Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genesis ; 62(2): e23600, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38665068

RESUMO

Transgenic tools such as the GAL4/UAS system in Drosophila have been used extensively to induce spatiotemporally controlled changes in gene expression and tissue-specific expression of a range of transgenes. We previously discovered unexpected expression of the commonly used dilp2-GAL4 line in tracheal tissue which significantly impacted growth phenotypes. We realized that few GAL4 lines have been thoroughly characterized, particularly when considering transient activity that may have significant impact on phenotypic readouts. Here, we characterized a further subset of 12 reportedly tissue-specific GAL4 lines commonly used in genetic studies of development, growth, endocrine regulation, and metabolism. Ten out of 12 GAL4 lines exhibited ectopic activity in other larval tissues, with seven being active in the larval trachea. Since this ectopic activity may result in phenotypes that do not depend on the manipulation in the intended target tissue, it is recommended to carefully analyze the outcome while taking this aspect into consideration.


Assuntos
Animais Geneticamente Modificados , Proteínas de Drosophila , Expressão Ectópica do Gene , Fatores de Transcrição , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Expressão Ectópica do Gene/genética , Drosophila melanogaster/genética , Transgenes , Larva/genética , Larva/metabolismo , Larva/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Traqueia/metabolismo , Drosophila/genética , Drosophila/metabolismo
2.
Genome ; 67(6): 158-167, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38412472

RESUMO

The last decade has been highlighted by the increased use of next-generation DNA sequencing technology to identify novel human disease genes. A critical downstream part of this process is assigning function to a candidate gene variant. Functional studies in Drosophila melanogaster, the common fruit fly, have made a prominent contribution in annotating variant impact in an in vivo system. The use of patient-derived knock-in flies or rescue-based, "humanization", approaches are novel and valuable strategies in variant testing but have been recently widely reviewed. An often-overlooked strategy for determining variant impact has been GAL4/upstream activation sequence-mediated tissue-defined overexpression in Drosophila. This mini-review will summarize the recent contribution of ectopic overexpression of human reference and variant cDNA in Drosophila to assess variant function, interpret the consequence of the variant, and in some cases infer biological mechanisms.


Assuntos
Drosophila melanogaster , Animais , Drosophila melanogaster/genética , Humanos , Variação Genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
3.
Cell Struct Funct ; 48(1): 31-47, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36529516

RESUMO

The Gal4/UAS system is a versatile tool to manipulate exogenous gene expression of cells spatially and temporally in many model organisms. Many variations of light-controllable Gal4/UAS system are now available, following the development of photo-activatable (PA) molecular switches and integration of these tools. However, many PA-Gal4 transcription factors have undesired background transcription activities even in dark conditions, and this severely attenuates reliable light-controlled gene expression. Therefore, it is important to develop reliable PA-Gal4 transcription factors with robust light-induced gene expression and limited background activity. By optimization of synthetic PA-Gal4 transcription factors, we have validated configurations of Gal4 DNA biding domain, transcription activation domain and blue light-dependent dimer formation molecule Vivid (VVD), and applied types of transcription activation domains to develop a new PA-Gal4 transcription factor we have named eGAV (enhanced Gal4-VVD transcription factor). Background activity of eGAV in dark conditions was significantly lower than that of hGAVPO, a commonly used PA-Gal4 transcription factor, and maximum light-induced gene expression levels were also improved. Light-controlled gene expression was verified in cultured HEK293T cells with plasmid-transient transfections, and in mouse EpH4 cells with lentivirus vector-mediated transduction. Furthermore, light-controlled eGAV-mediated transcription was confirmed in transfected neural stem cells and progenitors in developing and adult mouse brain and chick spinal cord, and in adult mouse hepatocytes, demonstrating that eGAV can be applied to a wide range of experimental systems and model organisms.Key words: optogenetics, Gal4/UAS system, transcription, gene expression, Vivid.


Assuntos
Optogenética , Fatores de Transcrição , Animais , Humanos , Camundongos , Regulação da Expressão Gênica , Células HEK293 , Mamíferos/genética , Mamíferos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores Genéricos de Transcrição/genética , Fatores Genéricos de Transcrição/metabolismo , Células Cultivadas
4.
Proc Natl Acad Sci U S A ; 116(51): 25764-25772, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31801878

RESUMO

Resistance in Anopheles gambiae to members of all 4 major classes (pyrethroids, carbamates, organochlorines, and organophosphates) of public health insecticides limits effective control of malaria transmission in Africa. Increase in expression of detoxifying enzymes has been associated with insecticide resistance, but their direct functional validation in An. gambiae is still lacking. Here, we perform transgenic analysis using the GAL4/UAS system to examine insecticide resistance phenotypes conferred by increased expression of the 3 genes-Cyp6m2, Cyp6p3, and Gste2-most often found up-regulated in resistant An. gambiae We report evidence in An. gambiae that organophosphate and organochlorine resistance is conferred by overexpression of GSTE2 in a broad tissue profile. Pyrethroid and carbamate resistance is bestowed by similar Cyp6p3 overexpression, and Cyp6m2 confers only pyrethroid resistance when overexpressed in the same tissues. Conversely, such Cyp6m2 overexpression increases susceptibility to the organophosphate malathion, presumably due to conversion to the more toxic metabolite, malaoxon. No resistant phenotypes are conferred when either Cyp6 gene overexpression is restricted to the midgut or oenocytes, indicating that neither tissue is involved in insecticide resistance mediated by the candidate P450s examined. Validation of genes conferring resistance provides markers to guide control strategies, and the observed negative cross-resistance due to Cyp6m2 gives credence to proposed dual-insecticide strategies to overcome pyrethroid resistance. These transgenic An. gambiae-resistant lines are being used to test the "resistance-breaking" efficacy of active compounds early in their development.


Assuntos
Anopheles , Genes de Insetos/genética , Genômica/métodos , Resistência a Inseticidas/genética , Mosquitos Vetores , Animais , Animais Geneticamente Modificados , Anopheles/efeitos dos fármacos , Anopheles/genética , Sistema Enzimático do Citocromo P-450/genética , Feminino , Glutationa Transferase/genética , Inseticidas/farmacologia , Malária/prevenção & controle , Malária/transmissão , Masculino , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética , Fenótipo
5.
Pestic Biochem Physiol ; 187: 105186, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36127048

RESUMO

The house fly (Musca domestica L.) (Diptera: Muscidae) is a global vector that can transmit >250 human and animal diseases. The control of house flies has heavily relied on the application of various chemical insecticides. The carbamate insecticide propoxur has been widely used for the control of house flies, and resistance to propoxur has been documented in many house fly populations worldwide. Previous studies have identified several propoxur resistance-conferring mutations in the target protein acetylcholinesterase; however, the molecular basis for metabolic resistance to propoxur remains unknown. In this study, we investigated the involvement of CYP6G4, a cytochrome P450 overexpressed in many insecticide resistant populations of Musca domestica, in propoxur metabolism and resistance by using combined approaches of recombinant protein-based insecticide metabolism and the Drosophila GAL4/UAS transgenic system. The recombinant CYP6G4 and its redox partners (NADPH-dependent cytochrome P450 reductase and cytochrome b5) were functionally expressed in Escherichia coli. Metabolism experiments showed that CYP6G4 was able to transform propoxur with a turnover rate of around 0.79 min-1. Six metabolites were putatively identified, suggesting that CYP6G4 could metabolize propoxur via hydroxylation, O-depropylation and N-demethylation. Moreover, bioassay results showed that ectopic overexpression of CYP6G4 in fruit flies significantly increased their tolerance to propoxur. Our in vivo and in vitro data convincingly demonstrate that CYP6G4 contributes to propoxur metabolism and resistance.


Assuntos
Sistema Enzimático do Citocromo P-450 , Moscas Domésticas , Inseticidas , Acetilcolinesterase/genética , Animais , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromos b5 , Escherichia coli , Moscas Domésticas/enzimologia , Moscas Domésticas/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , NADP , NADPH-Ferri-Hemoproteína Redutase , Propoxur/farmacologia , Proteínas Recombinantes
6.
Dev Biol ; 464(2): 188-201, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32562757

RESUMO

Dorsal closure during Drosophila embryogenesis provides a robust genetic platform to study the basic cellular mechanisms that govern epithelial wound healing and morphogenesis. As dorsal closure proceeds, the lateral epithelial tissue (LE) adjacent to the dorsal opening advance contra-laterally, with a simultaneous retraction of the amnioserosa. The process involves a fair degree of coordinated cell shape changes in the dorsal most epithelial (DME) cells as well as a few penultimate rows of lateral epithelial (LE) cells (collectively referred here as Dorsolateral Epithelial (DLE) cells), lining the periphery of the amnioserosa, which in due course of time extend contra-laterally and ultimately fuse over the dorsal hole, giving rise to a dorsal epithelial continuum. The JNK-Dpp signaling in the dorsolateral epidermis, plays an instrumental role in guiding their fate during this process. A large array of genes have been reported to be involved in the regulation of this core signaling pathway, yet the mechanisms by which they do so is hitherto unclear, which forms the objective of our present study. Here we show a probable mechanism via which lgl, a conserved tumour suppressor gene, regulates the JNK-Dpp pathway during dorsal closure and epithelial morphogenesis. A conditional/targeted knock-down of lgl in the dorsolateral epithelium of embryos results in failure of dorsal closure. Interestingly, we also observed a similar phenotype in a Rab11 knockdown condition. Our experiment suggests Rab11 to be interacting with lgl as they seem to synergize in order to regulate the core JNK-Dpp signaling pathway during dorsal closure and also during adult thorax closure process.


Assuntos
Proteínas de Drosophila/metabolismo , MAP Quinase Quinase 4/metabolismo , Morfogênese/fisiologia , Transdução de Sinais/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Epiderme/embriologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , MAP Quinase Quinase 4/genética , Proteínas Supressoras de Tumor/genética , Proteínas rab de Ligação ao GTP/genética
7.
Mol Biol Rep ; 48(7): 5411-5420, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34275032

RESUMO

We performed expression and functional analysis of mouse CREB3 regulatory factor (CREBRF) in Neuro2a cells by constructing several expression vectors. Overexpressed full-length (FL) CREBRF protein was stabilized by MG132; however, the intrinsic CREBRF expression in Neuro2a cells was negligible under all conditions. On the other hand, N- or C-terminal deletion of CREBRF influenced its stability. Cotransfection of CREBRF together with GAL4-tagged FL CREB3 increased luciferase reporter activity, and only the N-terminal region of CREBRF was sufficient to potentiate luciferase activity. Furthermore, this positive effect of CREBRF was also observed in cells expressing GAL4-tagged cleaved CREB3, although CREBRF hardly influenced the protein stability of NanoLuc-tagged cleaved CREB3 or intracellular localization of EGFP-tagged one. In conclusion, this study suggests that CREBRF, a quite unstable proteasome substrate, positively regulates the CREB3 pathway, which is distinct from the canonical ER stress pathway in Neuro2a cells.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Expressão Gênica , Genes Reporter , Camundongos , Plasmídeos/genética , Transfecção
8.
Proc Natl Acad Sci U S A ; 115(15): 3900-3905, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29581308

RESUMO

Bipartite expression systems, such as the GAL4-UAS system, allow fine manipulation of gene expression and are powerful tools for interrogating gene function. Recently, we established cGAL, a GAL4-based bipartite expression system for transgene control in Caenorhabditis elegans, where a single promoter dictates the expression pattern of a cGAL driver, which then binds target upstream activation sequences to drive expression of a downstream effector gene. Here, we report a split strategy for cGAL using the split intein gp41-1 for intersectional control of transgene expression. Split inteins are protein domains that associate, self-excise, and covalently ligate their flanking peptides together. We split the DNA binding domain and transcriptional activation domain of cGAL and fused them to the N terminal of gp41-1-N-intein and the C terminal of gp41-1-C-intein, respectively. In cells where both halves of cGAL are expressed, a functional cGAL driver is reconstituted via intein-mediated protein splicing. This reconstitution allows expression of the driver to be dictated by two promoters for refined spatial control or spatiotemporal control of transgene expression. We apply the split cGAL system to genetically access the single pair of MC neurons (previously inaccessible with a single promoter), and reveal an important role of protein kinase A in rhythmic pharyngeal pumping in C. elegans Thus, the split cGAL system gives researchers a greater degree of spatiotemporal control over transgene expression, and will be a valuable genetic tool in C. elegans for dissecting gene function with finer cell-specific resolution.


Assuntos
Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Regulação da Expressão Gênica , Inteínas , Transgenes , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Neurônios/metabolismo , Regiões Promotoras Genéticas , Processamento de Proteína , Saccharomyces/genética
9.
Transgenic Res ; 29(2): 243-251, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31960249

RESUMO

The cytoplasmic actin gene Actin4 (A4) in silkworm (Bombyx mori) was isolated 20 years ago and has a distal promoter upstream of the first exon and a proximal promoter within the first intron; however, how the promoter regulates gene expression has yet to be fully elucidated. Here, we characterized the function and expression of the proximal promoter (named A4IP) by analyzing transgenic Gal4/UAS silkworms, A4IP-Gal4/UAS-EGFP. We demonstrated that A4IP drives the expression of Gal4 and thereby activates UAS-linked EGFP in transgenic silkworms beginning in day-3 embryos through adults. Further detection revealed that EGFP was expressed at a low level in tissues including the trachea, fat body and midgut but was highly expressed in the wing disks/wings and inner epidermis of transgenic silkworms. No EGFP signals were detected in other tissues by western blot assay. Interestingly, EGFP fluorescence had a spot-like distribution on the epidermis of transgenic larvae. These observations are quite different from those in transgenic silkworms driven by the promoter of Actin3 (A3), another cytoplasmic actin gene in B. mori. These findings reveal the expression profiles of the A4IP promoter and provide new insights into the regulatory mechanism of cytoplasmic actin genes in silkworms.


Assuntos
Actinas/metabolismo , Animais Geneticamente Modificados/metabolismo , Bombyx/metabolismo , Epiderme/metabolismo , Regiões Promotoras Genéticas , Transgenes , Asas de Animais/metabolismo , Actinas/genética , Animais , Animais Geneticamente Modificados/genética , Bombyx/genética , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Íntrons
10.
BMC Genet ; 21(Suppl 1): 96, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33092520

RESUMO

BACKGROUND: The Drosophila central nervous system (CNS) is a convenient model system for the study of the molecular mechanisms of conserved neurobiological processes. The manipulation of gene activity in specific cell types and subtypes of the Drosophila CNS is frequently achieved by employing the binary Gal4/UAS system. However, many Gal4 driver lines available from the Bloomington Drosophila Stock Center (BDSC) and commonly used in Drosophila neurobiology are still not well characterized. Among these are three lines with Gal4 driven by the elav promoter (BDSC #8760, #8765, and #458), one line with Gal4 driven by the repo promoter (BDSC #7415), and the 69B-Gal4 line (BDSC #1774). For most of these lines, the exact insertion sites of the transgenes and the detailed expression patterns of Gal4 are not known. This study is aimed at filling these gaps. RESULTS: We have mapped the genomic location of the Gal4-bearing P-elements carried by the BDSC lines #8760, #8765, #458, #7415, and #1774. In addition, for each of these lines, we have analyzed the Gal4-driven GFP expression pattern in the third instar larval CNS and eye-antennal imaginal discs. Localizations of the endogenous Elav and Repo proteins were used as markers of neuronal and glial cells, respectively. CONCLUSIONS: We provide a mini-atlas of the spatial activity of Gal4 drivers that are widely used for the expression of UAS-target genes in the Drosophila CNS. The data will be helpful for planning experiments with these drivers and for the correct interpretation of the results.


Assuntos
Sistema Nervoso Central/citologia , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Animais , Sistema Nervoso Central/embriologia , Mapeamento Cromossômico , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Larva , Neurobiologia , Organismos Geneticamente Modificados , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
11.
Methods ; 159-160: 129-137, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30684537

RESUMO

The Carboxy-terminal Domain (CTD) of RNA polymerase II (Pol II) plays essential roles in regulating gene expression in eukaryotes. Here, we describe multiple genetic approaches for studying the CTD in Drosophila that complement pre-existing molecular analyses of the Pol II CTD in other experimental models. These approaches will allow one to assess the effects of any CTD mutations in a developmentally complex organism. The approaches discussed in this work can in principle, be applied to analyze other transcription components in eukaryotes.


Assuntos
Cruzamentos Genéticos , Drosophila/genética , Edição de Genes , Mutação , Domínios Proteicos , RNA Polimerase II/genética , Animais , Animais Geneticamente Modificados , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Drosophila/enzimologia , Feminino , Masculino , RNA Polimerase II/metabolismo
12.
Biol Chem ; 400(9): 1191-1203, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31120852

RESUMO

Signaling pathways that originate at the plasma membrane, including regulated intramembrane proteolysis (RIP), enable extracellular cues to control transcription. We modified the yeast Gal4 transcription system to study the nuclear translocation of transcriptionally active complexes using the fluorescent protein citrine (Cit) as a reporter. This enabled highly sensitive quantitative analysis of transcription in situ at the single cell level. The Gal4/UAS-Cit transcription assay displayed a sigmoidal response limited by the number of integrated reporter cassettes. We validated the assay by analyzing nuclear translocation of the amyloid precursor protein (APP) intracellular domain (AICD) and confirmed the requirement of Fe65 for nuclear translocation of AICD. In addition to the strong on-off effects on transcriptional activity, the results of this assay establish that phosphorylation modifies nuclear signaling. The Y682F mutation in APP showed the strongest increase in Cit expression, underscoring its role in regulating Fe65 binding. Together, we established a highly sensitive fluorescent protein-based assay that can monitor transcriptional activity at the single cell level and demonstrate that AICD phosphorylation affects Fe65 nuclear activity. This assay also introduces a platform for future single cell-based drug screening methods for nuclear translocation.


Assuntos
Proteínas Nucleares/metabolismo , Transcrição Gênica , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Fluorescência , Vetores Genéticos , Células HEK293 , Humanos , Lentivirus/genética , Mutação , Transporte Proteico , Transdução de Sinais
13.
Transgenic Res ; 28(5-6): 627-636, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31564030

RESUMO

The silkworm Bombyx mori is a valuable insect that synthesizes bulk amounts of fibroin protein in its posterior silk gland (PSG) and weaves these proteins into silk cocoons. The mechanism by which the fibroin protein is efficiently synthesized and precisely regulated is an important aspect that has yet to be fully elucidated. Here, we describe the regulatory characteristics of the promoters of fibroin protein-encoding genes, namely, fibroin heavy chain (fibH) and fibroin light chain (fibL), using an optimized Gal4/UAS binary system. We found that (1) UAS-linked enhanced green fluorescent protein (EGFP) was effectively activated in the PSGs of Gal4/UAS transgenic silkworms, and fluorescence was continuously detected in the PSGs after complete formation of silk glands. (2) In the PSGs of fourth- and fifth-instar larvae of transgenic silkworms driven by fibL-Gal4 (LG4) or fibH-Gal4 (HG4), EGFP mRNA was detected in only day-3 to day-6 fifth-instar larvae, while the EGFP protein could be detected at each day of both larval stages. (3) High-level expression of Gal4 and UAS-linked EGFP caused a delay in PSG degradation in Gal4/UAS transgenic silkworms. (4) At the early pupal stage, EGFP fluorescence was also detected in fat bodies of Gal4/UAS transgenic silkworms, indicating that the PSG-specific EGFP was transported into fat bodies during PSG degeneration; however, the underlying mechanism needs to be further elucidated. This study provides a modified Gal4/UAS system used for efficient tissue-specific expression of target genes in the PSGs of silkworms and provides new insights into the regulatory characteristics of the promoters of key fibroin protein-encoding genes.


Assuntos
Animais Geneticamente Modificados/genética , Bombyx/genética , Fibroínas/genética , Proteínas de Insetos/genética , Animais , Fibroínas/biossíntese , Proteínas de Fluorescência Verde/genética , Larva/genética , Regiões Promotoras Genéticas/genética , Pupa/genética , Seda/genética , Fatores de Transcrição
14.
J Exp Biol ; 222(Pt 19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31511344

RESUMO

Taste is essential for animals to evaluate food quality and make important decisions about food choice and intake. How complex brains process sensory information to produce behavior is an essential question in the field of sensory neurobiology. Currently, little is known about higher-order taste circuits in the brain as compared with those of other sensory systems. Here, we used the common vinegar fly, Drosophila melanogaster, to screen for candidate neurons labeled by different transgenic GAL4 lines in controlling feeding behaviors. We found that activation of one line (VT041723-GAL4) produces 'proboscis holding' behavior (extrusion of the mouthpart without withdrawal). Further analysis showed that the proboscis holding phenotype indicates an aversive response, as flies pre-fed with either sucrose or water prior to neuronal activation exhibited regurgitation. Anatomical characterization of VT041723-GAL4-labeled neurons suggests that they receive sensory input from peripheral taste neurons. Overall, our study identifies a subset of brain neurons labeled by VT041723-GAL4 that may be involved in a taste circuit that controls regurgitation.


Assuntos
Encéfalo/fisiologia , Drosophila melanogaster/fisiologia , Neurônios/fisiologia , Animais , Animais Geneticamente Modificados , Comportamento Animal , Drosophila melanogaster/genética , Feminino , Proteínas de Fluorescência Verde/metabolismo , Masculino , Optogenética , Faringe/inervação , Caracteres Sexuais , Sinapses/fisiologia , Paladar/fisiologia , Termogênese/fisiologia
15.
Appl Microbiol Biotechnol ; 103(4): 1789-1799, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30613898

RESUMO

The Gal4/UAS system provides a powerful tool to analyze the function of genes. The system has been employed extensively in zebrafish; however, cytotoxicity of Gal4 and methylation of UAS can hinder future applications of Gal4/UAS in zebrafish. In this study, we provide quantitative data on the cytotoxicity of Gal4-FF and KalTA4 in zebrafish embryos. A better balance between induction efficiency and toxicity was shown when the injection dosage was 20 pg for Gal4-FF and 30 pg for KalTA4. We tested the DNA methylation of UAS in different copies (3×, 5×, 7×, 9×, 11×, and 14×), and the results showed, for the first time, that the degree of UAS methylation increases with the increase in the copy number of UAS. We detected insertions of the Tol2-mediated transgene in the Gal4 line and found as many as three sites of insertion, on average; only about 20% of individuals contained single-site insertion in F1 generation. We suggested that the screening of Gal4 lines with single-site insertion is essential when Tol2-mediated Gal4 transgenic lines are created. Moreover, we designed a novel 5 × non-repetitive UAS (5 × nrUAS) to reduce the appeal of multicopy UAS as a target for methylation. Excitingly, the 5 × nrUAS is less prone to methylation compared to 5 × UAS. We hope the results will facilitate the future application of the Gal4/UAS system in zebrafish research.


Assuntos
Animais Geneticamente Modificados/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Biologia Molecular/métodos , Sequências Reguladoras de Ácido Nucleico , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Animais , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Coloração e Rotulagem/métodos
16.
Pestic Biochem Physiol ; 159: 136-143, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31400775

RESUMO

Cytochrome P450s are part of a super-gene family that has undergone gene duplication, divergence, over-expression and, in some cases, loss of function. One such case is the 91-R and 91-C strains of common origin, in Drosophila melanogaster, whereby 91-R (DDT resistant strain) overexpresses Cyp4p1 and Cyp4p2 and both genes are lost in 91-C (DDT susceptible strain). In this study, we used a comparative approach to demonstrate that transcription of Cyp4p1 and Cyp4p2 were constitutively up-regulated in the Drosophila melanogaster strain 91-R as compared to another DDT susceptible strain Canton-S which does not have a loss of function of these genes. Furthermore, significantly increased expression of Cyp4p1 and Cyp4p2 was induced in 91-R in response to sublethal DDT exposure, however, such induction did not occur in the DDT treated Canton-S. Additionally, fixed nucleotide variation within putative transcription factor binding sites of Cyp4p1 and Cyp4p2 promoters were observed between 91-R and Canton-S, however, their impact on transcription remains to be determined. Two GAL4/UAS transgenic strains with integrated heat shock-inducible Cyp4p1- or Cyp4p2-RNAi constructs within wild-type genetic backgrounds were developed. Following heat shock induction of Cyp4p1 and Cyp4p2 knockdown, these transgenic lines showed increased DDT mortality as compared to their corresponding non-heat shock controls. These results provide a functional link of Cyp4p1 and Cyp4p2 in conferring tolerance to DDT exposure.


Assuntos
DDT/farmacologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/metabolismo , Inseticidas/farmacologia , Animais , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Drosophila/genética , Resistência a Inseticidas/genética
17.
BMC Biol ; 16(1): 45, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29690872

RESUMO

BACKGROUND: Fear conditioning is a form of learning essential for animal survival and used as a behavioral paradigm to study the mechanisms of learning and memory. In mammals, the amygdala plays a crucial role in fear conditioning. In teleost, the medial zone of the dorsal telencephalon (Dm) has been postulated to be a homolog of the mammalian amygdala by anatomical and ablation studies, showing a role in conditioned avoidance response. However, the neuronal populations required for a conditioned avoidance response via the Dm have not been functionally or genetically defined. RESULTS: We aimed to identify the neuronal population essential for fear conditioning through a genetic approach in zebrafish. First, we performed large-scale gene trap and enhancer trap screens, and created transgenic fish lines that expressed Gal4FF, an engineered version of the Gal4 transcription activator, in specific regions in the brain. We then crossed these Gal4FF-expressing fish with the effector line carrying the botulinum neurotoxin gene downstream of the Gal4 binding sequence UAS, and analyzed the double transgenic fish for active avoidance fear conditioning. We identified 16 transgenic lines with Gal4FF expression in various brain areas showing reduced performance in avoidance responses. Two of them had Gal4 expression in populations of neurons located in subregions of the Dm, which we named 120A-Dm neurons. Inhibition of the 120A-Dm neurons also caused reduced performance in Pavlovian fear conditioning. The 120A-Dm neurons were mostly glutamatergic and had projections to other brain regions, including the hypothalamus and ventral telencephalon. CONCLUSIONS: Herein, we identified a subpopulation of neurons in the zebrafish Dm essential for fear conditioning. We propose that these are functional equivalents of neurons in the mammalian pallial amygdala, mediating the conditioned stimulus-unconditioned stimulus association. Thus, the study establishes a basis for understanding the evolutionary conservation and diversification of functional neural circuits mediating fear conditioning in vertebrates.


Assuntos
Medo/fisiologia , Neurônios/metabolismo , Telencéfalo/citologia , Telencéfalo/metabolismo , Animais , Animais Geneticamente Modificados , Toxinas Botulínicas/metabolismo , Encéfalo/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Peixe-Zebra
18.
Insect Mol Biol ; 27(5): 651-660, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29888824

RESUMO

Previously, we observed increased transcription levels of specific cytochrome P450 monooxygenase (P450) and adenosine triphosphate binding cassette (ABC) transporter genes in human body lice, Pediculus humanus humanus, following exposure to ivermectin using the non-invasive induction assay, which resulted in tolerance. To confirm the roles of these genes in induction and tolerance, the robust genetic model insect Drosophila melanogaster was chosen. Orthologous genes corresponding to the body louse P450 (Cyp9f2, Cyp6g2 and Cyp9h1) and ABC transporter (Mrp1, GC1824 as an ABCB type and CG3327 as an ABCG type) genes were selected for in vivo bioassay. Following a brief treatment with a sublethal dose of ivermectin, the mortality response was significantly slower, indicating the presence of tolerance. Concurrently, the transcription levels of Cyp9f2 and Mrp1 at 3 h and those of Cyp6g2, Cyp9h1, Mrp1, CG1824 and CG3327 at 6 h post-treatment were upregulated, indicating gene induction. In behavioural bioassay using GAL4/UAS-RNA interference transgenic fly lines, increased susceptibility to ivermectin was observed following heat shock in the Cyp9f2 , Cyp6g2 , Cyp9h1 , Mrp1 or CG3327-knockdown flies. Considering that these five genes are orthologous to those which had the largest over-expression level following ivermectin-induced tolerance in the body louse, the current results suggest that they are also associated with ivermectin detoxification in D. melanogaster and that body lice and D. melanogaster are likely to share, in part, similar mechanisms of tolerance to ivermectin.


Assuntos
Drosophila melanogaster/genética , Tolerância a Medicamentos/genética , Inativação Metabólica/genética , Inseticidas , Ivermectina , Animais , Feminino , Resistência a Inseticidas , Interferência de RNA
19.
J Neurogenet ; 32(1): 15-26, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29191114

RESUMO

To study the central pattern generators functioning, previously we identified genes, whose neurospecific knockdowns led to deviations in the courtship song of Drosophila melanogaster males. Reduced expression of the gene CG15630 caused a decrease in the interpulse interval. To investigate the role of CG15630, which we have called here fipi (factor of interpulse interval), in the courtship song production, at first, we have characterized fipi transcripts and protein (FIPI) in the mutant flies carrying P insertion and deletions in this gene and in flies with its RNAi knockdown. FIPI is homologous to the mammalian NCAM2 protein, an important factor of neuronal development in the olfactory system. In this study, we have revealed that local fipi knockdown in the antennal olfactory sensory neurons (OR67d and IR84a), which are responsible for reception of chemosignals modulating courtship behavior, alters the interpulse interval in the opposite directions. Thus, a proper fipi expression seems to be necessary for perception of sexual chemosignals, and the effect of fipi knockdown on IPI value depends on the type of chemoreceptor neurons affected.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Molécula L1 de Adesão de Célula Nervosa/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Geradores de Padrão Central/fisiologia , Masculino
20.
Bioorg Med Chem ; 26(8): 1686-1704, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29477813

RESUMO

Designing novel inverse agonists of NR RORγt still represents a challenge for the pharmaceutical community to develop therapeutics for treating immune diseases. By exploring the structure of NRs natural ligands, the representative arotenoid ligands and RORs specific ligands share some chemical homologies which can be exploited to design a novel molecular structure characterized by a polycyclic core bearing a polar head and a hydrophobic tail. Compound MG 2778 (8), a cyclopenta[a]phenantrene derivative, was identified as lead compound which was chemically modified at position 2 in order to obtain a small library for preliminary SARs. Cell viability and estrogenic activity of compounds 7, 8, 19a, 30, 31 and 32 were evaluated to attest selectivity. The selected 7, 8, 19a and 31 compounds were assayed in a Gal4 UAS-Luc co-transfection system in order to determine their ability to modulate RORγt activity in a cellular environment. They were evaluated as inverse agonists taken ursolic acid as reference compound. The potency of compounds was lower than that of ursolic acid, but their efficacy was similar. Compound 19a was the most active, significantly reducing RORγt activity at low micromolar concentrations.


Assuntos
Doenças Autoimunes/tratamento farmacológico , Agonismo Inverso de Drogas , Receptores do Ácido Retinoico/antagonistas & inibidores , Esteroides/farmacologia , Doenças Autoimunes/patologia , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HEK293 , Células Hep G2 , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Receptores do Ácido Retinoico/metabolismo , Esteroides/síntese química , Esteroides/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa