Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 216(Pt 1): 114439, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36174760

RESUMO

Abundant reserves of metals and oil have spurred large-scale mining developments across northwestern Canada during the past 80 years. Historically, the associated emissions footprint of hazardous metal(loid)s has been difficult to identify, in part, because monitoring records are too short and sparse to have characterized their natural concentrations before mining began. Stratigraphic analysis of lake sediment cores has been employed where concerns of pollution exist to determine pre-disturbance metal(loid) concentrations and quantify the degree of enrichment since mining began. Here, we synthesize the current state of knowledge via systematic re-analysis of temporal variation in sediment metal(loid) concentrations from 51 lakes across four key regions spanning 670 km from bitumen mining in the Alberta Oil Sands Region (AOSR) to gold mining (Giant and Con mines) at Yellowknife in central Northwest Territories. Our compilation includes upland and floodplain lakes at varying distances from the mines to evaluate dispersal of pollution-indicator metal(loid)s from bitumen (vanadium and nickel) and gold mining (arsenic and antimony) via atmospheric and fluvial pathways. Results demonstrate 'severe' enrichment of vanadium and nickel at near-field sites (≤20 km) within the AOSR and 'severe' (near-field; ≤ 40 km) to 'considerable' (far-field; 40-80 km) enrichment of arsenic and antimony due to gold mining at Yellowknife via atmospheric pathways, but no evidence of enrichment of vanadium or nickel via atmospheric or fluvial pathways at the Peace-Athabasca Delta and Slave River Delta. Findings can be used by decision makers to evaluate risks associated with contaminant dispersal by the large-scale mining activities. In addition, we reflect upon methodological approaches to be considered when evaluating paleolimnological data for evidence of anthropogenic contributions to metal(loid) deposition and advocate for proactive inclusion of paleolimnology in the early design stage of environmental contaminant monitoring programs.


Assuntos
Arsênio , Poluentes Químicos da Água , Campos de Petróleo e Gás , Ouro/análise , Poluentes Químicos da Água/análise , Vanádio , Níquel , Arsênio/análise , Antimônio , Mineração , Lagos , Monitoramento Ambiental/métodos , Alberta
2.
Sci Total Environ ; 776: 145926, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33652309

RESUMO

The estimation of geochemical background is complex in areas impacted by point sources of atmospheric emissions due to unknowns about pollutant dispersion, persistence of pollutants on the landscape, and natural concentrations of elements associated with parent material. This study combined mineralogical analysis with conventional statistical and geospatial methods to separate anthropogenically impacted soils from unimpacted soils in the Yellowknife area, Northwest Territories, Canada, a region that was exposed to 60 years of arsenic (As)-rich atmospheric mining emissions (1938-1999) and that hosts natural enrichments of As. High concentrations of As (up to 4700 mg kg-1) were measured in publicly accessible soils near decommissioned roaster stacks in the region and strong relationships between As and distance from the main emission sources persisted in surface soils and soils at depth in the soil profile more than 60 years after the bulk of mining emissions were released. Mineralogical analysis provided unambiguous evidence regarding the source of As minerals and highlighted that most As in surface soils within 15 km of Yellowknife is hosted as anthropogenic arsenic trioxide (As2O3), produced by roaster stack emissions. Statistical protocols for the estimation of geochemical background were applied to an existing database of till geochemistry (N = 1490) after removing samples from mining impacted areas. Results suggested geochemical background for the region is 0.25-15 mg kg-1 As, comparable to global averages, with upper thresholds elevated in volcanic units (30 mg kg-1 As) that often host sulfide mineralization in greenstone belts in the region.

3.
Sci Total Environ ; 654: 563-575, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30447595

RESUMO

Forty-seven sediment cores were collected as part of a spatial survey of Long Lake, Yellowknife, NWT, Canada to elucidate the physical and geochemical controls on the distribution of arsenic (As) in sediments impacted by the aerial deposition of arsenic trioxide (As2O3) from ore roasting at legacy gold mines. High-resolution profiles of dissolved As in bottom water and porewater were also collected to determine As remobilization and diffusion rates across the sediment-water interface. Arsenic concentrations in Long Lake sediments ranged from 2.2 to 3420 mg kg-1 (dry weight). Two distinct types of sediment As concentration profiles were identified and are interpreted to represent erosional and depositional areas. Water depth is the best predictor of As concentration in the top 5 cm of sediments due to the inferred focusing of fine-grained As2O3 into deeper water. At greater sediment depths, iron (Fe) concentration, as a likely indicator of As, Fe, and sulphur (S) co-diagenesis, was the best predictor of As concentration. The sediments are a source of dissolved As to surface waters through diffusion-controlled release to bottom water. Arsenic concentrations, solid-phase speciation, and diffusive efflux varied laterally across the lake bottom and with sediment depth due to the interplay between sediment-focusing processes and redox reactions, which has implications for human health and ecological risk assessments.

4.
Sci Total Environ ; 618: 916-926, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29037475

RESUMO

Previous gold mining activities and arsenopyrite ore roasting activities at the Giant mine site (1948 to 2004) resulted in the release of high amounts of arsenic and trace metals into the terrestrial and aquatic ecosystems of Yellowknife, Northwest Territories, Canada. While elevated levels of arsenic has been consistently reported in surface soils and vegetation near the vicinity of the Giant mine area and in surrounding locations, systematic studies evaluating the overall health status of terrestrial small mammals endemic to the area are lacking. The purpose of this present study was to evaluate and comparatively assess the biochemical responses and histopathological effects induced by chronic arsenic and cadmium exposure in wild snowshoe hares breeding near the city of Yellowknife, specifically around the vicinity of the abandoned Giant mine site and in reference locations. Analysis included measurement of total arsenic and cadmium concentration in nails, livers, kidneys, bones, stomach content of hares, in addition to histopathological evaluation of hepatic and ocular lesions. Biochemical responses were determined through measurement of lipid peroxidation levels and antioxidant enzymes activities (catalase, superoxide dismutase, glutathione peroxidase, and glutathione disulfide). The results revealed that arsenic concentration was 17.8 to 48.9 times higher in the stomach content, and in the range of 4 to 23 times elevated in the nails of hares from the mine area compared to the reference location. Arsenic and cadmium levels were also noted to be increased in the bones, renal and hepatic tissues of hares captured near the mine area compared to the reference site. Specifically, hares from the mine area showed nail cadmium levels that was 2.3 to 17.6 times higher than those from the reference site. Histopathological examination of the eyes revealed no specific ocular lesions, such as lens opacity (cataracts) or conjunctivitis; however, hares from both locations exhibited hepatic steatosis (fatty liver change). Lipid peroxidation levels were relatively increased and accompanied with reduced antioxidant enzyme activities in hares from the mine area compared to the hares from the reference site. The results of this preliminary study suggest that the snowshoe hares breeding near the vicinity of Yellowknife, including near the Giant mine area have been chronically exposed to elevated levels of arsenic and cadmium, which consequently led to the increased levels of oxidative stress and perturbation of antioxidant defense system in exposed animals. The results of this present study constitute the first observation of chronic arsenicosis in wild small mammal species in Canada.


Assuntos
Antioxidantes/metabolismo , Intoxicação por Arsênico/veterinária , Cádmio/efeitos adversos , Exposição Ambiental/efeitos adversos , Lebres , Estresse Oxidativo , Animais , Cruzamento , Fígado/patologia , Mineração , Territórios do Noroeste
5.
Front Microbiol ; 9: 2310, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333804

RESUMO

Despite its high toxicity and widespread occurrence in many parts of the world, arsenic (As) concentrations in decentralized water supplies such as domestic wells remain often unquantified. One limitation to effective monitoring is the high cost and lack of portability of current arsenic speciation techniques. Here, we present an arsenic biosensor assay capable of quantifying and determining the bioavailable fraction of arsenic species at environmentally relevant concentrations. First, we found that inorganic phosphate, a buffering agent and nutrient commonly found in most bioassay exposure media, was in fact limiting As(V) uptake, possibly explaining the variability in As(V) detection reported so far. Second, we show that the nature of the carbon source used in the bioassay differentially affects the response of the biosensor to As(III). Finally, our data support the existence of non-specific reduction pathways (non-ars encoded) that are responsible for the reduction of As(V) to As(III), allowing its detection by the biosensor. To validate our laboratory approach using field samples, we performed As(III) and As(V) standard additions on natural water samples collected from 17 lakes surrounding Giant Mine in Yellowknife (NWT), Canada. We found that legacy arsenic contamination in these lake water samples was accurately quantified by the biosensor. Interestingly, bioavailability of freshly added standards showed signs of matrix interference, indicative of dynamic interactions between As(III), As(V) and environmental constituents that have yet to be identified. Our results point toward dissolved organic carbon as possibly controlling these interactions, thus altering As bioavailability.

6.
Environ Pollut ; 234: 630-641, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29223820

RESUMO

The controls on the mobility and fate of arsenic in lakes impacted by historical gold ore roasting in northern Canada have been examined. A detailed characterization of arsenic solid and aqueous phases in lake waters, lake sediments and sediment porewaters as well as surrounding soils was conducted in three small lakes (<200ha) downwind and within 5 km of the historic mining and roasting operations of Giant Mine (Northwest Territories). These lakes are marked by differing limnological characteristics such as area, depth and organic content. Radiometric age-dating shows that the occurrence of arsenic trioxide in lake sediments coincides with the regional onset of roasting activities. Quantification by advanced electron microscopy shows that arsenic trioxide accounts for up to 6 wt% of the total arsenic in sediments. The bulk (>80 wt%) of arsenic is contained in the form of secondary sulphide precipitates, with iron oxy-hydroxides hosting a minimal amount of arsenic (<1 wt%). Soluble arsenic trioxide particles act as the primary source of arsenic into sediment porewaters. Dissolved arsenic in reducing porewaters both precipitates in-situ as secondary sulphides, and diffuses upwards into the overlying lake waters. Geogenic arsenic phases are present in sediments in low concentrations and are not considered a significant source of arsenic to porewaters or lake waters. Sediment-water interface diffusive flux calculations suggest that the diffusion of dissolved arsenic from porewaters, combined with lake water residence time, are the predominant mechanisms controlling arsenic concentrations in lake waters.


Assuntos
Arsênio/análise , Arsenicais/análise , Ouro , Lagos/análise , Mineração , Óxidos/análise , Poluentes Químicos da Água/análise , Trióxido de Arsênio , Canadá , Monitoramento Ambiental , Sedimentos Geológicos/análise
7.
Sci Total Environ ; 544: 811-23, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26688053

RESUMO

Growth of natural resource development in northern Canada has raised concerns about the effects on downstream aquatic ecosystems, but insufficient knowledge of pre-industrial baseline conditions continues to undermine ability of monitoring programs to distinguish industrial-derived contaminants from those supplied by natural processes. Here, we apply a novel paleolimnological approach to define pre-industrial baseline concentrations of 13 priority pollutant metals and vanadium and assess temporal changes, pathways and sources of these metals at a flood-prone lake (SD2) in the Slave River Delta (NWT, Canada) located ~500 km north of Alberta's oil sands development and ~140 km south of a former gold mine at Yellowknife, NWT. Results identify that metal concentrations, normalized to lithium concentration, are not elevated in sediments deposited during intervals of high flood influence or low flood influence since onset of oil sands development (post-1967) relative to the 1920-1967 baseline established at SD2. When compared to a previously defined baseline for the upstream Athabasca River, several metal-Li relations (Cd, Cr, Ni, Zn, V) in post-1967 sediments delivered by floodwaters appear to plot along a different trajectory, suggesting that the Peace and Slave River watersheds are important natural sources of metal deposition at the Slave River Delta. However, analysis revealed unusually high concentrations of As deposited during the 1950s, an interval of very low flood influence at SD2, which corresponded closely with emission history of the Giant Mine gold smelter indicating a legacy of far-field atmospheric pollution. Our study demonstrates the potential for paleolimnological characterization of baseline conditions and detection of pollution from multiple pathways in floodplain ecosystems, but that knowledge of paleohydrological conditions is essential for interpretation of contaminant profiles.


Assuntos
Monitoramento Ambiental/métodos , Lagos/química , Metais/análise , Poluentes Químicos da Água/análise , Alberta , Territórios do Noroeste , Rios , Poluição Química da Água/estatística & dados numéricos
8.
Artigo em Inglês | MEDLINE | ID: mdl-23977646

RESUMO

BACKGROUND: International commitments exist for the safeguarding of health and the prevention of ill health. One of the earliest commitments is the Declaration of Alma-Ata (1978), which provides 5 principles guiding primary health care: equity, community participation, health promotion, intersectoral collaboration and appropriate technology. These broadly applicable international commitments are premised on the World Health Organization's multifaceted definition of health. The environment is one sector in which these commitments to safeguarding health can be applied. Giant Mine, a contaminated former gold mine in the Northwest Territories, Canada, represents potential threats to all aspects of health. Strategies for managing such threats usually involve an obligation to engage the affected communities through consultation. OBJECTIVE: To examine the remediation and consultation process associated with Giant Mine within the context of commitments to safeguard health and well-being through adapting and applying the principles of primary health care. METHODS: Semi-structured interviews with purposively selected key informants representing government proponents and community members were conducted. RESULTS: in reviewing themes which emerged from a series of interviews exploring the community consultation process for the remediation of Giant Mine, the principles guiding primary health were mapped to CONSULTATION IN the North: (a) "equity" is the capacity to fairly and meaningfully participate in the consultation; (b) "community participation" is the right to engage in the process through reciprocal dialogue; (c) "health promotion" represents the need for continued information sharing towards awareness; (d) "intersectoral collaboration" signifies the importance of including all stakeholders; and (e) "appropriate technology" is the need to employ the best remediation actions relevant to the site and the community. CONCLUSIONS: Within the context of mining remediation, these principles form an appropriate framework for viewing consultation as a means of meeting international obligations to safeguard health.


Assuntos
Recuperação e Remediação Ambiental/métodos , Cooperação Internacional , Mineração , Relações Comunidade-Instituição , Ouro , Humanos , Entrevistas como Assunto , Mineração/organização & administração , Territórios do Noroeste
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa