RESUMO
BACKGROUND: Necrotic enteritis (NE) is a severe intestinal infection that affects both humans and poultry. It is caused by the bacterium Clostridium perfringens (CP), but the precise mechanisms underlying the disease pathogenesis remain elusive. This study aims to develop an NE broiler chicken model, explore the impact of the microbiome on NE pathogenesis, and study the virulence of CP isolates with different toxin gene combinations. METHODS: This study established an animal disease model for NE in broiler chickens. The methodology encompassed inducing abrupt protein changes and immunosuppression in the first experiment, and in the second, challenging chickens with CP isolates containing various toxin genes. NE was evaluated through gross and histopathological scoring of the jejunum. Subsequently, jejunal contents were collected from these birds for microbiome analysis via 16S rRNA amplicon sequencing, followed by sequence analysis to investigate microbial diversity and abundance, employing different bioinformatic approaches. RESULTS: Our findings reveal that CP infection, combined with an abrupt increase in dietary protein concentration and/or infection with the immunosuppressive variant infectious bursal disease virus (vIBDV), predisposed birds to NE development. We observed a significant decrease (p < 0.0001) in the abundance of Lactobacillus and Romboutsia genera in the jejunum, accompanied by a notable increase (p < 0.0001) in Clostridium and Escherichia. Jejunal microbial dysbiosis and severe NE lesions were particularly evident in birds infected with CP isolates containing cpa, netB, tpeL, and cpb2 toxin genes, compared to CP isolates with other toxin gene combinations. Notably, birds that did not develop clinical or subclinical NE following CP infection exhibited a significantly higher (p < 0.0001) level of Romboutsia. These findings shed light on the complex interplay between CP infection, the gut microbiome, and NE pathogenesis in broiler chickens. CONCLUSION: Our study establishes that dysbiosis within the jejunal microbiome serves as a reliable biomarker for detecting subclinical and clinical NE in broiler chicken models. Additionally, we identify the potential of the genera Romboutsia and Lactobacillus as promising candidates for probiotic development, offering effective alternatives to antibiotics in NE prevention and control.
Assuntos
Infecções por Clostridium , Enterite , Microbioma Gastrointestinal , Doenças das Aves Domésticas , Humanos , Animais , Clostridium perfringens/genética , Galinhas/genética , RNA Ribossômico 16S/genética , Disbiose , Jejuno/química , Jejuno/patologia , Enterite/microbiologia , Enterite/patologia , Enterite/veterinária , Infecções por Clostridium/veterinária , Infecções por Clostridium/microbiologia , Infecções por Clostridium/patologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/patologiaRESUMO
Reducing dietary crude protein (CP) concentration while maintaining adequate amino acid (AA) supply by free AA inclusion can contribute to attenuate the negative environmental effects of animal farming. This study investigated upper limits of dietary free AA inclusions without undesirable effects including the dependence on asparagine (Asn) and glutamine (Gln) supply. Ten broilers were allocated to sixty-three metabolism units each and offered nine experimental diets from day (d) 7-21 (n 7). One diet (167 g CP/kg) contained 80 g soya protein isolate (SPI)/kg. In the other diets, 25, 50, 75 and 100 % of the digestible AA from SPI were substituted with free AA. Digestible Asn+aspartic acid (Asp) and Gln+glutamic acid (Glu) were substituted with Asp/Glu or 50/50 mixes of Asp/Asn and Glu/Gln, respectively. Total excreta were collected from d 11-14 and from d 18-21. Growth and nitrogen accretion were unaffected by 25 and 50 % substitution without and with free Asn/Gln, respectively, but decreased at higher substitution (P ≤ 0·024). Circulating concentrations of Asp, Glu and Gln were unaffected by treatment, while Asn decreased at substitution higher than 50 % when Asn/Gln were not provided (P ≤ 0·005). Blood gas analysis on d 21 indicated a compensated metabolic acidosis at substitution higher than 50 and 75 % without and with free Asn/Gln, respectively (P ≤ 0·017). Results suggest that adding Asn/Gln increased an upper limit for proportion of dietary free AA from 10 to 19 % of dietary CP and enabled higher free AA inclusion without affecting the acid-base balance.
Assuntos
Aminoácidos , Glutamina , Animais , Aminoácidos/metabolismo , Galinhas/metabolismo , Asparagina/metabolismo , Equilíbrio Ácido-Base , Dieta/veterinária , Ácido Glutâmico , Peptídeos , Proteínas Alimentares/farmacologia , Nitrogênio/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição AnimalRESUMO
ABSTRACTThe study was conducted to investigate the effect of dietary encapsulated organic acids (EOAs) and anticoccidials on the age-dependent development trend of intestinal Lactobacillus, E. coli, coliforms, and Eimeria in Eimeria spp.-infected broiler chickens from reused litter. In total, 525 mixed-sex 1-day-old broiler chickens were used in an uninfected/un-supplemented control plus a 2 (no EOA or 0.1% EOA) × 3 (no anticoccidial, 0.05% maduramicin, and 0.02% diclazuril) factorial arrangement of treatments as a completely randomized design with five replicates of 15 chickens. Results indicated that the cubic model is the best model for explaining the development trends of the intestinal microbial population in uninfected and infected chickens (affected by the EOAs and anticoccidials). Based on the cubic models, the microbial populations had development trends with a decreasing slope from 1-day-old until the early or middle finisher period. EOAs and anticoccidials, especially their simultaneous usage, improved (P < 0.05) the linear and cubic models' slope (affected negatively by Eimeria infection). A polynomial model (order = 6) was determined as the best model for explaining the EOAs and anticoccidial effects on the trend of intestinal Eimeria oocysts in infected chickens. The infection peak (which happened at 25 days) was reduced by EOAs and anticoccidials, especially their simultaneous usage. In conclusion, cubic and polynomial (order = 6) regressions are the best models fitted for explaining the microbiota and Eimeria oocysts trends, respectively. EOAs and anticoccidials, especially their simultaneous usage, had beneficial effects on the microbiota and Eimeria development trends and gastrointestinal health in coccidia-infected broiler chickens. RESEARCH HIGHLIGHTSCubic regression is the best model for explaining intestinal microbiota development.Polynomial regression is the best model for intestinal Eimeria oocysts development.Age-development trends are affected by dietary encapsulated organic acids and anticoccidials.
Assuntos
Ração Animal , Galinhas , Coccidiose , Coccidiostáticos , Eimeria , Microbioma Gastrointestinal , Oocistos , Doenças das Aves Domésticas , Animais , Galinhas/parasitologia , Galinhas/crescimento & desenvolvimento , Coccidiose/veterinária , Coccidiose/parasitologia , Coccidiose/prevenção & controle , Coccidiose/tratamento farmacológico , Eimeria/efeitos dos fármacos , Doenças das Aves Domésticas/parasitologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/tratamento farmacológico , Coccidiostáticos/farmacologia , Coccidiostáticos/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Oocistos/efeitos dos fármacos , Dieta/veterinária , Masculino , Suplementos Nutricionais , Feminino , Intestinos/parasitologia , Intestinos/microbiologia , Triazinas/farmacologia , Triazinas/administração & dosagem , Ácidos/farmacologia , Lactonas , NitrilasRESUMO
L-tryptophan has been utilized as a feed additive in animal nutrition to improve growth performance, as well as a dietary supplement to alleviate various emotional symptoms in humans. Despite its benefits, concerns regarding its safety arose following the outbreak of eosinophilia-myalgia syndrome (EMS) among individuals who consumed L-tryptophan. The causative material of EMS was determined to be not L-tryptophan itself, but rather L-tryptophan impurities resulting from a specific manufacturing process. To investigate the effect of L-tryptophan and its impurities on humans who consume meat products derived from animals that were fed L-tryptophan and its impurities, an animal study involving broiler chickens was conducted. The animals in test groups were fed diet containing 0.065%-0.073% of L-tryptophan for 27 days. This study aimed to observe the occurrence of toxicological or EMS-related symptoms and analyze the residues of L-tryptophan impurities in meat products. The results indicated that there was no evidence of adverse effects associated with the test substance in the investigated parameters. Furthermore, most of the consumed EMS-causing L-tryptophan impurities did not remain in the meat of broiler chickens. Thus, this study demonstrated the safety of L-tryptophan and some of its impurities as a feed additive.
Assuntos
Síndrome de Eosinofilia-Mialgia , Triptofano , Humanos , Animais , Triptofano/toxicidade , Galinhas , Dieta/veterinária , Suplementos Nutricionais/efeitos adversos , Ração Animal/toxicidade , Ração Animal/análiseRESUMO
Lysozymes, efficient alternative supplements to antibiotics, have several benefits in poultry production. In the present study, 120, one-day-old, Ross 308 broiler chickens of mixed sex, were allocated into 2 equal groups, lysozyme treated group (LTG) and lysozyme free group (LFG), to evaluate the efficacy of lysozyme (Lysonir®) usage via both drinking water (thrice) and spray (once). LTG had better (p = 0.042) FCR, and higher European production efficiency factor compared to LFG (p = 0.042). The intestinal integrity score of LTG was decreased (p = 0.242) compared to that of LFG; 0.2 vs. 0.7. Higher (p ≤ 0.001) intestinal Lactobacillus counts were detected in chickens of LTG. Decreased (p ≤ 0.001) IL-1ß and CXCL8 values were reported in LTG. The cellular immune modulation showed higher (p ≤ 0.001) opsonic activity (MΦ and phagocytic index) in LTG vs. LFG at 25 and 35 days. Also, higher (p ≤ 0.001) local, IgA, and humoral, HI titers, for both Newcastle, and avian influenza H5 viruses were found in LTG compared to LFG. In conclusion, microbial lysozyme could improve feed efficiency, intestinal integrity, Lactobacillus counts, anti-inflammatory, and immune responses in broiler chickens.
Exogenous aqueous and spray microbial lysozyme enhanced growth in commercial broiler chickensThe postbiotic effects of microbial lysozyme modulated intestinal integrity.Anti-inflammatory, as well as local, cellular, and humoral immune response were stimulated by lysozyme supplementation.
Assuntos
Galinhas , Muramidase , Animais , Galinhas/fisiologia , Muramidase/farmacologia , Suplementos Nutricionais , Lactobacillus , Imunidade , Anti-Inflamatórios/farmacologia , Ração Animal/análise , Dieta/veterináriaRESUMO
Lipopolysaccharide (LPS) acts as a trigger that disrupts metabolic functions and the immune system. While bile acids (BA) have detoxification and anti-inflammatory effects, their role in promoting LPS excretion in broiler chickens remains unclear. This study aimed to investigate the potential of exogenous BA to enhance hepatic clearance of LPS and thereby potentially alleviate LPS-induced liver injury in broiler chickens. Forty-five 21-day-old male broiler chickens were randomly assigned to three groups: the control group, which received daily intraperitoneal injections of a solvent for LPS treatment and a gavage solvent for BA treatment; the LPS group, which received daily intraperitoneal injections of 0.5â¯mg/kg body weight LPS and a gavage solvent for BA treatment; the LPS + BA group, which received daily intraperitoneal injections of 0.5â¯mg/kg body weight LPS and 60â¯mg/kg body weight BA by gavage. BA administered by gavage protected the broiler chickens from increases in liver and spleen indices, systemic inflammatory response, and hepatic damage induced by LPS. Hepatic clearance of LPS was enhanced, as evidenced by decreased serum LPS levels and accelerated excretion into the gallbladder. Additionally, the LPS-induced downregulation of detoxification genes, including those for the lipoprotein receptor and bile acids export pump, was reversed by BA administered by gavage. Furthermore, nuclear transcription factors such as the Farnesoid X receptor (FXR) and Liver X receptor α (LXRα) were enhanced in BA-treated broiler chickens. These findings suggest that BA administration via gavage enhances hepatic LPS clearance through the upregulation of hepatic uptake and efflux proteins, likely mediated by the activation of nuclear transcription factors FXR and LXRα.
Assuntos
Ácidos e Sais Biliares , Galinhas , Lipopolissacarídeos , Fígado , Animais , Lipopolissacarídeos/toxicidade , Ácidos e Sais Biliares/metabolismo , Masculino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/veterinária , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Receptores X do Fígado/metabolismo , Receptores Citoplasmáticos e NuclearesRESUMO
Light pollution is a potential risk for intestinal health in humans and animals. The gut microbiota is associated with the development of intestinal inflammation induced by extended exposure to light, but the underlying mechanism is not yet clear. The results of this study showed that extended exposure to light (18L:6D) damaged intestinal morphology, downregulated the expression of tight junction proteins, and upregulated the expression of the NLRP3 inflammasome and the concentration of pro-inflammatory cytokines. In addition, extended exposure to light significantly decreased the abundance of Lactobacillus, Butyricicoccus, and Sellimonas and increased the abundance of Bifidobacterium, unclassified Oscillospirales, Family_XIII_UCG-001, norank_f__norank_o__Clostridia_vadinBB60_group, and Defluviitaleaceae_UCG-01. Spearman correlation analysis indicated that gut microbiota dysbiosis positively correlated with the activation of the NLRP3 inflammasome. The above results indicated that extended exposure to light induced intestinal injury by NLRP3 inflammasome activation and gut microbiota dysbiosis. Antibiotic depletion intestinal microbiota treatment and cecal microbiota transplantation (CMT) from the 12L:12D group to 18L:6D group indicated that the gut microbiota alleviated intestinal inflammatory injury induced by extended exposure to light via inhibiting the activation of the NLRP3 inflammasome. In conclusion, our findings indicated that the gut microbiota can alleviate intestinal inflammation induced by extended exposure to light via inhibiting the activation of the NLRP3 inflammasome.
Assuntos
Galinhas , Microbioma Gastrointestinal , Inflamassomos , Luz , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Galinhas/microbiologia , Luz/efeitos adversos , Disbiose/microbiologia , Intestinos/microbiologia , Intestinos/patologia , Citocinas/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Mucosa Intestinal/efeitos da radiação , Inflamação/metabolismoRESUMO
1. Two concurrent experiments were conducted to investigate the effect of using the crude protein (CP) value of supplemental amino acids (AA) in formulating reduced-crude protein (RCP) diets. The RCP diets formulated without accounting for CP values of supplemental AA (RCPN) or otherwise (RCPY) or a positive control (PC) diet were fed without (Experiment 1) or with (Experiment 2) phytase.2. Each experiment utilised 105 male broiler chicks. Birds were provided a common starter diet from d 0-7. On d 21, ileal digesta were collected from the distal half of the ileum. For mRNA expression analysis, tissues were collected from the mid-jejunum and the liver. Excreta grab samples were collected for analysis for N content.3. In Experiment 1, there was a stepwise decrease (p < 0.01) in weight gain and excreta N for birds receiving PC, RCPN and RCPY diets. The coefficients of ileal digestibility of His, Leu, Phe and Trp were greater (p < 0.05) in birds that received RCPY rather than the PC diets. The relative mRNA expression of CAT1 was greater (p < 0.05) for birds that received the PC diet.4. In Experiment 2, growth performance and excreta N were not different between the PC and RCPN diets, but weight gain, feed intake and excreta N were greater (p < 0.01) in birds receiving PC or RCPN diets. The coefficients of digestibility were greater (p < 0.01) in RCP than PC diets for Lys, Thr, Cys, Gly and Ser. The mRNA expression for S6kinase and PRKAß2 was greater (p < 0.05) for birds fed RCPN compared to PC.5. In conclusion, accounting for the N content of supplemental AA during feed formulation for RCP diets will influence the effect of CP reduction on growth performance and ileal amino acid digestibility.
RESUMO
1. This study evaluated the effectiveness of yeast (Saccharomyces cerevisiae) cell wall (YCW) supplementation on the growth performance, carcase characteristics, serum biomarkers, liver function, ileal histology and microbiota of broiler chickens challenged with Clostridium perfringens (C. perfringens).2. In a 35-d trial, 240 chicks aged 1-d-old were randomly assigned to one of four treatment groups, each with 10 replicates: control (CON) with no challenge or additives, challenged with C. perfringens (CHAL), CHAL and supplemented with YCW at either 0.25 g/kg (YCW0.25) or 0.5 g/kg (YCW0.5).3. In comparison to CON, the CHAL birds had reduced growth performance, survival rate, dressing percentage, breast meat yield, levels of total protein (TP), globulin (GLO), glucose (GLU), total antioxidant capacity (T-AOC) and total superoxide dismutase (T-SOD), as well as a decreased Lactobacillus population (P < 0.01). Additionally, this group showed elevated levels of glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and C. perfringens count (P < 0.01). Compared to CHAL, the YCW0.25 or YCW0.5 groups had improved growth performance, survival rate, dressing percentage, breast meat yield, levels of TP, GLO, GLU, and T-AOC, as well as the activities of T-SOD, GOT, and GPT, villus height, villus surface area, villus height to crypt depth ratio, and the populations of both Lactobacillus and C. perfringens; (P < 0.01).4. The data suggested that YCW supplementation at either 0.25 or 0.50 g/kg can restore the growth performance of broiler chickens during a C. perfringens challenge.
Assuntos
Infecções por Clostridium , Clostridium perfringens , Animais , Saccharomyces cerevisiae , Galinhas , Prebióticos , Infecções por Clostridium/veterinária , Infecções por Clostridium/patologia , Suplementos Nutricionais , Antioxidantes , Parede Celular , Superóxido Dismutase , Ração Animal/análise , Dieta/veterináriaRESUMO
1. A 21 d experiment was conducted to investigate whether growth performance and coefficients of amino acids digestibility (cAID) in broilers receiving reduced-protein diets supplemented with different non-essential amino acids (NEAA) were dependent on supplemented NEAA in diets with the same essential-to-total N (eN-to-tN) ratio kept at <50%.2. The experiment used 240 male broiler chicks, allocated to eight treatments with six replicate pens per treatment, and five chicks per replicate. The diets were either adequate in protein diet (PC), reduced protein (NC) diet or the NC diet supplemented with Gly, Gln, Ser, Ala, Gly + Ser or Ala + Ser. Digesta from the distal half of the ileum were collected on d 21. Tissue samples were collected for analysis for gene expression of protein synthesis and degradation (pectoralis major and liver) and peptide and AA transporters (jejunum).3. The treatments had no effects on growth performance. Generally, cAID was greater (P < 0.05) in NC compared to the PC diet. Individual supplementation of the NC diet with Gly, Gln, Ser, Ala or Ala+Ser increased (P < 0.01) cAID of Cys compared to the PC diet. There were no treatment effects on mRNA levels for the AA or peptide transporters in the jejunum. Supplementation of the NC diet with Gln, Ser, Ala, or Gly + Ser produced an upward expression (P < 0.05) of S6 kinase in the liver compared to PC and NC. In addition, there was greater (P < 0.05) expression of TRIM36 in the pectoralis major of broiler chickens receiving the NC diet supplemented with Gly.4. When reduced-protein diets have an eN-to-tN ratio of <50% and the ratio is kept constant in all the diets, growth performance response was independent of the source of non-specific amino-N, but the treatments may influence ileal digestibility of individual AA.
Assuntos
Galinhas , Suplementos Nutricionais , Masculino , Animais , Fígado , Aminoácidos , NitrogênioRESUMO
The use of rapeseed as a source of protein in broiler chicken diets has been highlighted. However, there are inconsistent findings on the performance data of broiler chickens fed rapeseed meal (RSM). Therefore, this meta-analysis aimed to resolve the inconsistent findings on the effect of RSM on growth performance, carcass characteristics, internal organs, and intestinal histomorphology of broiler chickens, identify knowledge gaps and create new insights using published data. Fourteen studies on the topic were identified via a systematic search performed on bibliographic databases, and the data generated was analysed using OpenMEE software. A random-effects model was used, and effect sizes were presented as standardised mean difference (SMD) at a 95% confidence interval (CI). Sources of heterogeneity were evaluated using broiler strains, inclusion levels, processing methods, rearing phases and sex as moderators. In comparison with the controls, the results showed that RSM decreased feed intake (SMD = -0.29; 95% Cl: -0.41, -0.18; p < 0.001), average daily gain (SMD = -0.48; 95% Cl: -0.63, -0.32; p < 0.001), and liver weight (SMD = 1.24; 95% Cl: 0.78, 1.71; p < 0.001), but had no effect on feed conversion ratio (SMD = 0.10; 95% Cl: -0.05, 0.23; p = 0.19). Likewise, broiler chickens fed RSM had significantly reduced carcass yield, weights of thigh, abdominal fat and heart when compared with the control. Results indicate that duodenum villus height (DVH) and jejunum villus height (JVH)/crypt depth (CD) ratios were improved in broiler chickens fed RSM. Meta-regression revealed that the analysed moderators are significant predictors of feed intake, average daily gain and feed conversion ratio in broiler chickens. In conclusion, dietary RSM negatively influenced growth performance, liver weight and carcass characteristics in broiler chickens, but improved aspects of intestinal histomorphology traits. Therefore, innovative research on processing methods that will improve the feeding value of rapeseed meal in broiler chickens is recommended.
RESUMO
This study evaluated the effect of cobiotic (CO) composed of organic fructans powder of Agave tequilana and turmeric powder of Curcuma longa L. as an alternative of antibiotic growth promoters (AGPs) on growth performance, blood parameters, intestinal pH, oxidative stress, and cytokines serum levels of broiler chickens. A total of 135 one-day-old Ross 308 broilers distributed to five experimental groups, which included starter or finisher standard diets without AGPs (CON), CON + 0.25 COLI-ZIN g/kg feed (AGP), CON + 0.1 g Agave fructans/kg feed (AF), CON + 0.5 g turmeric powder/kg feed (TP) and CON + 0.1 g AF + 0.5 g TP /kg feed (CO), for 49 days. AF followed by TP, decreased feed intake, obtaining the best FCR. AGP increased the heterophil-lymphocyte ratio compared to other groups. CO significantly decreased the pH of the cecal content. AF increased IL-10 levels, while TP decreased it. AF decreased the IL-1ß levels. The present study showed that including a cobiotic based on AF and TP or components separately in a broilers diet improved growth performance, modified intestinal and cecum pH, and stimulated the immune system, which suggests CO as a safe alternative to AGP.
Assuntos
Agave , Ração Animal , Galinhas , Dieta , Suplementos Nutricionais , Frutanos , Estresse Oxidativo , Animais , Galinhas/crescimento & desenvolvimento , Galinhas/imunologia , Galinhas/sangue , Frutanos/administração & dosagem , Frutanos/farmacologia , Ração Animal/análise , Suplementos Nutricionais/análise , Estresse Oxidativo/efeitos dos fármacos , Agave/química , Dieta/veterinária , Citocinas/sangue , Citocinas/metabolismo , Masculino , Curcuma/química , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacosRESUMO
A feeding trial was conducted to assess the effect of partial replacement of dietary soybean meal by three plant protein sources: coconut, rocket seed, and black cumin meals with their combination in the presence or absence of nano-chitosan (NCH) on growth performance and immune response in broiler chickens. Five starter and grower diets were formulated and used from 1 to 42 days of age. The NCH was added to starter and grower diets at 1.0 g/kg. Five-hundred-fifty-day-old Arbor Acres Plus broiler chicks were randomly divided into ten treatments with five equal replications. Final body weight (FBW), body weight gain (BWG), feed intake (FI), feed conversion ratio (FCR), and blood plasma parameters were investigated. Histological aspects of lymphoid organs (thymus: T, bursa of Fabricius: B, and spleen: S) were characterized. Apart from added NCH, the FBW, BWG, and FCR of broilers fed the diets containing the tested plant proteins were significantly superior to the control ones. However, FI of birds fed the diets containing CM alone or combined with RSM plus BCM was significantly reduced. All experimental broilers displayed high plasma levels of IgG compared with the control group. There were significant increases in plasma concentrations of IgM, IgA, and T4 for groups that fed the diets containing RSM, BCM, and mixture of CM, RSM, and BCM compared with their controls. The T3 levels of broilers fed the tested plant proteins were significantly increased compared with the controls. Aside from plant protein source, broilers fed the NCH-enriched diets achieved significant increases in levels of IgM, TAC, and FSH and activities of CAT and SOD but reduced the MDA level compared with control. The interactions between plant protein source and added nano-chitosan were not interrelated. Furthermore, CM, RSM, and BCM can be used as complementary dietary proteins singly or combined with NCH with no adverse effects on growth performance. Addition of NCH molecules has a positive effect on live body weight and increases feed intake compared with control chicks.
Assuntos
Galinhas , Dieta , Animais , Dieta/veterinária , Peso Corporal , Aumento de Peso , Proteínas Alimentares/metabolismo , Imunidade , Proteínas de Plantas/metabolismo , Imunoglobulina M , Ração Animal/análise , Suplementos Nutricionais , Fenômenos Fisiológicos da Nutrição AnimalRESUMO
The aim of the current study was to determine the effects of dietary supplementation of safflower seed (SS) on the growth performance and hematological parameters of broiler birds along with the physicochemical, textural and sensory attributes of chicken meat. A total of 200 male chickens (7-days-old) were distributed into 5 groups (40 chickens in each) with 5 replicates of 8 chicks in a 42-day experiment. Each group was allocated to one of 5 dietary treatments, i.e., 0, 2.5, 5, 7.5, and 10% SS. The experimental diets were formulated for starter (7 to 21 days) and finisher (22 to 42 days) phases. Inclusion of SS in the diet improved growth performances in treatment groups between 7 and 42 days. The highest and lowest body weights were observed at the 5% SS and 0% SS levels, respectively. The physicochemical attributes of breast and thigh meat were found (P > 0.05) except for crude fat. The crude fat was significantly (P < 0.05) increased with increasing levels of SS in the diet. The inclusion of SS in the diet did not negatively impact the textural properties, i.e., hardness, cohesiveness, springiness, gumminess, chewiness, and shear force of breast and thigh meat. There was no significant difference in the sensory parameters of cooked chicken meat with increasing levels of SS in the diet. The results demonstrated a significant (P < 0.01) improvement in hematological parameters in the blood samples of broiler chickens fed diet supplemented with various levels of SS for five weeks. These findings suggest that, SS may be used as an oil seed for broiler chicken feed.
Assuntos
Carthamus tinctorius , Galinhas , Animais , Masculino , Suplementos Nutricionais , Carne , SementesRESUMO
With the global population growth and shortage of food, the competition between humans and animal for food will become increasingly fierce. Therefore, the development of unconventional energy feed cassava feed is of great significance. The objective of this study was to investigate the effects of cassava root meal (CRM) on the growth performance, apparent digestibility, and organ and intestinal indices of broiler chickens. A total of 140 one-day-old chicks were randomly assigned to four dietary treatment groups [control diet (CT), 15% CRM (CRM15), 30% CRM (CRM30), and 45% CRM (CRM45)] with five replicates of seven birds per replicate. The results showed that the body weight of broiler chickens fed diets containing CRM were significantly lower than that in the CT group at 21 and 42 days of age, the average daily gain and average daily feed intake in the CRM group were significantly lower than those in the CT group from 1 to 21 days of age. However, from days 22 to 42, there were no significant differences between CRM15 and CT birds regarding average daily gain and average daily feed intake. but there was no difference in feed conversion rate between the CRM15 and CT groups. At 42 days of age, there were no significant differences between CRM15 and CT birds in in body measurements, the slaughter performance and the percentage of semi-eviscerated yield. The addition of CRM reduced the proportion of breast and thigh muscles during the feeding period, although we detected no significant difference between CRM15 and CT regarding the apparent digestibility of nutrients. Collectively, our findings indicate that 15% cassava was the optimal proportion for supplementing diets for broiler chicken production.
Assuntos
Ração Animal , Galinhas , Dieta , Digestão , Manihot , Raízes de Plantas , Animais , Galinhas/crescimento & desenvolvimento , Galinhas/fisiologia , Manihot/química , Ração Animal/análise , Digestão/efeitos dos fármacos , Dieta/veterinária , Raízes de Plantas/química , Fenômenos Fisiológicos da Nutrição Animal , Distribuição Aleatória , Masculino , Intestinos/fisiologia , Intestinos/efeitos dos fármacos , Nutrientes/análise , Nutrientes/metabolismoRESUMO
The objective of the present study was to explore the influence of dietary supplementation with a mixed additive (MA) containing a probiotic and anti-mycotoxin (Saccharomyces cerevisiae RC016 and Lactobacillus rhamnosus RC007) and its interaction on the performance and health (biochemistry and liver/intestine histopathology) of broilers fed diets contaminated with aflatoxin B1 (AFB1) at 506000±22.1ng/kg. The MA contained S. cerevisiae RC016 (1×107cells/g) and L. rhamnosus RC007 (1×108cells/g) in relation 1:1. A total of sixty-one-day-old Cobb broilers were randomly allocated into four treatment groups with three replicates of 5 birds each for a five-week-old feeding experiment. The experimental diet for each treatment (T) was formulated as follows: T1, a commercial diet (CD); T2, CD+AFB1; T3, CD+0.1% MA; T4, CD+AFB1+0.1% MA. The MA improved (p<0.01) production parameters (weight gain, conversion rate, and carcass yield) and reduced (p<0.01) the toxic effect of AFB1 on the relative weight of the livers. In addition, the macro and microscopic alterations of livers and the possible intestinal injury related to histological damage in the presence of mycotoxin were reduced. The use of probiotic MA based on S. cerevisiae RC016 and L. rhamnosus RC007 in animal feed provides greater protection against mycotoxin contamination and is safe for use as a supplement in animal feed, providing beneficial effects that improve animal health and productivity. This is of great importance at the economic level for the avian production system.
Assuntos
Aflatoxina B1 , Ração Animal , Galinhas , Contaminação de Alimentos , Lacticaseibacillus rhamnosus , Probióticos , Saccharomyces cerevisiae , Animais , Aflatoxina B1/toxicidade , Galinhas/microbiologia , Suplementos Nutricionais , Fígado/efeitos dos fármacos , Fígado/patologiaRESUMO
AIMS: Gut bacteria play an important role in poultry nutrition and the immune defense system. Changes in the intestinal microbiome affect the physiological state, metabolism, and innate immunity of poultry. The present study aimed to characterize age-related changes in the gastrointestinal tract microflora in broiler chickens, depending on supplementation of the diet with the in-feed antibiotic Stafac® 110 and a Bacillus subtilis strain-based probiotic. METHODS AND RESULTS: In this regard, a comprehensive analysis of the taxonomic structure of the microbial community in the gastrointestinal tract (GIT) of broiler chickens was carried out using a molecular genetic technique of the terminal-restriction fragment length polymorphism analysis and taking into account age dynamics and feeding treatment. A beneficial effect on the microbiological composition and body weight of broilers was observed when using the antibiotic and probiotic in compound feeds. Different bacterial communities were revealed in the duodenum and cecum, and their positive impact on broiler growth was established. The results obtained shed light on the formation of GIT microflora of broiler chickens during the growing period and its changes in response to the use of the antibiotic and the probiotic. CONCLUSIONS: We suggest that the implementation of the tested in-feed antibiotic and probiotic can be beneficial in regulating the intestinal microflora microbiological processes in the GIT and improving the feeding efficiency and productivity of broiler chickens.
Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Galinhas , Antibacterianos/farmacologia , Bacillus subtilis/genéticaRESUMO
BACKGROUND: Ilicis chinensis folium extract (ICFE) is a powder extracted and processed with Ilex chinensis Sims (ICS) which has numerous bioactivities and is conventionally used in traditional Chinese medicine. Nonetheless, there has been no definitive study evaluating ICFE's application as a feed supplement for broilers. This research sought to determine the chemical composition and evaluate how dietary ICFE supplementation affects the growth performance, serum metrics, intestinal structure, and antioxidant capacity of broilers. METHODS: A total of 360 one-day-old broiler chicks were assigned to four treatments (with 9 replicates of 10 chicks, each) of dietary supplementation with ICFE at 0, 250, 500, and 1,000 mg /kg for 42 days. RESULTS: Ten polyphenolic compounds and two triterpenoid glycosides were detected by HPLC. In the grower stage and overall, broilers supplemented with 500 and 1,000 mg/kg ICFE exhibited a higher ADFI (P < 0.05) than the controls. Additionally, compared to the controls, broilers receiving low, medium, or high dosages of ICFE exhibited higher average daily gains (P < 0.05) throughout the starter stage and overall. Organ indices showed no significant variation, suggesting that ICFE was non-toxic. ICFE supplementation increased the height of villi in the duodenum and jejunum, reduced crypt depth, and increased the villus/crypt ratio in the duodenum (P < 0.05). Serum concentrations of IL-4 and IgA were increased in ICFE-supplemented broilers. The serum malondialdehyde concentration was reduced, whereas superoxide dismutase activity and total antioxidant capacity increased through supplementation with ICFE. CONCLUSION: ICFE supplementation can improve intestinal morphology, antioxidant capacity, and growth performance of broilers. Hence, ICFE is a promising and safe alternative to antibiotics in broilers, and 500 mg/kg appears to be the optimal dose.
Assuntos
Antioxidantes , Galinhas , Animais , Antioxidantes/farmacologia , Dieta/veterinária , Intestinos , Suplementos Nutricionais , Ração Animal/análiseRESUMO
BACKGROUND: The objective of this study was to evaluate the effects of glutamine on the growth performance and systemic innate immune response in broiler chickens challenged with Salmonella pullorum. A total of 600 one-day-old Arbor Acres broiler chickens were assigned randomly to 6 dietary treatments with 10 replicates for a 21-day feeding experiment. The experimental treatments were as follows: the control treatment (birds fed the basal diet), the Gln1 treatment, and the Gln 2 treatment (birds fed the basal diet supplemented with 0.5%, and 1.0% Glutamine, respectively). At 3 d of age, half of the birds from each treatment were challenged oral gavage with 2.0 × 104 CFU/mL of S. pullorum suspension (1.0 mL per bird) or an equivalent amount of sterile saline alone, which served as a control. RESULTS: The results showed that S. pullorum infection had adverse effects on the average daily feed intake, average daily gain, and feed conversion ratio of broiler chickens compared with those of the CON treatment on d 7, decreased the spleen and bursa of fabricius relative weights (except on d 21), serum immunoglobulin A (IgA),immunoglobulin G (IgG), and immunoglobulin M (IgM) concentrations, and spleen melanoma differentiation-associated gene 5 (MDA5) and laboratory of genetics and physiology gene 2 (LGP2) mRNA expression levels, and increased the mRNA expression levels of spleen Nodinitib-1 (NOD1), Toll-like receptors 2,4 (TLR2, TLR4), DNA-dependent activator of IFN-regulatory factors (DAI), mitochondrial antiviral-signaling protein (MAVS), P50, P65, and RelB on d 4, 7, 14, and 21. Supplementation with Gln improved the relative weights of the spleen and bursa of Fabricius (except on d 21), increased the serum IgA, IgG, and IgM concentrations and the mRNA expression levels of spleen MDA5 and LGP2, and decreased the mRNA expression levels of spleen NOD1, TLR2, TLR4, DAI, MAVS, P50, P65, and RelB of S. pullorum-challenged broiler chickens. CONCLUSION: These results indicate that Gln might stimulate the systemic innate immune responses of the spleen in broiler chickens challenged with S. pullorum.
Assuntos
Galinhas , Receptor 2 Toll-Like , Animais , Receptor 2 Toll-Like/metabolismo , Glutamina/farmacologia , Receptor 4 Toll-Like/metabolismo , Suplementos Nutricionais , Dieta/veterinária , Imunidade Inata , Salmonella , Imunoglobulina G , Imunoglobulina M , RNA Mensageiro/metabolismo , Imunoglobulina A , Ração Animal/análiseRESUMO
The purpose of this study was to investigate the effects of resveratrol on heat stress-induced lung injury in broilers and the mechanism underlying this process. Sixty two-week-old SPF BWEL broilers were randomly divided into the heat stress group (HS), resveratrol group (heat stress + 400 mg/kg resveratrol), and the control group after one week of feeding, with 20 chickens in each group. Broilers in the control group were reared at 23 ± 2 â. Those in the HS and resveratrol group were reared under heat stress (35 â ± 2 â) for 8 h/day for seven days. Broilers in the resveratrol group were fed a diet supplemented with 400 mg/kg resveratrol two days before the start of the experiment. The feeding was continued for nine days. The results showed that HS decreased body weight (BW), average daily feed intake (ADFI), average daily gain (ADG), and lung weight. It, however, increased the lung index, induced lung congestion, and promoted infiltration of inflammatory cells to the lung. Resveratrol improved growth performance and inhibited heat stress-induced lung damage. Compared with broilers in the control group, the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), NAD(P)H quinone oxidoreductase 1 (NQO1), heme oxygenase-1 (HO-1), Beclin-1, LC3 â , and LC3 â ¡ genes in the lung of heat-stressed broilers was significantly lower. The levels of kelch-like ECH-associated protein 1 (Keap1), NQO1, and HO-1 showed a similar trend with gene expressions. Immunofluorescence indicated that HS inhibited the expression of Nrf2 and LC3B proteins. Finally, the ratio of LC3 â ¡/LC3 â was also significantly lower in the HS group. Further analyses revealed that resveratrol supplements in feeds enhanced antioxidation in the lung by activating the Nrf2 signaling pathway and autophagy. In conclusion, HS causes oxidative damage and inhibits autophagy in broilers. However, resveratrol protects against lung injury by alleviating oxidative stress and enhancing autophagy.