Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39000424

RESUMO

Cardiomyocyte dysfunction and cardiovascular diseases (CVDs) can be classified as ischemic or non-ischemic. We consider the induction of cardiac tissue dysfunction by intracellular advanced glycation end-products (AGEs) in cardiomyocytes as a novel type of non-ischemic CVD. Various types of AGEs can be generated from saccharides (glucose and fructose) and their intermediate/non-enzymatic reaction byproducts. Recently, certain types of AGEs (Nε-carboxymethyl-lycine [CML], 2-ammnonio-6-[4-(hydroxymetyl)-3-oxidopyridinium-1-yl]-hexanoate-lysine [4-hydroxymethyl-OP-lysine, hydroxymethyl-OP-lysine], and Nδ-(5-hydro-5-methyl-4-imidazolone-2-yl)-ornithine [MG-H1]) were identified and quantified in the ryanodine receptor 2 (RyR2) and F-actin-tropomyosin filament in the cardiomyocytes of mice or patients with diabetes and/or heart failure. Under these conditions, the excessive leakage of Ca2+ from glycated RyR2 and reduced contractile force from glycated F-actin-tropomyosin filaments induce cardiomyocyte dysfunction. CVDs are included in lifestyle-related diseases (LSRDs), which ancient people recognized and prevented using traditional medicines (e.g., Kampo medicines). Various natural compounds, such as quercetin, curcumin, and epigallocatechin-3-gallate, in these drugs can inhibit the generation of intracellular AGEs through mechanisms such as the carbonyl trap effect and glyoxalase 1 activation, potentially preventing CVDs caused by intracellular AGEs, such as CML, hydroxymethyl-OP, and MG-H1. These investigations showed that bioactive herbal extracts obtained from traditional medicine treatments may contain compounds that prevent CVDs.


Assuntos
Doenças Cardiovasculares , Produtos Finais de Glicação Avançada , Miócitos Cardíacos , Produtos Finais de Glicação Avançada/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Humanos , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Camundongos
2.
Pak J Med Sci ; 40(4): 652-656, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545031

RESUMO

Objective: To determine the association of diabetic nephropathy with glyoxalase-1 enzyme levels and a genetic missense variation (SNP rs4746) in its gene (GLO-1). Methods: This cross-sectional comparative study was conducted at the Department of Biochemistry and Molecular Biology, Army Medical College, Rawalpindi from November 2020 to December 2022. One hundred patients and one hundred and thirteen healthy controls were enrolled using the nonprobability convenience sampling method. Medical history and 10ml blood were obtained from each individual after written informed consent. Blood samples were subjected to biochemical tests and DNA extraction which was later used for single nucleotide polymorphism (SNP) analysis (C332C variant of rs4741 GLO-1 gene) using Tetra primer ARMS PCR and gel electrophoresis. Glyoxalase-1 enzyme activity in serum was measured using ELISA. Results: There was a significant difference in serum glyoxalase-1 levels in the two groups (p-value< 0.001). The patient group had lower levels (16.24 ± 22.51mg/dl) of glyoxalase-1 as compared to the control group (48.70 ± 42.54mg/dl). In genotypic analysis, 98 out of 100 control individuals had AA genotype-while only one had CC and another AC genotype. In the patient group, 94 out of 100 patients showed AA genotype, three AC, and three CC genotypes. As the statistical significance (p-value) was 0.37, there was no significant association found between AC or CC genotype and diabetic nephropathy. Conclusion: Glyoxalase-1 levels are linked to the development of diabetic nephropathy in our patients while a known missense variant rs4746 in the GLO-1 gene is not associated with increased risk.

3.
Biochem Biophys Res Commun ; 650: 96-102, 2023 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-36774689

RESUMO

Chronic lymphocytic leukemia (CLL) is a highly heterogeneous disease. Despite recent tremen-dous progress in managing CLL, the disease remains incurable with clinical therapies, and relapse is inevitable. To overcome this, new diagnostic and prognostic markers need to be investigated. We thus screened through the public database for genes with diagnostic, prognostic, and therapeutic implications in CLL. We further performed RT-qPCR and Western blot analysis to measure the candidate gene and protein expression levels, respectively, in peripheral blood mononuclear cells. Our results indicated that Glyoxalase 1 (GLO1) expression was significantly higher in patients with CLL than in healthy controls. Furthermore, cell proliferation, apoptosis, and cell cycle assay results together indicated that S-p-bromobenzylglutathione cyclopentyl diester (BBGC), an effective inhibitor of GLO1, suppresses the progression of CLL. Bioinformatics analysis revealed that GLO1 expression is closely associated with CDK4 expression in a wide variety of cancer types, and inhibition of CDK4 through silencing of genes or inhibitors can downregulate GLO1 expression. Subsequent validation experiments demonstrated that GLO1 protein levels were downregulated in MEC-1 and Jurkat cell lines after palbociclib exposure, and combination treatment of palbociclib with GLO1 inhibitor BBGC effectively delayed the growth of tumor cell lines.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucócitos Mononucleares , Piridinas/farmacologia , Piperazinas/farmacologia , Apoptose
4.
BMC Cancer ; 23(1): 956, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37814205

RESUMO

MicroRNAs (miRNAs) have been reported to serve as potential biomarkers in bladder cancer and play important roles in cancer progression. This study aimed to investigate the biological role of miR-205-3p in bladder cancer. We showed that miR-205-3p was significantly down-regulated in bladder cancer tissues and cells. Moreover, overexpression of miR-205-3p inhibited bladder cancer progression in vitro. Then we confirmed that GLO1, a downstream target of miR-205-3p, mediated the effect of miR-205-3p on bladder cancer cells. In addition, we found that miR-205-3p inhibits P38/ERK activation through repressing GLO1. Eventually, we confirmed that miR-205-3p inhibits the occurrence and progress of bladder cancer by targeting GLO1 in vivo by nude mouse tumorigenesis and immunohistochemistry. In a word, miR-205-3p inhibits proliferation and metastasis of bladder cancer cells by activating the GLO1 mediated P38/ERK signaling pathway and that may be a potential therapeutic target for bladder cancer.


Assuntos
Lactoilglutationa Liase , MicroRNAs , Neoplasias da Bexiga Urinária , Animais , Camundongos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Neoplasias da Bexiga Urinária/patologia , Humanos , Lactoilglutationa Liase/metabolismo
5.
J Surg Res ; 257: 501-510, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32916503

RESUMO

BACKGROUND: Breast cancer is a familiar malignant tumor, which is a great threat to women's life. Long noncoding RNA Opa interacting protein 5-antisense RNA 1 (OIP5-AS1) has been reported to be associated with numerous cancers. This study aimed to explore the role of OIP5-AS1 and the mechanism of its action in the progression of breast cancer. METHODS: The expression of OIP5-AS1 and miR-216a-5p was detected by quantitative real-time polymerase chain reaction. Cell proliferation, apoptosis, migration, or invasion was assessed by 4-5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, flow cytometry, or transwell assay, respectively. The binding sites were predicted by bioinformatics tool starBase2.0 (http://starbase.sysu.edu.cn/starbase2/index.php). The interaction between miR-216a-5p and OIP5-AS1 or glyoxalase 1 (GLO1) was confirmed by dual-luciferase reporter assay. The expression of GLO1 was quantified by Western blot. Nude mouse tumorigenicity assays were conducted to verify the role of OIP5-AS1 in vivo. RESULTS: OIP5-AS1 and GLO1 were highly expressed in both clinical tumor tissues and cell lines, whereas miR-216a-5p was downregulated. Knockdown of OIP5-AS1 suppressed proliferation, migration, and invasion but promoted apoptosis of breast cancer cells. MiR-216a-5p was a target of OIP5-AS1 and interacted with GLO1. MiR-216a-5p inhibition or GLO1 overexpression reversed the effects of OIP5-AS1 knockdown on the development of breast cancer cells. OIP5-AS1 knockdown depleted tumor growth in vivo. CONCLUSIONS: OIP5-AS1 knockdown suppressed the progression of breast cancer by inducing GLO1 expression via competitively binding to miR-216a-5p, suggesting that OIP5-AS1 was a hopeful biomarker for the therapy of breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Lactoilglutationa Liase/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Estudos de Casos e Controles , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Humanos , Camundongos Nus
6.
Int J Mol Sci ; 21(15)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32721999

RESUMO

Breast cancer is the leading cause of cancer mortality in women worldwide. Conventional cancer treatment is costly and results in many side effects. Dietary bioactive compounds may be a potential source for breast cancer prevention and treatment. In this scenario, the aim of this study was to investigate the effects of the bioactive compounds resveratrol, curcumin and piperine (R-C-P) on MCF-7 breast cancer cells and to associate them to Glyoxalase 1 (GLO1) activity. The findings indicate that R-C-P exhibits cytotoxicity towards MCF-7 cells. R-C-P decreased mitochondrial membrane potential (ΔΨm) by 1.93-, 2.04- and 1.17-fold, respectively. Glutathione and N-acetylcysteine were able to reverse the cytotoxicity of the assessed bioactive compounds in MCF-7 cells. R-C-P reduced GLO1 activity by 1.36-, 1.92- and 1.31-fold, respectively. R-C-P in the presence of antimycin A led to 1.98-, 1.65- and 2.16-fold decreases in D-lactate levels after 2 h of treatment, respectively. Glyoxal and methylglyoxal presented cytotoxic effects on MCF-7 cells, with IC50 values of 2.8 and 2.7 mM and of 1.5 and 1.4 mM after 24 and 48 h of treatment, respectively. In conclusion, this study demonstrated that R-C-P results in cytotoxic effects in MCF-7 cells and that this outcome is associated with decreasing GLO1 activity and mitochondrial dysfunction.


Assuntos
Alcaloides/farmacologia , Benzodioxóis/farmacologia , Neoplasias da Mama/enzimologia , Curcumina/farmacologia , Lactoilglutationa Liase/metabolismo , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Resveratrol/farmacologia , Neoplasias da Mama/patologia , Feminino , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos
7.
Biochem Biophys Res Commun ; 518(2): 278-285, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31420161

RESUMO

Uncontrollable vascular smooth cell proliferation is responsible for vascular remodeling during hypertension development. Glyoxalase 1 (GLO1), the major enzyme detoxifying methylglyoxal, has a critical role in regulating proliferation of several cell types. However, little is known whether GLO1 is involved in cerebrovascular remodeling and basilar smooth muscle cell (BASMC) proliferation during hypertension. Here we explored the role of GLO1 in angiotensin II (Ang II)-induced cerebrovascular remodeling and proliferation of BASMCs and the underlying mechanisms. The protein expression of GLO1 in basilar arteries from hypertensive mice was decreased, and GLO1 expression was negatively correlated with medial cross-sectional area and blood pressure in basilar arteries during hypertension. Knockdown of GLO1 promoted while overexpression of GLO1 prevented Ang II-induced cell proliferation and cell cycle transition in BASMCs. These results were related to the inhibitory effects of GLO1 on PI3K/AKT/CDK2 cascade activation upon Ang II treatment. In addition, in vivo study, GLO1 overexpression with adeno-associated virus harboring GLO1 cDNA improved cerebrovascular remodeling in basilar artery tissue during Ang II-induced hypertension development. These data indicate that GLO1 reduction mediates cerebrovascular modeling via PI3K/AKT/CDK2 cascade-dependent BASMC proliferation. GLO1 acts as a negative regulator of hypertension-induced cerebrovascular remodeling and targeting GLO1 may be a novel therapeutic strategy to prevent hypertension-associated cardiovascular complications such as stroke.


Assuntos
Hipertensão/patologia , Lactoilglutationa Liase/metabolismo , Miócitos de Músculo Liso/patologia , Remodelação Vascular , Angiotensina II/metabolismo , Animais , Encéfalo/irrigação sanguínea , Proliferação de Células , Células Cultivadas , Hipertensão/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Ratos Sprague-Dawley
8.
Int J Mol Sci ; 19(9)2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30223524

RESUMO

Spatholobus suberectus (SS) is a medicinal herb commonly used in Asia to treat anemia, menoxenia and rheumatism. However, its effect of diabetes-induced renal damage and mechanisms of action against advanced glycation end-products (AGEs) are unclear. In this study, we evaluated the effects of SS on diabetes-induced renal damage and explored the possible underlying mechanisms using db/db type 2 diabetes mice. db/db mice were administered SS extract (50 mg/kg) orally for 6 weeks. SS-treated group did not change body weight, blood glucose and glycated hemoglobin (HbA1c) levels. However, SS treatment reversed diabetes-induced dyslipidemia and urinary albumin/creatinine ratio in db/db mice. Moreover, SS administration showed significantly increased protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2), which is a transcription factor for antioxidant enzyme. SS significantly upregulated glyoxalase 1 (Glo1) and NADPH quinine oxidoreductase 1 (NQO1) expression but reduced CML accumulation and downregulated receptor for AGEs (RAGE). Furthermore, SS showed significant decrease of periodic acid⁻Schiff (PAS)-positive staining and AGEs accumulation in histological and immunohistochemical analyses of kidney tissues. Taken together, we concluded that SS ameliorated the renal damage by inhibiting diabetes-induced glucotoxicity, dyslipidemia and oxidative stress, through the Nrf2/antioxidant responsive element (ARE) stress-response system.


Assuntos
Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Fabaceae/química , Produtos Finais de Glicação Avançada/metabolismo , Extratos Vegetais/farmacologia , Animais , Nefropatias Diabéticas/tratamento farmacológico , Modelos Animais de Doenças , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Imuno-Histoquímica , Isoflavonas/química , Isoflavonas/farmacologia , Lactoilglutationa Liase/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos , Fator 2 Relacionado a NF-E2/metabolismo , Extratos Vegetais/química , Transdução de Sinais/efeitos dos fármacos
9.
Prostate ; 77(15): 1528-1538, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28929505

RESUMO

BACKGROUND: Glyoxalase 1 (GLO1) is an enzyme involved in removal of toxic byproducts accumulating during glycolysis from the cell. GLO1 is up regulated in many cancer types but its role in prostate cancer is largely unknown. METHODS: Here, we employed GLO1 immunohistochemistry on a tissue microarray including 11 152 tumors and an attached clinical and molecular database. RESULTS: Normal prostate epithelium was negative for GLO1, whereas 2059 (27.3%) of 7552 interpretable cancers showed cytoplasmic GLO1 staining, which was considered weak in 8.8%, moderate in 12.5%, and strong in 6.1% of tumors. Up regulation of GLO1 was significantly linked to high original Gleason grade, advanced pathological tumor stage and positive lymph node status (P < 0.0001 each). Comparison of GLO1 staining with several common genomic alterations of prostate cancers revealed a strong link between GLO1 up regulation and TMPRSS2:ERG fusion (P < 0.0001) and an ERG-independent association with PTEN deletion (P < 0.0001). GLO1 up regulation was strongly linked to early biochemical recurrence in univariate analysis (P < 0.0001) and predicted poor prognosis independent from most (except from nodal stage) established prognostic parameters in multivariate analysis (P ≤ 0.03). CONCLUSIONS: GLO1 upregulation is linked to aggressive prostate cancers characterized by ERG fusion and PTEN deletion. The strong and independent prognostic value makes it a promising candidate for routine diagnostic applications either alone or in combination with other markers.


Assuntos
Lactoilglutationa Liase/biossíntese , Neoplasias da Próstata/enzimologia , Idoso , Biomarcadores Tumorais/biossíntese , Humanos , Imuno-Histoquímica , Calicreínas/metabolismo , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/enzimologia , Prognóstico , Antígeno Prostático Específico/metabolismo , Análise Serial de Tecidos
10.
Clin Exp Pharmacol Physiol ; 44 Suppl 1: 70-77, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28467603

RESUMO

Chronic kidney disease (CKD) is a major concern in public health. The pathology of CKD includes premature ageing in the kidney and vessels, which results in a high risk of cardiovascular events and end-stage renal disease. Many factors are involved in premature ageing in CKD, including hormonal imbalance, glycative stress, nitrogenous metabolites, and oxidative stress. Of these, the most important role in premature ageing in CKD is played by glycative stress, namely a massive and unfavourable glycation state, since the kidney is responsible for the clearance of advanced glycation endproducts (AGEs). In an animal model, overexpression of glyoxalase I (GLO-1), a detoxifier of AGEs, has been found to alleviate premature ageing in the kidney and vessels. Both lifestyle changes and drug therapy have shown promise in overcoming premature ageing. Promising drug therapies include a GLO-1 activator and an absorbent against glycotoxin and nitrogenous metabolites.


Assuntos
Senilidade Prematura , Senescência Celular , Produtos Finais de Glicação Avançada/metabolismo , Rim/metabolismo , Insuficiência Renal Crônica/metabolismo , Hipóxia Celular , Senescência Celular/efeitos dos fármacos , Ativação Enzimática , Ativadores de Enzimas/uso terapêutico , Fragilidade/metabolismo , Fragilidade/fisiopatologia , Nível de Saúde , Hormônios/metabolismo , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Rim/fisiopatologia , Lactoilglutationa Liase/metabolismo , Estresse Oxidativo , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/fisiopatologia , Insuficiência Renal Crônica/terapia , Comportamento de Redução do Risco , Transdução de Sinais , Equilíbrio Hidroeletrolítico
11.
Addict Biol ; 22(2): 381-389, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26691867

RESUMO

Previous studies have identified an association between the gene glyoxalase 1 (Glo1) and anxiety-like behavior in mice and have shown that the substrate of GLO1, methylglyoxal, is a competitive partial agonist at GABAA receptors. Given the well-established role of GABAA receptors in the behavioral effects of ethanol (EtOH), we investigated the role of Glo1 in voluntary EtOH consumption in mice using the drinking in the dark (DID) paradigm. Transgenic mice overexpressing Glo1 on both FVB/NJ (FVB) or C57BL/6J (B6) backgrounds showed increased voluntary EtOH consumption compared to their wild-type littermates in DID. Furthermore, transgenic Glo1 knockdown mice on a B6 background showed decreased voluntary EtOH consumption in DID. These genetic manipulations of Glo1 had no effect on sucrose, saccharin or water consumption. Finally, we found that a small molecule GLO1 inhibitor (S-bromobenzylglutathione cyclopentyl diester (pBBG; 6.25, 12.5 mg/kg)) reduced EtOH consumption compared to vehicle treated B6 mice without altering saccharin or water consumption. Sucrose consumption was only reduced by the higher (12.5 mg/kg) dose of pBBG. We did not observe differences in the loss of righting reflex (LORR) or EtOH-induced foot slips on the balance beam in response to acute EtOH administration (LORR: 4 g/kg, Balance Beam: 1.25 g/kg) in B6 or FVB mice overexpressing Glo1, nor in B6 mice treated with pBBG. These data are the first to implicate Glo1 in EtOH-related behaviors and suggest that GLO1 inhibitors may have therapeutic potential for the treatment of alcohol use disorders.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Depressores do Sistema Nervoso Central/administração & dosagem , Etanol/administração & dosagem , Lactoilglutationa Liase/genética , Animais , Comportamento Animal/efeitos dos fármacos , Feminino , Técnicas de Silenciamento de Genes , Lactoilglutationa Liase/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Aldeído Pirúvico/metabolismo , Receptores de GABA-A/metabolismo , Reflexo de Endireitamento/efeitos dos fármacos , Sacarina/administração & dosagem , Autoadministração , Sacarose/administração & dosagem , Edulcorantes/administração & dosagem , Água/administração & dosagem
12.
Int J Mol Sci ; 18(1)2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-28106734

RESUMO

Chronic kidney disease is a major public health problem around the world. Because the kidney plays a role in reducing glycative stress, renal dysfunction results in increased glycative stress. In turn, glycative stress, especially that due to advanced glycated end products (AGEs) and their precursors such as reactive carbonyl compounds, exacerbates chronic kidney disease and is related to premature aging in chronic kidney disease, whether caused by diabetes mellitus or otherwise. Factors which hinder a sufficient reduction in glycative stress include the inhibition of anti-glycation enzymes (e.g., GLO-1), as well as pathogenically activated endoplasmic reticulum (ER) stress and hypoxia in the kidney. Promising strategies aimed at halting the vicious cycle between chronic kidney disease and increases in glycative stress include the suppression of AGE accumulation in the body and the enhancement of GLO-1 to strengthen the host defense machinery against glycative stress.


Assuntos
Produtos Finais de Glicação Avançada/metabolismo , Rim/metabolismo , Lactoilglutationa Liase/metabolismo , Insuficiência Renal Crônica/metabolismo , Animais , Diabetes Mellitus/metabolismo , Estresse do Retículo Endoplasmático , Humanos , Hipóxia , Rim/patologia , Modelos Biológicos
13.
Bioorg Med Chem Lett ; 25(22): 5349-51, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26420066

RESUMO

Benzophenone is a popular photophore for photoaffinity-labeling. It is also an important framework for drug development; many drugs contain benzophenone or analogous frameworks. The current work reports that benzophenone and its analogs bind to human glyoxalase 1. The binding, however, has little effect on the catalytic activity of this enzyme. The implications of the finding in terms of both drug development and photoaffinity-labeling are discussed.


Assuntos
Benzofenonas/química , Lactoilglutationa Liase/metabolismo , Benzofenonas/metabolismo , Humanos , Estrutura Molecular , Ligação Proteica
14.
Electrophoresis ; 35(15): 2195-202, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24532130

RESUMO

Lactoylglutathione lyase (GLO1), a ubiquitously expressed methylglyoxal (MG) detoxification enzyme, is implicated in the progression of various human malignant diseases. However, the role of GLO1 in the development or progression of murine fibrosarcoma is still unclear. We performed proteomic analysis to identify differences in the intracellular proteins of the regressive tumor cell line QR-32 and the inflammatory cell-promoting progressive tumor cell line QRsP-11 of murine fibrosarcoma by 2DE combined with MS. Seven upregulated proteins were identified in QRsP-11 compared to QR-32 cells, namely, GLO1, annexin A1, adenylate kinase isoenzyme 1, transcription factor BTF3, myosin light polypeptide 6, low molecular weight phosphotyrosine protein phosphatase and nucleoside diphosphate kinase B. Heat shock protein beta-1 (HspB1), a methylglyoxal-adducted protein, is concomitantly over-expressed in QRsP-11 as compared to QR-32 cells. We also found out that GLO1 is translocated into the nucleus to a higher extent in QRsP-11 compared to QR-32 cells, which can be reversed by using a MEK inhibitor (U0126). Moreover, U0126 and GLO1 siRNA can inhibit cell proliferation and migration in QRsP-11 cells. Our data suggest that overexpression and nuclear translocation of GLO1 might be associated with tumor progression in murine fibrosarcoma.


Assuntos
Núcleo Celular/metabolismo , Fibrossarcoma/metabolismo , Lactoilglutationa Liase/análise , Lactoilglutationa Liase/metabolismo , Proteoma/análise , Proteômica/métodos , Animais , Linhagem Celular Tumoral , Proliferação de Células , Cromatografia Líquida , Eletroforese em Gel Bidimensional , Proteínas de Choque Térmico/metabolismo , Lactoilglutationa Liase/química , Lactoilglutationa Liase/genética , Sistema de Sinalização das MAP Quinases , Camundongos , Chaperonas Moleculares , Proteínas de Neoplasias/metabolismo , Proteoma/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espectrometria de Massas em Tandem
15.
Bioorg Med Chem ; 22(13): 3301-8, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24856185

RESUMO

The glyoxalase pathway is responsible for conversion of cytotoxic methylglyoxal (MG) to d-lactate. MG toxicity arises from its ability to form advanced glycation end products (AGEs) on proteins, lipids and DNA. Studies have shown that inhibitors of glyoxalase I (GLO1), the first enzyme of this pathway, have chemotherapeutic effects both in vitro and in vivo, presumably by increasing intracellular MG concentrations leading to apoptosis and cell death. Here, we present the first molecular inhibitor, 4-bromoacetoxy-1-(S-glutathionyl)-acetoxy butane (4BAB), able to covalently bind to the free sulfhydryl group of Cys60 in the hydrophobic binding pocket adjacent to the enzyme active site and partially inactivate the enzyme. Our data suggests that partial inactivation of homodimeric GLO1 is due to the modification at only one of the enzymatic active sites. Although this molecule may have limited use pharmacologically, it may serve as an important template for the development of new GLO1 inhibitors that may combine this strategy with ones already reported for high affinity GLO1 inhibitors, potentially improving potency and specificity.


Assuntos
Inibidores Enzimáticos/farmacologia , Glutationa/análogos & derivados , Lactoilglutationa Liase/antagonistas & inibidores , Domínio Catalítico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Glutationa/síntese química , Glutationa/química , Glutationa/farmacologia , Humanos , Lactoilglutationa Liase/isolamento & purificação , Lactoilglutationa Liase/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade
16.
Biomolecules ; 14(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38785990

RESUMO

The glyoxalase system, comprising GLO1 and GLO2 enzymes, is integral in detoxifying methylglyoxal (MGO) generated during glycolysis, with dysregulation implicated in various cancer types. The MEK/ERK/SMAD1 signaling pathway, crucial in cellular processes, influences tumorigenesis, metastasis, and angiogenesis. Altered GLO1 expression in cancer showcases its complex role in cellular adaptation and cancer aggressiveness. GLO2 exhibits context-dependent functions, contributing to both proapoptotic and antiapoptotic effects in different cancer scenarios. Research highlights the interconnected nature of these systems, particularly in ovarian cancer and breast cancer. The glyoxalase system's involvement in drug resistance and its impact on the MEK/ERK/SMAD1 signaling cascade underscore their clinical significance. Furthermore, this review delves into the urgent need for effective biomarkers, exemplified in ovarian cancer, where the RAGE-ligand pathway emerges as a potential diagnostic tool. While therapeutic strategies targeting these pathways hold promise, this review emphasizes the challenges posed by context-dependent effects and intricate crosstalk within the cellular milieu. Insights into the molecular intricacies of these pathways offer a foundation for developing innovative therapeutic approaches, providing hope for enhanced cancer diagnostics and tailored treatment strategies.


Assuntos
Neoplasias da Mama , Lactoilglutationa Liase , Sistema de Sinalização das MAP Quinases , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/tratamento farmacológico , Lactoilglutationa Liase/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteína Smad1/metabolismo , Transdução de Sinais , Animais
17.
Cancer Lett ; 598: 217094, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38945204

RESUMO

Recent therapeutic strategies for the treatment of triple-negative breast cancer (TNBC) have shifted the focus from vascular growth factors to endothelial cell metabolism. This study highlights the underexplored therapeutic potential of peri-tumoral electroacupuncture, a globally accepted non-pharmacological intervention for TNBC, and molecular mechanisms. Our study showed that peri-tumoral electroacupuncture effectively reduced the density of microvasculature and enhanced vascular functionality in 4T1 breast cancer xenografts, with optimal effects on day 3 post-acupuncture. The timely integration of peri-tumoral electroacupuncture amplified the anti-tumor efficacy of paclitaxel. Multi-omics analysis revealed Glyoxalase 1 (Glo1) and the associated methylglyoxal-glycolytic pathway as key mediators of electroacupuncture-induced vascular normalization. Peri-tumoral electroacupuncture notably reduced Glo1 expression in the endothelial cells of 4T1 xenografts. Using an in vivo matrigel plug angiogenesis assay, we demonstrated that either Glo1 knockdown or electroacupuncture inhibited angiogenesis. In contrast, Glo1 overexpression increased blood vessel formation. In vitro pharmacological inhibition and genetic knockdown of Glo1 in human umbilical vein endothelial cells inhibited proliferation and promoted apoptosis via downregulating the methylglyoxal-glycolytic pathway. The study using the Glo1-silenced zebrafish model further supported the role of Glo1 in vascular development. This study underscores the pivotal role of Glo1 in peri-tumoral electroacupuncture, spotlighting a promising avenue for enhancing vascular normalization and improving TNBC treatment outcomes.

18.
Nutrients ; 16(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38398877

RESUMO

Advanced glycation end products (AGEs) exert a key pathogenic role in the development of obesity and insulin resistance. Thanks to its abundance in bioactive compounds, the microalga Arthrospira platensis (spirulina, SP) is proposed as a nutritional supplement. Here, we investigated the potential anti-glycating properties of SP enriched with zinc (Zn-SP) and the following impact on diet-induced metabolic derangements. Thirty male C57Bl6 mice were fed a standard diet (SD) or a high-fat high-sugar diet (HFHS) for 12 weeks, and a subgroup of HFHS mice received 350 mg/kg Zn-SP three times a week. A HFHS diet induced obesity and glucose intolerance and increased plasma levels of pro-inflammatory cytokines and transaminases. Zn-SP administration restored glucose homeostasis and reduced hepatic dysfunction and systemic inflammation. In the liver of HFHS mice, a robust accumulation of AGEs was detected, paralleled by increased expression of the main AGE receptor (RAGE) and depletion of glyoxalase-1, whereas Zn-SP administration efficiently prevented these alterations reducing local pro-inflammatory responses. 16S rRNA gene profiling of feces and ileum content revealed altered bacterial community structure in HFHS mice compared to both SD and HFHS + Zn-SP groups. Overall, our study demonstrates relevant anti-glycation properties of Zn-SP which contribute to preventing AGE production and/or stimulate AGE detoxification, leading to the improvement of diet-related dysbiosis and metabolic derangements.


Assuntos
Spirulina , Masculino , Camundongos , Animais , Spirulina/química , Camundongos Obesos , Zinco , RNA Ribossômico 16S , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças
19.
Transl Res ; 261: 57-68, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37419278

RESUMO

Stress-induced hyperglycemia (SIH) is associated with poor functional recovery and high mortality in patients with acute ischemic stroke (AIS). However, intensive controlling of blood glucose by using insulin was not beneficial in patients with AIS and acute hyperglycemia. This study investigated the therapeutic effects of the overexpression of glyoxalase I (GLO1), a detoxifying enzyme of glycotoxins, on acute hyperglycemia-aggravated ischemic brain injury.  In the present study, adeno-associated viral (AAV)-mediated GLO1 overexpression reduced infarct volume and edema level but did not improve neurofunctional recovery in the mice with middle cerebral artery occlusion (MCAO). AAV-GLO1 infection significantly enhanced neurofunctional recovery in the MCAO mice with acute hyperglycemia but not in the mice with normoglycemia. Methylglyoxal (MG)-modified proteins expression significantly increased in the ipsilateral cortex of the MCAO mice with acute hyperglycemia. AAV-GLO1 infection attenuated the induction of MG-modified proteins, ER stress formation, and caspase 3/7 activation in MG-treated Neuro-2A cells, and reductions in synaptic plasticity and microglial activation were mitigated in the injured cortex of the MCAO mice with acute hyperglycemia. Treatment with ketotifen, a potent GLO1 stimulator, after surgery, alleviated neurofunctional deficits and ischemic brain damage in the MCAO mice with acute hyperglycemia.  Altogether, our data substantiate that, in ischemic brain injury, GLO1 overexpression can alleviate pathologic alterations caused by acute hyperglycemia. Upregulation of GLO1 may be a therapeutic strategy for alleviating SIH-aggravated poor functional outcomes in patients with AIS.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Hiperglicemia , AVC Isquêmico , Lactoilglutationa Liase , Acidente Vascular Cerebral , Humanos , Camundongos , Animais , AVC Isquêmico/complicações , Lactoilglutationa Liase/genética , Lactoilglutationa Liase/metabolismo , Hiperglicemia/complicações , Hiperglicemia/metabolismo , Glicemia , Infarto da Artéria Cerebral Média/complicações , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia , Isquemia Encefálica/complicações , Isquemia Encefálica/patologia
20.
Front Endocrinol (Lausanne) ; 14: 1235581, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027126

RESUMO

Background: Glyoxalase 1 (GLO1) plays a crucial role in defending against glycation. Single nucleotide polymorphism (SNP) variants in the GLO1 gene may affect gene expression and alter enzyme activity. However, there have been limited studies evaluating the association between GLO1 and diabetes, especially gestational diabetes mellitus (GDM). Therefore, this study is the first to explore the association of GLO1 SNPs and GDM risk. Methods: The study included a total of 500 GDM patients and 502 control subjects. The SNPscan™ genotyping assay was used to genotype rs1781735, rs4746 and rs1130534. To assess the disparities in genotype, allele, and haplotype distributions and their correlation with GDM risk, the independent sample t-test, logistic regression, and chi-square test were employed during the data processing phase. Furthermore, one-way ANOVA was conducted to determine the differences in genotype and blood glucose and methylglyoxal(MG) levels. Results: Significant differences were observed in prepregnancy body mass index (pre-BMI), age, systolic blood pressure (SBP), diastolic blood pressure (DBP), and parity between GDM and healthy subjects (P < 0.05). After adjusting for these factors, GLO1 rs1130534 TA remained associated with an increased risk of GDM (TA vs. TT + AA: OR = 1.320; 95% CI: 1.008-1.728; P = 0.044), especially in the pre-BMI ≥ 24 subgroup (TA vs. TT + AA: OR = 2.424; 95% CI: 1.048-5.607; P = 0.039), with fasting glucose levels being significantly elevated in the TA genotype compared to the TT genotype (P < 0.05). Conversely, the GLO1 rs4746 TG was associated with a decreased risk of GDM (TG vs. TT: OR = 0.740; 95% CI: 0.548-0.999; P = 0.049; TG vs. TT + GG: OR = 0.740; 95% CI: 0.548-0.998; P = 0.048). Additionally, the haplotype T-G-T of rs1781735, rs4746 and rs1130534 was associated with a decreased risk of GDM among individuals with a pre-BMI ≥ 24 (OR = 0.423; 95% CI: 0.188-0.955; P = 0.038). Furthermore, the rs1781735 GG genotype was found to be more closely related to maternal MG accumulation and neonatal weight gain (P < 0.05). Conclusion: Our findings suggested that GLO1 rs1130534 was associated with an increased susceptibility to GDM and higher blood glucose levels, but GLO1 rs4746 was associated with a decreased risk of GDM. The rs1781735 has been associated with the accumulation of maternal MG and subsequent weight gain in neonates.


Assuntos
Diabetes Gestacional , Lactoilglutationa Liase , Gravidez , Feminino , Recém-Nascido , Humanos , Diabetes Gestacional/epidemiologia , Diabetes Gestacional/genética , Glicemia/metabolismo , População do Leste Asiático , Polimorfismo de Nucleotídeo Único , Lactoilglutationa Liase/genética , Lactoilglutationa Liase/metabolismo , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa