Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Molecules ; 29(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38930949

RESUMO

This review collects the synthetic modifications performed on andrographolide, a natural molecule derived from Andrographis paniculata, for oncology applications. Various pharmacomodulations were carried out, and the products were tested on different cancer cell lines. The impact of these modifications was analyzed with the aim of mapping the positions essential for activity to facilitate future research in this field. However, this study makes it clear that, in addition to structural modifications of the molecule, which can result in varying degrees of effectiveness in targeting interactions, the lipophilic capacity of the structures obtained through hemisynthesis is of significant importance.


Assuntos
Antineoplásicos , Diterpenos , Diterpenos/química , Diterpenos/farmacologia , Diterpenos/síntese química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Andrographis/química , Linhagem Celular Tumoral , Estrutura Molecular , Animais
2.
Eur J Med Chem ; 277: 116733, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39098132

RESUMO

Macrocyclic compounds have emerged as potent tools in the field of drug design, offering unique advantages for enhancing molecular recognition, improving pharmacokinetic properties, and expanding the chemical space accessible to medicinal chemists. This review delves into the evolutionary trajectory of macrocyclic-based strategies, tracing their journey from laboratory innovations to clinical applications. Beginning with an exploration of the defining structural features of macrocycles and their impact on drug-like characteristics, this discussion progresses to highlight key design principles that have facilitated the development of diverse macrocyclic drug candidates. Through a series of illustrative representative case studies from approved macrocyclic drugs and candidates spanning various therapeutic areas, particular emphasis is placed on their efficacy in targeting challenging protein-protein interactions, enzymes, and receptors. Additionally, this review thoroughly examines how macrocycles effectively address critical issues such as metabolic stability, oral bioavailability and selectivity. Valuable insights into optimization strategies employed during both approved and clinical phases underscore successful translation of promising leads into efficacious therapies while providing valuable perspectives on harnessing the full potential of macrocycles in drug discovery and development endeavors.

3.
Curr Drug Targets ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38847165

RESUMO

INTRODUCTION: Chikungunya fever is a disease caused by infection with the Chikungunya virus, transmitted by Aedes aegypti and Aedes albopictus mosquitoes. Despite its self-limited character, more than 60% of patients have chronic recurrent arthralgia with debilitating pain that lasts for years. AIM: The objective of this review was to gather and analyze evidence from the literature on potential therapeutic strategies with molecules from natural products for the treatment of Chikungunya fever. METHODS: A search was performed for clinical trials, observational studies, in vitro or in vivo, without restriction of the year of publication or language in electronic databases (Medline/PubMed, EMBASE, Google Scholar, The Cochrane Library, LILACS (BVS), clinical trial registries (Clinical Trials.gov), digital libraries from CAPES theses and dissertations (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil) and conference abstracts. A quality assessment of the selected studies was performed using the SYRCLE, RoB2 and SciRAP tools. RESULTS: 42 studies were included, which showed molecules with potential antiviral pharmacological activity or with activity in reducing the joint complications caused by CHIKV infection. CONCLUSIONS: Among the molecules found in the survey of references, regarding the class of secondary metabolites, flavonoids stood out and for this reason, the molecules may be promising candidates for future clinical trials. Overall, evidence from in vitro studies was of acceptable quality; in vivo and intervention studies showed a high risk of bias, which is a limitation of these studies.

4.
Pol J Microbiol ; 73(2): 207-215, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38905281

RESUMO

Chikungunya virus (CHIKV) causes a debilitating fever and joint pain, with no specific antiviral treatment available. Halogenated secondary metabolites from plants are a promising new class of drug candidates against chikungunya, with unique properties that make them effective against the virus. Plants produce these compounds to defend themselves against pests and pathogens, and they are effective against a wide range of viruses, including chikungunya. This study investigated the interactions of halogenated secondary metabolites with nsP2pro, a therapeutic target for CHIKV. A library of sixty-six halogenated plant metabolites screened previously for ADME properties was used. Metabolites without violation of Lipinski's rule were docked with nsP2pro using AutoDock Vina. To find the stability of the pipoxide chlorohydrin-nsP2pro complex, the GROMACS suite was used for MD simulation. The binding free energy of the ligand-protein complex was computed using MMPBSA. Molecular docking studies revealed that halogenated metabolites interact with nsP2pro, suggesting they are possible inhibitors. Pipoxide chlorohydrin showed the greatest affinity to the target. This was further confirmed by the MD simulations, surface accessible area, and MMPBSA studies. Pipoxide chlorohydrin, a halogenated metabolite, was the most potent against nsP2pro in the survey.


Assuntos
Antivirais , Vírus Chikungunya , Simulação de Acoplamento Molecular , Vírus Chikungunya/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Antivirais/metabolismo , Febre de Chikungunya/virologia , Febre de Chikungunya/tratamento farmacológico , Metabolismo Secundário , Simulação de Dinâmica Molecular , Halogenação , Plantas/química , Simulação por Computador , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/química
5.
Toxics ; 12(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38922065

RESUMO

Drug-induced liver injury (DILI) poses a significant challenge for the pharmaceutical industry and regulatory bodies. Despite extensive toxicological research aimed at mitigating DILI risk, the effectiveness of these techniques in predicting DILI in humans remains limited. Consequently, researchers have explored novel approaches and procedures to enhance the accuracy of DILI risk prediction for drug candidates under development. In this study, we leveraged a large human dataset to develop machine learning models for assessing DILI risk. The performance of these prediction models was rigorously evaluated using a 10-fold cross-validation approach and an external test set. Notably, the random forest (RF) and multilayer perceptron (MLP) models emerged as the most effective in predicting DILI. During cross-validation, RF achieved an average prediction accuracy of 0.631, while MLP achieved the highest Matthews Correlation Coefficient (MCC) of 0.245. To validate the models externally, we applied them to a set of drug candidates that had failed in clinical development due to hepatotoxicity. Both RF and MLP accurately predicted the toxic drug candidates in this external validation. Our findings suggest that in silico machine learning approaches hold promise for identifying DILI liabilities associated with drug candidates during development.

6.
J Microbiol ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980578

RESUMO

Infection with SARS-CoV2, which is responsible for COVID-19, can lead to differences in disease development, severity and mortality rates depending on gender, age or the presence of certain diseases. Considering that existing studies ignore these differences, this study aims to uncover potential differences attributable to gender, age and source of sampling as well as viral load using bioinformatics and multi-omics approaches. Differential gene expression analyses were used to analyse the phenotypic differences between SARS-CoV-2 patients and controls at the mRNA level. Pathway enrichment analyses were performed at the gene set level to identify the activated pathways corresponding to the differences in the samples. Drug repurposing analysis was performed at the protein level, focusing on host-mediated drug candidates to uncover potential therapeutic differences. Significant differences (i.e. the number of differentially expressed genes and their characteristics) were observed for COVID-19 at the mRNA level depending on the sample source, gender and age of the samples. The results of the pathway enrichment show that SARS-CoV-2 can be combated more effectively in the respiratory tract than in the blood samples. Taking into account the different sample sources and their characteristics, different drug candidates were identified. Evaluating disease prediction, prevention and/or treatment strategies from a personalised perspective is crucial. In this study, we not only evaluated the differences in COVID-19 from a personalised perspective, but also provided valuable data for further experimental and clinical efforts. Our findings could shed light on potential pandemics.

7.
Structure ; 32(8): 1040-1048.e3, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38870939

RESUMO

Cyclin dependent kinase 7 (CDK7) is an important therapeutic kinase best known for its dual role in cell cycle regulation and gene transcription. Here, we describe the application of protein engineering to generate constructs leading to high resolution crystal structures of human CDK7 in both active and inactive conformations. The active state of the kinase was crystallized by incorporation of an additional surface residue mutation (W132R) onto the double phosphomimetic mutant background (S164D and T170E) that yielded the inactive kinase structure. A novel back-soaking approach was developed to determine crystal structures of several clinical and pre-clinical inhibitors of this kinase, demonstrating the potential utility of the crystal system for structure-based drug design (SBDD). The crystal structures help to rationalize the mode of inhibition and the ligand selectivity profiles versus key anti-targets. The protein engineering approach described here illustrates a generally applicable strategy for structural enablement of challenging molecular targets.


Assuntos
Quinase Ativadora de Quinase Dependente de Ciclina , Quinases Ciclina-Dependentes , Desenho de Fármacos , Modelos Moleculares , Engenharia de Proteínas , Inibidores de Proteínas Quinases , Humanos , Engenharia de Proteínas/métodos , Cristalografia por Raios X , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/genética , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Ligação Proteica , Sítios de Ligação
8.
Sci Rep ; 14(1): 17306, 2024 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068200

RESUMO

Dimethyl 2-[2-(1-phenyl-4,5-dihydro-1H-imidazol-2-yl)hydrazinylidene]butanedioate (DIHB) and 8-(3-chlorophenyl)-2,6,7,8-tetrahydroimidazo[2,1-c][1,2,4]triazine-3,4-dione (HDIT) are promising candidates for anticancer agents, the first analytical procedures of which are presented in this paper. The commercially available unmodified glassy carbon electrode (GCE) was used as a sensor for the individual and simultaneous differential pulse voltammetric (DPV) determination of these possible anticancer drugs. The findings concerning the electrochemical behaviour indicated that DIHB and HDIT display at GCE, as a sensor, the oxidation peaks at 1.18 and 0.98 V, respectively (vs. Ag/AgCl, 3.0 mol L-1 KCl) in the 0.125 mol L-1 acetate buffer of pH = 4.5, which were employed for their quantification. Various experimental parameters were carefully investigated, to achieve high sensitivity in voltammetric measurements. Finally, under the optimised conditions (t of 60 s, ΔEA of 75 mV, ν of 225 mV s-1, and tm of 2 ms), the proposed DPV procedure with the GCE demonstrated broad linear sensing ranges (1-200 nmol L-1-DIHB and 5-200 nmol L-1-HDIT), boasting the detection limits of 0.18 nmol L-1 for DIHB and 1.1 nmol L-1 for HDIT. Moreover, the developed procedure was distinguished by good selectivity, repeatability of DIHB and HDIT signals and sensor reproducibility. The practical application of this method was demonstrated by analysing the urine reference material without any prior treatment. The results showed that this environmentally friendly approach, with a modification-free sensor, is suitable for the sensitive, selective and rapid quantification of DIHB and HDIT.


Assuntos
Antineoplásicos , Carbono , Técnicas Eletroquímicas , Eletrodos , Antineoplásicos/análise , Carbono/química , Humanos , Técnicas Eletroquímicas/métodos , Limite de Detecção , Oxirredução
9.
Eur J Med Chem ; 275: 116556, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38879971

RESUMO

Azepanes or azepines are structural motifs of many drugs, drug candidates and evaluated lead compounds. Even though compounds having N-heterocyclic 7-membered rings are often found in nature (e.g. alkaloids), the natural compounds of this group are rather rare as approved therapeutics. Thus, recently studied and approved azepane or azepine-congeners predominantly consist of semi-synthetically or synthetically-obtained scaffolds. In this review a comparison of approved drugs and recently investigated leads was proposed taking into regard their structural aspects (stereochemistry), biological activities, pharmacokinetic properties and confirmed molecular targets. The 7-membered N-heterocycles reveal a wide range of biological activities, not only against CNS diseases, but also as e.g. antibacterial, anticancer, antiviral, antiparasitic and against allergy agents. As most of the approved or investigated potential drugs or lead structures, belonging to 7-membered N-heterocycles, are synthetic scaffolds, this report also reveals different and efficient metal-free cascade approaches useful to synthesize both simple azepane or azepine-containing congeners and those of oligocyclic structures. Stereochemistry of azepane/azepine fused systems, in view of biological data and binding with the targets, is discussed. Apart from the approved drugs, we compare advances in SAR studies of 7-membered N-heterocycles (mainly from 2018 to 2023), whereas the related synthetic part concerning various domino strategies is focused on the last ten years.


Assuntos
Compostos Heterocíclicos , Humanos , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/síntese química , Azepinas/química , Azepinas/farmacologia , Azepinas/síntese química , Química Farmacêutica , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Estrutura Molecular , Animais , Aprovação de Drogas , Estereoisomerismo
10.
Prog Mol Biol Transl Sci ; 203: 181-196, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359998

RESUMO

The prevalence of metabolic disorders is increasing exponentially and has recently reached epidemic levels. Over the decades, a large number of therapeutic options have been proposed to manage these diseases but still show several limitations. In this circumstance, RNA therapeutics have rapidly emerged as a new hope for patients with metabolic diseases. 57 years have elapsed from the discovery of mRNA, a large number of RNA-based drug candidates have been evaluated for their therapeutic effectiveness and clinical safety under clinical studies. To date, there are seven RNA drugs for treating metabolic disorders receiving official approval and entering the global market. Their targets include hereditary transthyretin-mediated amyloidosis (hATTR), familial chylomicronemia syndrome, acute hepatic porphyria, primary hyperoxaluria type 1 and hypercholesterolemia, which are all related to liver proteins. All of these seven RNA drugs are antisense oligonucleotides (ASO) and small interfering RNA (siRNA). These two types of treatment are both based on oligonucleotides complementary to target RNA through Watson-Crick base-pairing, but their mechanisms of action include different nucleases. Such treatments show greatest potential among all types of RNA therapeutics due to consecutive achievements in chemical modifications. Another method, mRNA therapeutics also promise a brighter future for patients with a handful of drug candidates currently under development.


Assuntos
Neuropatias Amiloides Familiares , Oligonucleotídeos Antissenso , Oligonucleotídeos , Humanos , Oligonucleotídeos/uso terapêutico , Oligonucleotídeos Antissenso/uso terapêutico , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , RNA Mensageiro
12.
Mem. Inst. Oswaldo Cruz ; 117: e220004, 2022.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1365152

RESUMO

Chagas disease (CD), a neglected tropical illness caused by the protozoan Trypanosoma cruzi, affects more than 6 million people mostly in poor areas of Latin America. CD has two phases: an acute, short phase mainly oligosymptomatic followed to the chronic phase, a long-lasting stage that may trigger cardiac and/or digestive disorders and death. Only two old drugs are available and both present low efficacy in the chronic stage, display side effects and are inactive against parasite strains naturally resistant to these nitroderivatives. These shortcomings justify the search for novel therapeutic options considering the target product profile for CD that will be presently reviewed besides briefly revisiting the data on phosphodiesterase inhibitors upon T. cruzi.

13.
J. venom. anim. toxins incl. trop. dis ; 25: e146318, 2019. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1012632

RESUMO

Spider venoms are known to contain proteins and polypeptides that perform various functions including antimicrobial, neurotoxic, analgesic, cytotoxic, necrotic, and hemagglutinic activities. Currently, several classes of natural molecules from spider venoms are potential sources of chemotherapeutics against tumor cells. Some of the spider peptide toxins produce lethal effects on tumor cells by regulating the cell cycle, activating caspase pathway or inactivating mitochondria. Some of them also target the various types of ion channels (including voltage-gated calcium channels, voltage-gated sodium channels, and acid-sensing ion channels) among other pain-related targets. Herein we review the structure and pharmacology of spider-venom peptides that are being used as leads for the development of therapeutics against the pathophysiological conditions including cancer and pain.(AU)


Assuntos
Peptídeos , Venenos de Aranha , Analgésicos , Neoplasias , Antineoplásicos
14.
Artigo em Inglês | Arca: Repositório institucional da Fiocruz | ID: arc-51788
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa