical plan. METHODS: Retrospective analysis of 60 medical records of surgical glaucoma was divided into "ordinary" (n = 40) and "challenging" (n = 20) scenarios. Case descriptions were entered into ChatGPT and Bard's interfaces with the question "What kind of surgery would you perform?" and repeated three times to analyze the answers' consistency. After collecting the answers, we assessed the level of agreement with the unified opinion of three glaucoma surgeons. Moreover, we graded the quality of the responses with scores from 1 (poor quality) to 5 (excellent quality), according to the Global Quality Score (GQS) and compared the results. RESULTS: ChatGPT surgical choice was consistent with those of glaucoma specialists in 35/60 cases (58%), compared to 19/60 (32%) of Gemini (p = 0.0001). Gemini was not able to complete the task in 16 cases (27%). Trabeculectomy was the most frequent choice for both chatbots (53% and 50% for ChatGPT and Gemini, respectively). In "challenging" cases, ChatGPT agreed with specialists in 9/20 choices (45%), outperforming Google Gemini performances (4/20, 20%). Overall, GQS scores were 3.5 ± 1.2 and 2.1 ± 1.5 for ChatGPT and Gemini (p = 0.002). This difference was even more marked if focusing only on "challenging" cases (1.5 ± 1.4 vs. 3.0 ± 1.5, p = 0.001). CONCLUSION: ChatGPT-4 showed a good analysis performance for glaucoma surgical cases, either ordinary or challenging. On the other side, Google Gemini showed strong limitations in this setting, presenting high rates of unprecise or missed answers.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38700592

RESUMO

PURPOSE: To investigate the possibility of distinguishing between IgG4-related ophthalmic disease (IgG4-ROD) and orbital MALT lymphoma using artificial intelligence (AI) and hematoxylin-eosin (HE) images. METHODS: After identifying a total of 127 patients from whom we were able to procure tissue blocks with IgG4-ROD and orbital MALT lymphoma, we performed histological and molecular genetic analyses, such as gene rearrangement. Subsequently, pathological HE images were collected from these patients followed by the cutting out of 10 different image patches from the HE image of each patient. A total of 970 image patches from the 97 patients were used to construct nine different models of deep learning, and the 300 image patches from the remaining 30 patients were used to evaluate the diagnostic performance of the models. Area under the curve (AUC) and accuracy (ACC) were used for the performance evaluation of the deep learning models. In addition, four ophthalmologists performed the binary classification between IgG4-ROD and orbital MALT lymphoma. RESULTS: EVA, which is a vision-centric foundation model to explore the limits of visual representation, was the best deep learning model among the nine models. The results of EVA were ACC = 73.3% and AUC = 0.807. The ACC of the four ophthalmologists ranged from 40 to 60%. CONCLUSIONS: It was possible to construct an AI software based on deep learning that was able to distinguish between IgG4-ROD and orbital MALT. This AI model may be useful as an initial screening tool to direct further ancillary investigations.

18.
BMC Med Imaging ; 24(1): 140, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858631

RESUMO

OBJECTIVE: To construct the deep learning convolution neural network (CNN) model and machine learning support vector machine (SVM) model of bone remodeling of chronic maxillary sinusitis (CMS) based on CT image data to improve the accuracy of image diagnosis. METHODS: Maxillary sinus CT data of 1000 samples in 500 patients from January 2018 to December 2021 in our hospital was collected. The first part is the establishment and testing of chronic maxillary sinusitis detection model by 461 images. The second part is the establishment and testing of the detection model of chronic maxillary sinusitis with bone remodeling by 802 images. The sensitivity, specificity and accuracy and area under the curve (AUC) value of the test set were recorded, respectively. RESULTS: Preliminary application results of CT based AI in the diagnosis of chronic maxillary sinusitis and bone remodeling. The sensitivity, specificity and accuracy of the test set of 93 samples of CMS, were 0.9796, 0.8636 and 0.9247, respectively. Simultaneously, the value of AUC was 0.94. And the sensitivity, specificity and accuracy of the test set of 161 samples of CMS with bone remodeling were 0.7353, 0.9685 and 0.9193, respectively. Simultaneously, the value of AUC was 0.89. CONCLUSION: It is feasible to use artificial intelligence research methods such as deep learning and machine learning to automatically identify CMS and bone remodeling in MSCT images of paranasal sinuses, which is helpful to standardize imaging diagnosis and meet the needs of clinical application.


Assuntos
Remodelação Óssea , Aprendizado Profundo , Sinusite Maxilar , Sensibilidade e Especificidade , Máquina de Vetores de Suporte , Tomografia Computadorizada por Raios X , Humanos , Sinusite Maxilar/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Doença Crônica , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Redes Neurais de Computação , Idoso , Inteligência Artificial
19.
Skin Res Technol ; 30(2): e13565, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38279539

RESUMO

BACKGROUND: The morphology and content of stratum corneum (SC) cells provide information on the physiological condition of the skin. Although the morphological and biochemical properties of the SC are known, no method is available to fully access and interpret this information. This study aimed to develop a method to comprehensively decode the physiological information of the skin, based on the SC. Therefore, we established a novel image analysis technique based on artificial intelligence (AI) and multivariate analysis to predict skin conditions. MATERIALS AND METHODS: SC samples were collected from participants, imaged, and annotated. Nine biomarkers were measured in the samples using enzyme-linked immunosorbent assay. The data were then used to teach machine-learning models to recognize individual SC cell regions and estimate the levels of the nine biomarkers from the images. Skin physiological indicators (e.g., skin barrier function, facial analysis, and questionnaires) were measured or obtained from the participants. Multivariate analysis, including biomarker levels ​​and structural parameters of the SC as variables, was used to estimate these physiological indicators. RESULTS: We established two machine-learning models. The accuracy of recognition was assessed according to the average intersection over union (0.613), precision (0.953), recall (0.640), and F-value (0.766). The predicted biomarker levels significantly correlated with the measured levels. Skin physiological indicators and questionnaire answers were predicted with strong correlations and correct answer rates. CONCLUSION: Various physiological skin conditions can be predicted from images of the SC using AI models and multivariate analysis. Our method is expected to be useful for dermatological treatment optimization.


Assuntos
Inteligência Artificial , Pele , Humanos , Pele/diagnóstico por imagem , Epiderme , Aprendizado de Máquina , Biomarcadores
20.
Neurosurg Rev ; 47(1): 261, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38844709

RESUMO

Papillary glioneuronal tumors (PGNTs), classified as Grade I by the WHO in 2016, present diagnostic challenges due to their rarity and potential for malignancy. Xiaodan Du et al.'s recent study of 36 confirmed PGNT cases provides critical insights into their imaging characteristics, revealing frequent presentation with headaches, seizures, and mass effect symptoms, predominantly located in the supratentorial region near the lateral ventricles. Lesions often appeared as mixed cystic and solid masses with septations or as cystic masses with mural nodules. Given these complexities, artificial intelligence (AI) and machine learning (ML) offer promising advancements for PGNT diagnosis. Previous studies have demonstrated AI's efficacy in diagnosing various brain tumors, utilizing deep learning and advanced imaging techniques for rapid and accurate identification. Implementing AI in PGNT diagnosis involves assembling comprehensive datasets, preprocessing data, extracting relevant features, and iteratively training models for optimal performance. Despite AI's potential, medical professionals must validate AI predictions, ensuring they complement rather than replace clinical expertise. This integration of AI and ML into PGNT diagnostics could significantly enhance preoperative accuracy, ultimately improving patient outcomes through more precise and timely interventions.


Assuntos
Inteligência Artificial , Neoplasias Encefálicas , Aprendizado de Máquina , Humanos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Glioma/diagnóstico , Glioma/diagnóstico por imagem , Glioma/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa