RESUMO
BACKGROUND AND PURPOSE: The aim was to characterize the phenotypic and genotypic features of myelin protein zero (MPZ) related neuropathy and provide baseline data for longitudinal natural history studies or drug clinical trials. METHOD: Clinical, neurophysiological and genetic data of 37 neuropathy patients with MPZ mutations were retrospectively collected. RESULTS: Nineteen different MPZ mutations in 23 unrelated neuropathy families were detected, and the frequency of MPZ mutations was 5.84% in total. Mutations c.103_104InsTGGTTTACACCG, c.513dupG, c.521_557del and c.696_699delCAGT had not been reported previously. Hot spot mutation p.Thr124Met was detected in four unrelated families, and seven patients carried de novo mutations. The onset age indicated a bimodal distribution: prominent clustering in the first and fourth decades. The infantile-onset group included 12 families, the childhood-onset group consisted of two families and the adult-onset group included nine families. The Charcot-Marie-Tooth Disease Neuropathy Score ranged from 3 to 25 with a mean value of 15.85 ± 5.88. Mutations that changed the cysteine residue (p.Arg98Cys, p.Cys127Trp, p.Ser140Cys and p.Cys127Arg) in the extracellular region were more likely to cause severe early-onset Charcot-Marie-Tooth disease type 1B (CMT1B) or Dejerine-Sottas syndrome. Nonsense-mediated mRNA decay mutations p.Asp35delInsVVYTD, p.Leu174Argfs*66 and p.Leu172Alafs*63 were related to severe infantile-onset CMT1B or Dejerine-Sottas syndrome; however, mutation p.Val232Valfs*19 was associated with a relatively milder childhood-onset CMT1 phenotype. CONCLUSION: Four novel MPZ mutations are reported that expand the genetic spectrum. De novo mutations accounted for 30.4% and were most related to a severe infantile-onset phenotype. Genetic and clinical data from this cohort will provide the baseline data necessary for clinical trials and natural history studies.
Assuntos
Doença de Charcot-Marie-Tooth , Proteína P0 da Mielina , Humanos , Proteína P0 da Mielina/genética , Doença de Charcot-Marie-Tooth/genética , População do Leste Asiático , Estudos Retrospectivos , Mutação , Fenótipo , GenótipoRESUMO
BACKGROUND AND PURPOSE: Preparations for clinical trials of unfolded protein response (UPR) inhibitors (such as Sephin1) that target the upregulated UPR in patients with Charcot-Marie-Tooth disease (CMT) carrying MPZ mutations are currently underway. The inclusion criteria for these trials are still being formulated. Our objective was to characterize the relation between genotypes and phenotypes in patients with CMT caused by MPZ mutations, and to refine the inclusion criteria for future trials. METHODS: Clinical and neurophysiological data of CMT patients with MPZ mutations were retrospectively collected at 11 French reference centers. RESULTS: Forty-four mutations in MPZ were identified in 91 patients from 61 families. There was considerable heterogeneity. The same mutation was found to cause either axonal or demyelinating neuropathy. Three groups were identified according to the age at disease onset. CMT Examination Score (CMTES) tended to be higher in the early (≤22 years) and adult (23-47 years) onset groups (mean CMTESv2 = 10.4 and 10.0, respectively) than in the late onset group (>47 years, mean CMTESv2 = 8.6, p = 0.47). There was a significant positive correlation between CMTESv2 and the age of patients in Groups I (p = 0.027) and II (p = 0.023), indicating that clinical severity progressed with age in these patients. CONCLUSIONS: To optimize the selection of CMT patients carrying MPZ mutations for the upcoming trials, inclusion criteria should take into account the pathophysiology of the disease (upregulated UPR). Recruited patients should have a mild to moderate disease severity and a disease onset at between 18 and 50 years, as these patients exhibit significant disease progression over time.
Assuntos
Doença de Charcot-Marie-Tooth , Proteína P0 da Mielina , Doença de Charcot-Marie-Tooth/genética , Estudos de Associação Genética , Humanos , Mutação , Proteína P0 da Mielina/genética , Fenótipo , Estudos RetrospectivosRESUMO
Mutations in Myelin Protein Zero (MPZ) cause CMT1B, the second leading cause of CMT1. Many of the >200 mutations cause neuropathy through a toxic gain of function by the mutant protein such as ER retention, activation of the Unfolded Protein Response (UPR) or disruption of myelin compaction. While there is extensive literature on the loss of function consequences of MPZ in heterozygous Mpz +/- null mice, there is little known of the consequences of MPZ haploinsufficiency in humans. We identified six patients from different families with p.Tyr68Ter or p.Asp104fs heterozygous mutations of MPZ that are predicted to cause a premature termination and nonsense mediated decay of the mutant allele. Five patients were evaluated in Milan and one in Iowa City; all should be haploinsufficient for MPZ. Patients were evaluated clinically and by electrophysiology. Sensory ataxia dominated the clinical presentation with only mild weakness present in five of the six patients. Symptoms presented in adulthood in all patients and only one individual had a CMTNSv2 >5. Deep tendon reflexes were absent in all patients. Patients with likely MPZ loss of function due to mutations that cause haplodeficiency in MPZ have a mild, predominantly large fiber sensory neuropathy that serves as a human equivalent to the neuropathy observed in heterozygous Mpz null mice. Successful therapeutic approaches in treating Mpz deficient mice may be candidates for trials in these and similar patients.
Assuntos
Doença de Charcot-Marie-Tooth , Proteína P0 da Mielina/genética , Animais , Doença de Charcot-Marie-Tooth/genética , Fenômenos Eletrofisiológicos , Humanos , Camundongos , Mutação/genética , Bainha de MielinaRESUMO
Charcot-Marie-Tooth (CMT) diseases are a heterogeneous group of genetic peripheral neuropathies caused by mutations in a variety of genes, which are involved in the development and maintenance of peripheral nerves. Myelin protein zero (MPZ) is expressed by Schwann cells, and MPZ mutations can lead to primarily demyelinating polyneuropathies including CMT type 1B. Different mutations demonstrate various forms of disease pathomechanisms, which may be beneficial in understanding the disease cellular pathology. Our molecular dynamics simulation study on the possible impacts of I30T mutation on the MPZ protein structure suggested a higher hydrophobicity and thus lower stability in the membranous structures. A study was also conducted to predict native/mutant MPZ interactions. To validate the results of the simulation study, the native and mutant forms of the MPZ protein were separately expressed in a cellular model, and the protein trafficking was chased down in a time course pattern. In vitro studies provided more evidence on the instability of the MPZ protein due to the mutation. In this study, qualitative and quantitative approaches were adopted to confirm the instability of mutant MPZ in cellular membranes.
Assuntos
Membrana Celular/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Simulação de Dinâmica Molecular , Mutação , Proteína P0 da Mielina/química , Proteína P0 da Mielina/genética , Sequência de Aminoácidos , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Simulação por Computador , Humanos , Técnicas In Vitro , Proteína P0 da Mielina/metabolismo , Linhagem , Conformação Proteica , Estabilidade Proteica , Homologia de SequênciaRESUMO
We aimed to characterize genotype-phenotype correlations and establish baseline clinical data for peripheral neuropathies caused by mutations in the myelin protein zero (MPZ) gene. MPZ mutations are the second leading cause of Charcot-Marie-Tooth disease type 1. Recent research makes clinical trials for patients with MPZ mutations a realistic possibility. However, the clinical severity varies with different mutations and natural history data on progression is sparse. We present cross-sectional data to begin to define the phenotypic spectrum and clinical baseline of patients with these mutations. A cohort of patients with MPZ gene mutations was identified in 13 centres of the Inherited Neuropathies Consortium - Rare Disease Clinical Research Consortium (INC-RDCRC) between 2009 and 2012 and at Wayne State University between 1996 and 2009. Patient phenotypes were quantified by the Charcot-Marie-Tooth disease neuropathy score version 1 or 2 and the Charcot-Marie-Tooth disease paediatric scale outcome instruments. Genetic testing was performed in all patients and/or in first- or second-degree relatives to document mutation in MPZ gene indicating diagnosis of Charcot-Marie-Tooth disease type 1B. There were 103 patients from 71 families with 47 different MPZ mutations with a mean age of 40 years (range 3-84 years). Patients and mutations were separated into infantile, childhood and adult-onset groups. The infantile onset group had higher Charcot-Marie-Tooth disease neuropathy score version 1 or 2 and slower nerve conductions than the other groups, and severity increased with age. Twenty-three patients had no family history of Charcot-Marie-Tooth disease. Sixty-one patients wore foot/ankle orthoses, 19 required walking assistance or support, and 10 required wheelchairs. There was hearing loss in 21 and scoliosis in 17. Forty-two patients did not begin walking until after 15 months of age. Half of the infantile onset patients then required ambulation aids or wheelchairs for ambulation. Our results demonstrate that virtually all MPZ mutations are associated with specific phenotypes. Early onset (infantile and childhood) phenotypes likely represent developmentally impaired myelination, whereas the adult-onset phenotype reflects axonal degeneration without antecedent demyelination. Data from this cohort of patients will provide the baseline data necessary for clinical trials of patients with Charcot-Marie-Tooth disease caused by MPZ gene mutations.
Assuntos
Doença de Charcot-Marie-Tooth/genética , Perda Auditiva/genética , Limitação da Mobilidade , Proteína P0 da Mielina/genética , Escoliose/genética , Adolescente , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Doença de Charcot-Marie-Tooth/complicações , Doença de Charcot-Marie-Tooth/fisiopatologia , Criança , Pré-Escolar , Estudos de Coortes , Estudos Transversais , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/fisiopatologia , Feminino , Genótipo , Perda Auditiva/etiologia , Perda Auditiva/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Condução Nervosa , Fenótipo , Escoliose/etiologia , Escoliose/fisiopatologia , Adulto JovemRESUMO
The hereditary neuropathies, collectively referred as Charcot-Marie-Tooth disease (CMT) and related disorders, are heterogeneous genetic peripheral nerve disorders that collectively comprise the commonest inherited neurological disease with an estimated prevalence of 1:2500 individuals. The field of hereditary neuropathies has made significant progress in recent years with respect to both gene discovery and treatment as a result of next-generation sequencing (NGS) approach. These investigations which have identified over 100 causative genes and new mutations have made the classification of CMT even more challenging. Despite so many different mutated genes, the majority of CMT forms share a similar clinical phenotype, and due to this phenotypic homogeneity, genetic testing in CMT is increasingly being performed through the use of NGS panels. The majority of patients still have a mutation in one the four most common genes (PMP22 duplication-CMT1A, MPZ-CMT1B, GJB1-CMTX1, and MFN2-CMT2A). This chapter focuses primarily on these four forms and their potential therapeutic approaches.
Assuntos
Doença de Charcot-Marie-Tooth , Humanos , Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/genética , Testes Genéticos , Mutação/genética , FenótipoRESUMO
Development of peripheral nervous system (PNS) myelin involves a coordinated series of events between growing axons and the Schwann cell (SC) progenitors that will eventually ensheath them. Myelin sheaths have evolved out of necessity to maintain rapid impulse propagation while accounting for body space constraints. However, myelinating SCs perform additional critical functions that are required to preserve axonal integrity including mitigating energy consumption by establishing the nodal architecture, regulating axon caliber by organizing axonal cytoskeleton networks, providing trophic and potentially metabolic support, possibly supplying genetic translation materials and protecting axons from toxic insults. The intermediate steps between the loss of these functions and the initiation of axon degeneration are unknown but the importance of these processes provides insightful clues. Prevalent demyelinating diseases of the PNS include the inherited neuropathies Charcot-Marie-Tooth Disease, Type 1 (CMT1) and Hereditary Neuropathy with Liability to Pressure Palsies (HNPP) and the inflammatory diseases Acute Inflammatory Demyelinating Polyneuropathy (AIDP) and Chronic Inflammatory Demyelinating Polyneuropathy (CIDP). Secondary axon degeneration is a common feature of demyelinating neuropathies and this process is often correlated with clinical deficits and long-lasting disability in patients. There is abundant electrophysiological and histological evidence for secondary axon degeneration in patients and rodent models of PNS demyelinating diseases. Fully understanding the involvement of secondary axon degeneration in these diseases is essential for expanding our knowledge of disease pathogenesis and prognosis, which will be essential for developing novel therapeutic strategies.
Assuntos
Axônios/metabolismo , Doenças Desmielinizantes/metabolismo , Degeneração Neural/metabolismo , Polineuropatias/metabolismo , Animais , Artrogripose/metabolismo , Artrogripose/patologia , Axônios/patologia , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Doenças Desmielinizantes/patologia , Neuropatia Hereditária Motora e Sensorial/metabolismo , Neuropatia Hereditária Motora e Sensorial/patologia , Humanos , Degeneração Neural/patologia , Polineuropatias/patologia , Células de Schwann/metabolismo , Células de Schwann/patologiaRESUMO
CMT1B is the second most frequent autosomal dominant inherited neuropathy and is caused by assorted mutations of the myelin protein zero (MPZ) gene. MPZ mutations cause neuropathy gain of function mechanisms that are largely independent MPZs normal role of mediating myelin compaction. Whether there are only a few or multiple pathogenic mechanisms that cause CMT1B is unknown. Arg98Cys and Ser63Del MPZ are two CMT1B causing mutations that have been shown to cause neuropathy in mice at least in part by activating the unfolded protein response (UPR). We have recently treated Arg98Cys mice with derivatives of curcumin that improved the neuropathy and reduced UPR activation.(1) Future studies will address whether manipulating the UPR will be a common or rare strategy for treating CMT1B or other forms of inherited neuropathies.