Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 166(5): 1247-1256.e4, 2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27565347

RESUMO

Zika virus (ZIKV) can be transmitted sexually between humans. However, it is unknown whether ZIKV replicates in the vagina and impacts the unborn fetus. Here, we establish a mouse model of vaginal ZIKV infection and demonstrate that, unlike other routes, ZIKV replicates within the genital mucosa even in wild-type (WT) mice. Mice lacking RNA sensors or transcription factors IRF3 and IRF7 resulted in higher levels of local viral replication. Furthermore, mice lacking the type I interferon (IFN) receptor (IFNAR) became viremic and died of infection after a high-dose vaginal ZIKV challenge. Notably, vaginal infection of pregnant dams during early pregnancy led to fetal growth restriction and infection of the fetal brain in WT mice. This was exacerbated in mice deficient in IFN pathways, leading to abortion. Our study highlights the vaginal tract as a highly susceptible site of ZIKV replication and illustrates the dire disease consequences during pregnancy.


Assuntos
Encefalopatias/virologia , Encéfalo/virologia , Retardo do Crescimento Fetal/virologia , Complicações Infecciosas na Gravidez/virologia , Vagina/virologia , Replicação Viral , Infecção por Zika virus/transmissão , Zika virus/fisiologia , Aborto Habitual/virologia , Animais , Encefalopatias/imunologia , Modelos Animais de Doenças , Feminino , Retardo do Crescimento Fetal/imunologia , Fator Regulador 3 de Interferon/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Gravidez , Complicações Infecciosas na Gravidez/imunologia , Receptor de Interferon alfa e beta/genética
2.
Immunol Rev ; 316(1): 52-62, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37140024

RESUMO

Tissue-resident memory T cells (TRM ) are considered to be central to maintaining mucosal barrier immunity and tissue homeostasis. Most of this knowledge stems from murine studies, which provide access to all organs. These studies also allow for a thorough assessment of the TRM compartment for each tissue and across tissues with well-defined experimental and environmental variables. Assessing the functional characteristics of the human TRM compartment is substantially more difficult; thus, notably, there is a paucity of studies profiling the TRM compartment in the human female reproductive tract (FRT). The FRT is a mucosal barrier tissue that is naturally exposed to a wide range of commensal and pathogenic microbes, including several sexually transmitted infections of global health significance. We provide an overview of studies describing T cells within the lower FRT tissues and highlight the challenges of studying TRM cells in the FRT: different sampling methods of the FRT greatly affect immune cell recovery, especially of TRM cells. Furthermore, menstrual cycle, menopause, and pregnancy affect FRT immunity, but little is known about changes in the TRM compartment. Finally, we discuss the potential functional plasticity of the TRM compartment during inflammatory episodes in the human FRT to maintain protection and tissue homeostasis, which are required to ensure reproductive fitness.


Assuntos
Genitália Feminina , Linfócitos T , Gravidez , Humanos , Feminino , Animais , Camundongos , Mucosa , Memória Imunológica , Linfócitos T CD8-Positivos
3.
Mol Cell Proteomics ; 22(8): 100610, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37391044

RESUMO

Reproductive traits often evolve rapidly between species. Understanding the causes and consequences of this rapid divergence requires characterization of female and male reproductive proteins and their effect on fertilization success. Species in the Drosophila virilis clade exhibit rampant interspecific reproductive incompatibilities, making them ideal for studies on diversification of reproductive proteins and their role in speciation. Importantly, the role of intraejaculate protein abundance and allocation in interspecific divergence is poorly understood. Here, we identify and quantify the transferred male ejaculate proteome using multiplexed isobaric labeling of the lower female reproductive tract before and immediately after mating using three species of the virilis group. We identified over 200 putative male ejaculate proteins, many of which show differential abundance between species, suggesting that males transfer a species-specific allocation of seminal fluid proteins during copulation. We also identified over 2000 female reproductive proteins, which contain female-specific serine-type endopeptidases that showed differential abundance between species and elevated rates of molecular evolution, similar to that of some male seminal fluid proteins. Our findings suggest that reproductive protein divergence can also manifest in terms of species-specific protein abundance patterns.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Masculino , Feminino , Drosophila/metabolismo , Proteômica , Reprodução , Evolução Biológica , Proteínas de Drosophila/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(11): e2119899119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35254899

RESUMO

SignificanceIn species with internal fertilization, sperm spend an important part of their lives within the female. To examine the life history of the sperm during this time, we used semiquantitative proteomics and sex-specific isotopic labeling in fruit flies to determine the extent of molecular continuity between male and female reproductive tracts and provide a global catalog of sperm-associated proteins. Multiple seminal fluid proteins and female proteins associate with sperm immediately after mating. Few seminal fluid proteins remain after long-term sperm storage, whereas female-derived proteins constitute one-fifth of the postmating sperm proteome by then. Our data reveal a molecular "hand-off" from males to females, which we postulate to be an important component of sperm-female interactions.


Assuntos
Drosophila/fisiologia , Genitália , Espermatozoides/metabolismo , Animais , Drosophila/crescimento & desenvolvimento , Feminino , Estágios do Ciclo de Vida , Masculino , Proteoma , Proteômica , Reprodução , Proteínas de Plasma Seminal/metabolismo , Comportamento Sexual Animal
5.
Biol Reprod ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115371

RESUMO

OBJECTIVE: Endocervical mucus production is a key regulator of fertility throughout the menstrual cycle. With cycle-dependent variability in mucus quality and quantity, cervical mucus can either facilitate or block sperm ascension into the upper female reproductive tract. This study seeks to identify genes involved in the hormonal regulation of mucus production, modification, and regulation through profiling the transcriptome of endocervical cells from the non-human primate, the rhesus macaque (Macaca mulatta). INTERVENTION: We treated differentiated primary endocervical cultures with estradiol (E2) and progesterone (P4) to mimic peri-ovulatory and luteal-phase hormonal changes. Using RNA-sequencing, we identified differential expression of gene pathways and mucus producing and modifying genes in cells treated with E2 compared to hormone-free conditions and E2 compared to E2-primed cells treated with P4. MAIN OUTCOME MEASURES: We pursued differential gene expression analysis on RNA-sequenced cells. Sequence validation was done using qPCR. RESULTS: Our study identified 158 genes that show significant differential expression in E2-only conditions compared to hormone-free control, and 250 genes that show significant differential expression in P4-treated conditions compared to E2-only conditions. From this list, we found hormone-induced changes in transcriptional profiles for genes across several classes of mucus production, including ion channels and enzymes involved in post-translational mucin modification that have not previously been described as hormonally regulated. CONCLUSION: Our study is the first to use an in vitro culture system to create an epithelial-cell specific transcriptome of the endocervix. As a result, our study identifies new genes and pathways altered by sex-steroids in cervical mucus production.

6.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34001624

RESUMO

Anatomical positioning of memory lymphocytes within barrier tissues accelerates secondary immune responses and is thought to be essential for protection at mucosal surfaces. However, it remains unclear whether resident memory in the female reproductive tract (FRT) is required for Chlamydial immunity. Here, we describe efficient generation of tissue-resident memory CD4 T cells and memory lymphocyte clusters within the FRT after vaginal infection with Chlamydia Despite robust establishment of localized memory lymphocytes within the FRT, naïve mice surgically joined to immune mice, or mice with only circulating immunity following intranasal immunization, were fully capable of resisting Chlamydia infection via the vaginal route. Blocking the rapid mobilization of circulating memory CD4 T cells to the FRT inhibited this protective response. These data demonstrate that secondary protection in the FRT can occur in the complete absence of tissue-resident immune cells. The ability to confer robust protection to barrier tissues via circulating immune memory provides an unexpected opportunity for vaccine development against infections of the FRT.


Assuntos
Anticorpos Antibacterianos/biossíntese , Linfócitos T CD4-Positivos/imunologia , Infecções por Chlamydia/prevenção & controle , Chlamydia muridarum/imunologia , Genitália Feminina/imunologia , Imunização/métodos , Administração Intranasal , Administração Intravaginal , Animais , Antígenos de Bactérias/administração & dosagem , Vacinas Bacterianas/administração & dosagem , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/microbiologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Infecções por Chlamydia/imunologia , Infecções por Chlamydia/microbiologia , Chlamydia muridarum/efeitos dos fármacos , Chlamydia muridarum/crescimento & desenvolvimento , Chlamydia muridarum/patogenicidade , Feminino , Genitália Feminina/efeitos dos fármacos , Genitália Feminina/microbiologia , Imunidade nas Mucosas/efeitos dos fármacos , Memória Imunológica/efeitos dos fármacos , Camundongos , Parabiose/métodos
7.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34716265

RESUMO

Mammalian sperm migration within the complex and dynamic environment of the female reproductive tract toward the fertilization site requires navigational mechanisms, through which sperm respond to the tract environment and maintain the appropriate swimming behavior. In the oviduct (fallopian tube), sperm undergo a process called "hyperactivation," which involves switching from a nearly symmetrical, low-amplitude, and flagellar beating pattern to an asymmetrical, high-amplitude beating pattern that is required for fertilization in vivo. Here, exploring bovine sperm motion in high-aspect ratio microfluidic reservoirs as well as theoretical and computational modeling, we demonstrate that sperm hyperactivation, in response to pharmacological agonists, modulates sperm-sidewall interactions and thus navigation via physical boundaries. Prior to hyperactivation, sperm remained swimming along the sidewalls of the reservoirs; however, once hyperactivation caused the intrinsic curvature of sperm to exceed a critical value, swimming along the sidewalls was reduced. We further studied the effect of noise in the intrinsic curvature near the critical value and found that these nonthermal fluctuations yielded an interesting "Run-Stop" motion on the sidewall. Finally, we observed that hyperactivation produced a "pseudo-chemotaxis" behavior, in that sperm stayed longer within microfluidic chambers containing higher concentrations of hyperactivation agonists.


Assuntos
Motilidade dos Espermatozoides/fisiologia , Espermatozoides/metabolismo , Espermatozoides/fisiologia , Animais , Bovinos , Quimiotaxia/fisiologia , Masculino , Mamíferos , Técnicas Analíticas Microfluídicas/métodos , Microfluídica , Transdução de Sinais/fisiologia , Interações Espermatozoide-Óvulo/fisiologia
8.
Arch Gynecol Obstet ; 309(3): 871-886, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37676318

RESUMO

Vaginal canal (VC) is exposed to the external environment affected by habitual factors like hygiene and sexual behaviour as well as physiological factors like puberty, menstrual cycle, pregnancy, child birth and menopause. Healthy VC harbours beneficial microflora supported by vaginal epithelium and cervical fluid. Connatural antimicrobial peptide (AMPs) of female reproductive tract (FRT) conjunctly with these beneficial microbes provide protection from a large number of infectious diseases. Such infections may either be caused by native microbes of the VC or transitory microbes like bacteria or virus which are not a part of VC microflora. This review highlight's the role of hormones, enzymes, innate immunological factors, epithelial cells and vaginal mucus that support beneficial microbes over infectious ones thus, helping to maintain homeostasis in VC and further protect the FRT. We also discuss the prospective use of vaginal probiotics and AMPs against pathogens which can serve as a potential cure for vaginal infections.


Assuntos
Doenças Transmissíveis , Vagina , Feminino , Humanos , Gravidez , Células Epiteliais , Genitália Feminina , Ciclo Menstrual , Vagina/microbiologia
9.
Infect Immun ; 91(1): e0046022, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36511703

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is an opportunistic pathogen and frequent colonizer of human skin and mucosal membranes, including the vagina, with vaginal colonization reaching nearly 25% in some pregnant populations. MRSA vaginal colonization can lead to aerobic vaginitis (AV), and during pregnancy, bacterial ascension into the upper reproductive tract can lead to adverse birth outcomes. USA300, the most prominent MRSA lineage to colonize pregnant individuals, is a robust biofilm former and causative agent of invasive infections; however, little is known about how it colonizes and ascends in the female reproductive tract (FRT). Our previous studies showed that a MRSA mutant of seven fibrinogen-binding adhesins was deficient in FRT epithelial attachment and colonization. Using both monolayer and multilayer air-liquid interface cell culture models, we determine that one class of these adhesins, the fibronectin binding proteins (FnBPA and FnBPB), are critical for association with human vaginal epithelial cells (hVECs) and hVEC invasion through interactions with α5ß1 integrin. We observe that both FnBPs are important for biofilm formation as single and double fnbAB mutants exhibit reduced biofilm formation on hVECs. Using heterologous expression of fnbA and fnbB in Staphylococcus carnosus, FnBPs are also found to be sufficient for hVEC cellular association, invasion, and biofilm formation. In addition, we found that an ΔfnbAB mutant displays attenuated ascension in our murine vaginal colonization model. Better understanding of MRSA FRT colonization and ascension can ultimately inform treatment strategies to limit MRSA vaginal burden or prevent ascension, especially during pregnancy and in those prone to AV.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Feminino , Humanos , Animais , Camundongos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/metabolismo , Proteínas de Transporte/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Infecções Estafilocócicas/microbiologia
10.
Infect Immun ; 91(5): e0039022, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37071014

RESUMO

Gardnerella species are associated with bacterial vaginosis (BV) and have been investigated as etiological agents of the condition. Nonetheless, the isolation of this taxon from healthy individuals has raised important questions regarding its etiological role. Recently, using advanced molecular approaches, the Gardnerella genus was expanded to include several different species that exhibit differences in virulence potential. Understanding the significance of these different species with respect to mucosal immunity and the pathogenesis and complications of BV could be crucial to solving the BV enigma. Here, we review key findings regarding the unique genetic and phenotypic diversity within this genus, virulence factors, and effects on mucosal immunity as they stand. We also comment on the relevance of these findings to the proposed role of Gardnerella in BV pathogenesis and in reproductive health and identify key gaps in knowledge that should be explored in the future.


Assuntos
Vaginose Bacteriana , Humanos , Feminino , Vaginose Bacteriana/microbiologia , Gardnerella , Imunidade nas Mucosas , Fatores de Virulência/genética , Gardnerella vaginalis/genética , Vagina/microbiologia
11.
Biol Reprod ; 108(2): 304-315, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36394270

RESUMO

Environmental stressors to which a fetus is exposed affect a range of physiological functions in postnatal offspring. We aimed to determine the in utero effect of steroid hormones on the reproductive potential of female offspring using a porcine model. Reproductive tracts of pigs from female-biased (>65% female, n = 15), non-biased (45-54.9% female, n = 15), and male-biased litters (<35% females, n = 9) were collected at slaughter (95-115 kg). Ovaries and uterine horns were processed for H&E or immunohistochemistry. Variability of data within groups was analyzed with a Levene's test, while data were analyzed using mixed linear models in R. In the ovarian reserve, there was a significant birth weight by sex ratio interaction (P = 0.015), with low birth weight pigs from male-biased litters having higher numbers of primordial follicles with opposite trends seen in pigs from female-biased litters. Sex bias held no effect on endometrial gland development. A lower birth weight decreased the proportion of glands found in the endometrium (P = 0.045) and was more variable in both male-biased and female-biased litters (P = 0.026). The variability of primordial follicles from male-biased litters was greater than non- and female-biased litters (P = 0.014). Similarly, endometrial stromal nuclei had a greater range in male- and female-biased litters than non-biased litters (P = 0.028). A crucial finding was the greater variability in primordial follicles in the ovaries from females derived from male-biased litters and stromal cell count in the endometrium of females from male- and female-biased litters. This could be inflating the variability of reproductive success seen in females from male-biased litters.


Assuntos
Reserva Ovariana , Animais , Suínos , Feminino , Masculino , Peso ao Nascer , Sexismo , Útero/fisiologia , Ovário
12.
Biol Reprod ; 109(1): 1-16, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37040316

RESUMO

The microbiome has been shown, or implicated to be involved, in multiple facets of human health and disease, including not only gastrointestinal health but also metabolism, immunity, and neurology. Although the predominant focus of microbiome research has been on the gut, other microbial communities such as the vaginal or cervical microbiome are likely involved in physiological homeostasis. Emerging studies also aim to understand the role of different microbial niches, such as the endometrial or placental microbial communities, on the physiology and pathophysiology of reproduction, including their impact on reproductive success and the etiology of adverse pregnancy outcomes (APOs). The study of the microbiome during pregnancy, specifically how changes in maternal microbial communities can lead to dysfunction and disease, can advance the understanding of reproductive health and the etiology of APOs. In this review, we will discuss the current state of non-human primate (NHP) reproductive microbiome research, highlight the progress with NHP models of reproduction, and the diagnostic potential of microbial alterations in a clinical setting to promote pregnancy health. NHP reproductive biology studies have the potential to expand the knowledge and understanding of female reproductive tract microbial communities and host-microbe or microbe-microbe interactions associated with reproductive health through sequencing and analysis. Furthermore, in this review, we aim to demonstrate that macaques are uniquely suited as high-fidelity models of human female reproductive pathology.


Assuntos
Microbiota , Placenta , Animais , Feminino , Gravidez , Primatas , Microbiota/fisiologia , Genitália Feminina , Resultado da Gravidez
13.
Mol Hum Reprod ; 29(7)2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37326833

RESUMO

We have previously demonstrated spermicidal activity of LL-37 antimicrobial peptide on mouse/human sperm and its contraceptive effects in female mice. With its microbicidal action against Neisseria gonorrhoeae, LL-37 warrants development into a multipurpose prevention technology (MPT) agent for administering into the female reproductive tract (FRT). However, it is important to verify that multiple administrations of LL-37 do not lead to damage of FRT tissues and/or irreversible loss of fecundity. Herein, we transcervically injected LL-37 (36 µM-10× spermicidal dose) into female mice in estrus in three consecutive estrous cycles. A set of mice were sacrificed for histological assessment of the vagina/cervix/uterus 24 h after the last injection, while the second set were artificially inseminated with sperm from fertile males 1 week afterwards, and then monitored for pregnancy. Mice injected with PBS in parallel were regarded as negative controls, whereas those injected with vaginal contraceptive foam (VCF, available over the counter), containing 12.5% nonoxynol-9, served as positive controls for vaginal epithelium disruption. We demonstrated that the vagina/cervix/uterus remained normal in both LL-37-injected and PBS-injected mice, which also showed 100% resumption of fecundity. In contrast, VCF-injected mice showed histological abnormalities in the vagina/cervix/uterus and only 50% of them resumed fecundity. Similarly, LL-37 multiply administered intravaginally caused no damage to FRT tissues. While our results indicate the safety of multiple treatments of LL-37 in the mouse model, similar studies have to be conducted in non-human primates and then humans. Regardless, our study provides an experimental model for studying in vivo safety of other vaginal MPT/spermicide candidates.


Assuntos
Peptídeos Antimicrobianos , Espermicidas , Gravidez , Masculino , Feminino , Humanos , Camundongos , Animais , Sêmen , Espermicidas/farmacologia , Nonoxinol/farmacologia , Espermatozoides
14.
BMC Biol ; 20(1): 279, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36514080

RESUMO

BACKGROUND: Male-derived seminal fluid proteins (SFPs) that enter female fruitflies during mating induce a myriad of physiological and behavioral changes, optimizing fertility of the mating pair. Some post-mating changes in female Drosophila melanogaster persist for ~10-14 days. Their long-term persistence is because the seminal protein that induces these particular changes, the Sex Peptide (SP), is retained long term in females by binding to sperm, with gradual release of its active domain from sperm. Several other "long-term response SFPs" (LTR-SFPs) "prime" the binding of SP to sperm. Whether female factors play a role in this process is unknown, though it is important to study both sexes for a comprehensive physiological understanding of SFP/sperm interactions and for consideration in models of sexual conflict. RESULTS: We report here that sperm in male ejaculates bind SP more weakly than sperm that have entered females. Moreover, we show that the amount of SP, and other SFPs, bound to sperm increases with time and transit of individual seminal proteins within the female reproductive tract (FRT). Thus, female contributions are needed for maximal and appropriate binding of SP, and other SFPs, to sperm. Towards understanding the source of female molecular contributions, we ablated spermathecal secretory cells (SSCs) and/or parovaria (female accessory glands), which contribute secretory proteins to the FRT. We found no dramatic change in the initial levels of SP bound to sperm stored in mated females with ablated or defective SSCs and/or parovaria, indicating that female molecules that facilitate the binding of SP to sperm are not uniquely derived from SSCs and parovaria. However, we observed higher levels of SP (and sperm) retention long term in females whose SSCs and parovaria had been ablated, indicating secretions from these female tissues are necessary for the gradual release of Sex Peptide's active region from stored sperm. CONCLUSION: This study reveals that the SP-sperm binding pathway is not entirely male-derived and that female contributions are needed to regulate the levels of SP associated with sperm stored in their storage sites.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Masculino , Feminino , Drosophila melanogaster/fisiologia , Proteínas de Drosophila/metabolismo , Sêmen/metabolismo , Espermatozoides/fisiologia , Comportamento Sexual Animal/fisiologia , Peptídeos/metabolismo
15.
Proc Biol Sci ; 289(1968): 20212213, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35105240

RESUMO

Reproductive traits that influence female remating and competitive fertilization rapidly evolve in response to sexual selection and sexual conflict. One such trait, observed across diverse animal taxa, is the formation of a structural plug inside the female reproductive tract (FRT), either during or shortly after mating. In Drosophila melanogaster, male seminal fluid forms a mating plug inside the female bursa, which has been demonstrated to influence sperm entry into storage and latency of female remating. Processing of the plug, including its eventual ejection from the female's reproductive tract, influences the competitive fertilization success of her mates and is mediated by female × male genotypic interactions. However, female contributions to plug formation and processing have received limited attention. Using developmental mutants that lack glandular FRT tissues, we reveal that these tissues are essential for mating plug ejection. We further use proteomics to demonstrate that female glandular proteins, and especially proteolytic enzymes, contribute to mating plug composition and have a widespread impact on plug formation and composition. Together, these phenotypic and molecular data identify female contributions to intersexual interactions that are a potential mechanism of post-copulatory sexual selection.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Drosophila , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Feminino , Masculino , Reprodução , Comportamento Sexual Animal/fisiologia , Espermatozoides/metabolismo
16.
Biol Reprod ; 106(1): 9-23, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34494091

RESUMO

The vertebrate female reproductive tract has undergone considerable diversification over evolution, having become physiologically adapted to different reproductive strategies. This review considers the female reproductive tract from the perspective of evolutionary developmental biology (evo-devo). Very little is known about how the evolution of this organ system has been driven at the molecular level. In most vertebrates, the female reproductive tract develops from paired embryonic tubes, the Müllerian ducts. We propose that formation of the Müllerian duct is a conserved process that has involved co-option of genes and molecular pathways involved in tubulogenesis in the adjacent mesonephric kidney and Wolffian duct. Downstream of this conservation, genetic regulatory divergence has occurred, generating diversity in duct structure. Plasticity of the Hox gene code and wnt signaling, in particular, may underlie morphological variation of the uterus in mammals, and evolution of the vagina. This developmental plasticity in Hox and Wnt activity may also apply to other vertebrates, generating the morphological diversity of female reproductive tracts evident today.


Assuntos
Evolução Biológica , Biologia do Desenvolvimento , Genitália Feminina/crescimento & desenvolvimento , Animais , Estrogênios , Tubas Uterinas/crescimento & desenvolvimento , Feminino , Expressão Gênica , Genes Homeobox , Genitália Feminina/anatomia & histologia , Humanos , Morfogênese/genética , Morfogênese/fisiologia , Ductos Paramesonéfricos/crescimento & desenvolvimento , Útero/crescimento & desenvolvimento , Vertebrados , Via de Sinalização Wnt
17.
Biol Reprod ; 107(3): 732-740, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35532160

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) is an apical membrane chloride/bicarbonate ion channel in epithelial cells. Mutations in CFTR cause cystic fibrosis, a disease characterized by thickened mucus secretions and is associated with subfertility and infertility. CFTR function has been well characterized in vitro and in vivo in airway and other epithelia studies. However, little is known about CFTR function in the cervix in health and its contribution to cyclic regulation of fertility from endocervical mucus changes. Contributing to this research gap is the lack of information on the effect of sex steroid hormones on CFTR expression in cervical epithelial cells across the menstrual cycle. Herein, we demonstrate the hormonal regulation of CFTR expression in endocervical cells both in vitro and in vivo, and that conditionally reprogrammed endocervical epithelial cells can be used to interrogate CFTR ion channel function. CFTR activity was demonstrated in vitro using electrophysiological methods and functionally inhibited by the CFTR-specific inhibitors inh-172 and GlyH-101. We also report that CFTR expression is increased by estradiol in the macaque cervix both in vitro and in vivo in Rhesus macaques treated with artificial menstrual cycles. Estrogen upregulation of CFTR is blocked in vivo by cotreatment with progesterone. Our findings provide the most comprehensive evidence to date that steroid hormones drive changes in CFTR expression. These data are integral to understanding the role of CFTR as a fertility regulator in the endocervix.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Animais , Colo do Útero/metabolismo , Fibrose Cística/genética , Fibrose Cística/metabolismo , Fibrose Cística/terapia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Feminino , Macaca mulatta
18.
Hum Reprod ; 37(11): 2503-2517, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36053257

RESUMO

STUDY QUESTION: Is 17BIPHE2, an engineered cathelicidin antimicrobial peptide with low susceptibility to proteases, a better spermicide in cervicovaginal fluid (CVF) than its parental peptides, LL-37 and GF-17? SUMMARY ANSWER: At the same mass concentration, 17BIPHE2 exhibited the highest spermicidal activity on human sperm resuspended in CVF-containing medium. WHAT IS KNOWN ALREADY: LL-37 and its truncated peptide GF-17 exert both spermicidal and microbicidal activities, although they are prone to proteolytic degradation in body fluids. STUDY DESIGN, SIZE, DURATION: Spermicidal activities of 17BIPHE2 were evaluated in vitro in mouse and human sperm, both resuspended in medium, and then on human sperm incubated in CVF-containing medium; in the latter condition, the spermicidal activity and peptide stability in CVF of 17BIPHE2 were compared with that of LL-37 and GF-17. The in vivo contraceptive effects of 17BIPHE2 and the reversibility thereof were then assessed in mice. Finally, in vitro microbicidal effects of 17BIPHE2 on Neisseria gonorrhoeae were determined. PARTICIPANTS/MATERIALS, SETTING, METHODS: Sperm motility and plasma membrane integrity were assessed by videomicroscopy and exclusion of Sytox Green, a membrane-impermeable fluorescent dye, respectively. Successful in vitro fertilization (IVF) was determined by the presence of two pronuclei in oocytes following their coincubation with capacitated untreated or 17BIPHE2-treated sperm. Sperm alone or with 17BIPHE2 were transcervically injected into female mice and successful in vivo fertilization was indicated by the formation of two-cell embryos 42-h postinjection, and by pregnancy through pup delivery 21-25 days afterwards. Peptide intactness was assessed by immunoblotting and HPLC. Reversibility of the contraceptive effects of 17BIPHE2 was evaluated by resumption of pregnancy of the female mice, pretranscervically injected with 17BIPHE2, following natural mating with fertile males. Minimum inhibitory/bactericidal concentrations of 17BIPHE2 on N. gonorrhoeae were obtained through microdilution broth assay. MAIN RESULTS AND THE ROLE OF CHANCE: At the same mass concentration, 17BIPHE2 was a more effective spermicide than LL-37 or GF-17 on human sperm resuspended in CVF-containing medium, with the spermicidal concentration of 32.4 µM. This was mainly due to lower susceptibility of 17BIPHE2 to CVF proteases. Importantly, the reproductive tract of mouse females treated three times with 32.4 µM 17BIPHE2 remained normal and their fecundity resumed after stopping 17BIPHE2 treatment. LIMITATIONS, REASONS FOR CAUTION: For ethical reasons, the inhibitory effects of 17BIPHE2 on fertilization and pregnancy cannot presently be performed in women. Also, while our study has proven the effectiveness of 17BIPHE2 as a spermicide for mouse and human sperm in vitro, dosage formulation (e.g. in hydrogel) of 17BIPHE2 still needs to be developed to allow 17BIPHE2 to remain in the vagina/uterine cavity with controlled release for its spermicidal action. WIDER IMPLICATIONS OF THE FINDINGS: Since 17BIPHE2 also exerted bactericidal activity against N. gonorrhoeae at its spermicidal concentration, it is a promising candidate to be developed into a vaginal multipurpose prevention technology agent, thus empowering women against unplanned pregnancies and sexually transmitted infections. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the Canadian Institutes of Health Research (PJT 173268 to N.T.). There are no competing interests to declare. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Anti-Infecciosos , Espermicidas , Gravidez , Masculino , Feminino , Humanos , Animais , Camundongos , Neisseria gonorrhoeae , Peptídeos Antimicrobianos , Motilidade dos Espermatozoides , Peptídeo Hidrolases/farmacologia , Sêmen , Canadá , Espermicidas/farmacologia , Espermatozoides , Anti-Infecciosos/farmacologia , Anticoncepcionais , Catelicidinas
19.
J Assist Reprod Genet ; 39(1): 19-36, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35034216

RESUMO

Although medical advancements have successfully helped a lot of couples with their infertility by assisted reproductive technologies (ART), sperm selection, a crucial stage in ART, has remained challenging. Therefore, we aimed to investigate novel sperm separation methods, specifically microfluidic systems, as they do sperm selection based on sperm and/or the female reproductive tract (FRT) features without inflicting any damage to the selected sperm during the process. In this review, after an exhaustive studying of FRT features, which can implement by microfluidics devices, the focus was centered on sperm selection and investigation devices. During this study, we tried not to only point to the deficiencies of these systems, but to put forth suggestions for their improvement as well.


Assuntos
Genitália Feminina/fisiologia , Contagem de Espermatozoides/instrumentação , Espermatozoides/citologia , Adulto , Feminino , Genitália Feminina/microbiologia , Humanos , Masculino , Microfluídica/instrumentação , Microfluídica/métodos , Microfluídica/estatística & dados numéricos , Técnicas de Reprodução Assistida/normas , Técnicas de Reprodução Assistida/tendências , Contagem de Espermatozoides/métodos , Contagem de Espermatozoides/tendências , Espermatozoides/microbiologia
20.
Biol Reprod ; 105(6): 1458-1473, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34647570

RESUMO

Dairy cow subfertility is a worldwide issue arising from multiple factors. It manifests in >30% early pregnancy losses in seasonal pasture-grazed herds, especially when cows are inseminated in the early post-partum period. Most losses occur before implantation, when embryo growth depends on factors present in maternal tract fluids. Here we examined the proteomic composition of early and mid-postpartum uterine luminal fluid (ULF) in crossbred lactating dairy cows to identify molecular determinants of fertility. We also explored changes in ULF from first to third estrus cycles postpartum in individual cows, linking those changes with divergent embryo development. For this, we flushed uteri of 87 cows at Day 7 of pregnancy at first and third estrus postpartum, recovering, and grading their embryos. Out of 1563 proteins detected, 472 had not been previously reported in this fluid, and 408 were predicted to be actively secreted by bioinformatic analysis. The abundance of 18 proteins with roles in immune regulation and metabolic function (e.g. cystatin B, pyruvate kinase M2) was associated with contrasting embryo quality. Matched-paired pathway analysis indicated that, from first to third estrus postpartum, upregulation of metabolic (e.g. creatine and carbohydrate) and immune (e.g. complement regulation, antiviral defense) processes were related to poorer quality embryos in the third estrus cycle postpartum. Conversely, upregulated signal transduction and protein trafficking appeared related to improved embryo quality in third estrus. These results advance the characterization of the molecular environment of bovine ULF and may aid understanding fertility issues in other mammals, including humans.


Assuntos
Bovinos/fisiologia , Período Pós-Parto/fisiologia , Prenhez/fisiologia , Proteoma , Útero/fisiologia , Animais , Indústria de Laticínios , Estro/fisiologia , Feminino , Lactação/fisiologia , Gravidez , Proteômica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa