Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.740
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell ; 84(3): 538-551.e7, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38176415

RESUMO

Metabolic reprogramming is an important feature of cancers that has been closely linked to post-translational protein modification (PTM). Lysine succinylation is a recently identified PTM involved in regulating protein functions, whereas its regulatory mechanism and possible roles in tumor progression remain unclear. Here, we show that OXCT1, an enzyme catalyzing ketone body oxidation, functions as a lysine succinyltransferase to contribute to tumor progression. Mechanistically, we find that OXCT1 functions as a succinyltransferase, with residue G424 essential for this activity. We also identified serine beta-lactamase-like protein (LACTB) as a main target of OXCT1-mediated succinylation. Extensive succinylation of LACTB K284 inhibits its proteolytic activity, resulting in increased mitochondrial membrane potential and respiration, ultimately leading to hepatocellular carcinoma (HCC) progression. In summary, this study establishes lysine succinyltransferase function of OXCT1 and highlights a link between HCC prognosis and LACTB K284 succinylation, suggesting a potentially valuable biomarker and therapeutic target for further development.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , beta-Lactamases , Humanos , beta-Lactamases/genética , beta-Lactamases/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Lisina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Processamento de Proteína Pós-Traducional
2.
EMBO J ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152265

RESUMO

While immune checkpoint blockade (ICB) has shown promise for clinical cancer therapy, its efficacy has only been observed in a limited subset of patients and the underlying mechanisms regulating innate and acquired resistance to ICB of tumor cells remain poorly understood. Here, we identified ependymin-related protein 1 (EPDR1) as an important tumor-intrinsic regulator of PD-L1 expression and tumor immune evasion. Aberrant expression of EPDR1 in hepatocellular carcinoma is associated with immunosuppression. Mechanistically, EPDR1 binds to E3 ligase TRIM21 and disrupts its interaction with IkappaB kinase-b, suppressing its ubiquitylation and autophagosomal degradation and enhancing NF-κB-mediated transcriptional activation of PD-L1. Further, we validated through a mouse liver cancer model that EPDR1 mediates exhaustion of CD8+ T cells and promotes tumor progression. In addition, we observed a positive correlation between EPDR1 and PD-L1 expression in both human and mouse liver cancer samples. Collectively, our study reveals a previously unappreciated role of EPDR1 in orchestrating tumor immune evasion and cancer progression.

3.
Proc Natl Acad Sci U S A ; 121(15): e2321116121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557176

RESUMO

Multidrug resistance (MDR) is a major factor in the failure of many forms of tumor chemotherapy. Development of a specific ligand for MDR-reversal would enhance the intracellular accumulation of therapeutic agents and effectively improve the tumor treatments. Here, an aptamer was screened against a doxorubicin (DOX)-resistant human hepatocellular carcinoma cell line (HepG2/DOX) via cell-based systematic evolution of ligands by exponential enrichment. A 50 nt truncated sequence termed d3 was obtained with high affinity and specificity for HepG2/DOX cells. Multidrug resistance protein 1 (MDR1) is determined to be a possible recognition target of the selected aptamer. Aptamer d3 binding was revealed to block the MDR of the tumor cells and increase the accumulation of intracellular anticancer drugs, including DOX, vincristine, and paclitaxel, which led to a boost to the cell killing of the anticancer drugs and lowering their survival of the tumor cells. The aptamer d3-mediated MDR-reversal for effective chemotherapy was further verified in an in vivo animal model, and combination of aptamer d3 with DOX significantly improved the suppression of tumor growth by treating a xenograft HepG2/DOX tumor in vivo. This work demonstrates the feasibility of a therapeutic DNA aptamer as a tumor MDR-reversal agent, and combination of the selected aptamer with chemotherapeutic drugs shows great potential for liver cancer treatments.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Animais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistência a Múltiplos Medicamentos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Quimioterapia Combinada , Linhagem Celular Tumoral
4.
J Biol Chem ; 300(3): 105691, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280429

RESUMO

Liver fibrosis commences with liver injury stimulating transforming growth factor beta (TGFß) activation of hepatic stellate cells (HSCs), causing scarring and irreversible damage. TGFß induces expression of the transcription factor Forkhead box S1 (FOXS1) in hepatocytes and may have a role in the pathogenesis of hepatocellular carcinoma (HCC). To date, no studies have determined how it affects HSCs. We analyzed human livers with cirrhosis, HCC, and a murine fibrosis model and found that FOXS1 expression is significantly higher in fibrotic livers but not in HCC. Next, we treated human LX2 HSC cells with TGFß to activate fibrotic pathways, and FOXS1 mRNA was significantly increased. To study TGFß-FOXS1 signaling, we developed human LX2 FOXS1 CRISPR KO and scrambled control HSCs. To determine differentially expressed gene transcripts controlled by TGFß-FOXS1, we performed RNA-seq in the FOXS1 KO and control cells and over 400 gene responses were attenuated in the FOXS1 KO HSCs with TGFß-activation. To validate the RNA-seq findings, we used our state-of-the-art PamGene PamStation kinase activity technology that measures hundreds of signaling pathways nonselectively in real time. Using our RNA-seq data, kinase activity data, and descriptive measurements, we found that FOXS1 controls pathways mediating TGFß responsiveness, protein translation, and proliferation. Our study is the first to identify that FOXS1 may serve as a biomarker for liver fibrosis and HSC activation, which may help with early detection of hepatic fibrosis or treatment options for end-stage liver disease.


Assuntos
Fatores de Transcrição Forkhead , Expressão Gênica , Células Estreladas do Fígado , Cirrose Hepática , Fator de Crescimento Transformador beta , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/diagnóstico , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Biomarcadores/metabolismo , Técnicas de Inativação de Genes , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transdução de Sinais/genética
5.
J Biol Chem ; 300(4): 107208, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521502

RESUMO

Transforming growth factor-ß (TGF-ß) and Hippo signaling are two critical pathways engaged in cancer progression by regulating both oncogenes and tumor suppressors, yet how the two pathways coordinately exert their functions in the development of hepatocellular carcinoma (HCC) remains elusive. In this study, we firstly conducted an integrated analysis of public liver cancer databases and our experimental TGF-ß target genes, identifying CYR61 as a pivotal candidate gene relating to HCC development. The expression of CYR61 is downregulated in clinical HCC tissues and cell lines than that in the normal counterparts. Evidence revealed that CYR61 is a direct target gene of TGF-ß in liver cancer cells. In addition, TGF-ß-stimulated Smad2/3 and the Hippo pathway downstream effectors YAP and TEAD4 can form a protein complex on the promoter of CYR61, thereby activating the promoter activity and stimulating CYR61 gene transcription in a collaborative manner. Functionally, depletion of CYR61 enhanced TGF-ß- or YAP-mediated growth and migration of liver cancer cells. Consistently, ectopic expression of CYR61 was capable of impeding TGF-ß- or YAP-induced malignant transformation of HCC cells in vitro and attenuating HCC xenograft growth in nude mice. Finally, transcriptomic analysis indicates that CYR61 can elicit an antitumor program in liver cancer cells. Together, these results add new evidence for the crosstalk between TGF-ß and Hippo signaling and unveil an important tumor suppressor function of CYR61 in liver cancer.


Assuntos
Carcinoma Hepatocelular , Proteína Rica em Cisteína 61 , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Fator de Crescimento Transformador beta , Proteínas de Sinalização YAP , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Movimento Celular , Proteína Rica em Cisteína 61/metabolismo , Proteína Rica em Cisteína 61/genética , Mineração de Dados , Regulação Neoplásica da Expressão Gênica/genética , Via de Sinalização Hippo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Camundongos Nus , Regiões Promotoras Genéticas , Transdução de Sinais/genética , Proteína Smad2/metabolismo , Proteína Smad2/genética , Proteína Smad3/metabolismo , Proteína Smad3/genética , Fatores de Transcrição de Domínio TEA/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/genética , Regulação para Cima , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética
6.
J Biol Chem ; 300(5): 107247, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556083

RESUMO

There is a critical need to understand the disease processes and identify improved therapeutic strategies for hepatocellular carcinoma (HCC). The long noncoding RNAs (lncRNAs) display diverse effects on biological regulations. The aim of this study was to identify a lncRNA as a potential biomarker of HCC and investigate the mechanisms by which the lncRNA promotes HCC progression using human cell lines and in vivo. Using RNA-Seq analysis, we found that lncRNA FIRRE was significantly upregulated in hepatitis C virus (HCV) associated liver tissue and identified that lncRNA FIRRE is significantly upregulated in HCV-associated HCC compared to adjacent non-tumor liver tissue. Further, we observed that FIRRE is significantly upregulated in HCC specimens with other etiologies, suggesting this lncRNA has the potential to serve as an additional biomarker for HCC. Overexpression of FIRRE in hepatocytes induced cell proliferation, colony formation, and xenograft tumor formation as compared to vector-transfected control cells. Using RNA pull-down proteomics, we identified HuR as an interacting partner of FIRRE. We further showed that the FIRRE-HuR axis regulates cyclin D1 expression. Our mechanistic investigation uncovered that FIRRE is associated with an RNA-binding protein HuR for enhancing hepatocyte growth. Together, these findings provide molecular insights into the role of FIRRE in HCC progression.


Assuntos
Carcinoma Hepatocelular , Ciclina D1 , Proteína Semelhante a ELAV 1 , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , RNA Longo não Codificante , Transdução de Sinais , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Proliferação de Células , Ciclina D1/metabolismo , Ciclina D1/genética , Proteína Semelhante a ELAV 1/metabolismo , Proteína Semelhante a ELAV 1/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Camundongos Nus , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais/genética , Hepatite C/complicações , Regulação para Cima , Biomarcadores Tumorais
7.
Gastroenterology ; 167(3): 522-537, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38636680

RESUMO

BACKGROUND & AIMS: High expression of phosphatidylinositol 4-kinase III alpha (PI4KIIIα) correlates with poor survival rates in patients with hepatocellular carcinoma. In addition, hepatitis C virus (HCV) infections activate PI4KIIIα and contribute to hepatocellular carcinoma progression. We aimed at mechanistically understanding the impact of PI4KIIIα on the progression of liver cancer and the potential contribution of HCV in this process. METHODS: Several hepatic cell culture and mouse models were used to study the functional importance of PI4KIIIα on liver pathogenesis. Antibody arrays, gene silencing, and PI4KIIIα-specific inhibitor were applied to identify the involved signaling pathways. The contribution of HCV was examined by using HCV infection or overexpression of its nonstructural protein. RESULTS: High PI4KIIIα expression and/or activity induced cytoskeletal rearrangements via increased phosphorylation of paxillin and cofilin. This led to morphologic alterations and higher migratory and invasive properties of liver cancer cells. We further identified the liver-specific lipid kinase phosphatidylinositol 3-kinase C2 domain-containing subunit gamma (PIK3C2γ) working downstream of PI4KIIIα in regulation of the cytoskeleton. PIK3C2γ generates plasma membrane phosphatidylinositol 3,4-bisphosphate-enriched, invadopodia-like structures that regulate cytoskeletal reorganization by promoting Akt2 phosphorylation. CONCLUSIONS: PI4KIIIα regulates cytoskeleton organization via PIK3C2γ/Akt2/paxillin-cofilin to favor migration and invasion of liver cancer cells. These findings provide mechanistic insight into the contribution of PI4KIIIα and HCV to the progression of liver cancer and identify promising targets for therapeutic intervention.


Assuntos
Fatores de Despolimerização de Actina , Carcinoma Hepatocelular , Movimento Celular , Citoesqueleto , Neoplasias Hepáticas , Invasividade Neoplásica , Paxilina , Transdução de Sinais , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Humanos , Animais , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Paxilina/metabolismo , Camundongos , Fatores de Despolimerização de Actina/metabolismo , Fatores de Despolimerização de Actina/genética , Fosforilação , Hepacivirus , Linhagem Celular Tumoral , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Células Hep G2 , Hepatite C/patologia , Hepatite C/metabolismo , Hepatite C/virologia , Interferência de RNA
8.
Gastroenterology ; 167(4): 689-703, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38692395

RESUMO

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is a leading cause of cancer death. HCC is preventable with about 70% of HCC attributable to modifiable risk factors. Glucagon-like peptide-1 receptor agonists (GLP-1RAs), Food and Drug Administration-approved medications for treating type 2 diabetes mellitus (T2DM), have pleiotropic effects on counteracting risk factors for HCC. Here we evaluate the association of GLP-1RAs with incident HCC risk in a real-world population. METHODS: This retrospective cohort included 1,890,020 patients with a diagnosis of T2DM who were prescribed GLP-1RAs or other non-GLP-1RA anti-diabetes medications and had no prior diagnosis of HCC. Incident (first-time) diagnosis of HCC and hepatic decompensating events during a 5-year follow-up was compared between cohorts of patients prescribed GLP-1 RAs vs other anti-diabetes medications. Time-to-first-event analysis was performed using Kaplan-Meier survival analysis with hazard ratio and 95% confidence interval calculated. RESULTS: GLP-1RAs were associated with a lower risk of incident HCC with hazard ratio of 0.20 [0.14-0.31], 0.39 [0.21-0.69], 0.63 [0.26-1.50] compared with insulin, sulfonylureas, and metformin, respectively. GLP-1RAs were associated with a significantly lower risk of hepatic decompensation compared with 6 other anti-diabetes medications. Reduced risks were observed in patients without and with different stages of fatty liver diseases, with more profound effects in patients without liver diseases. Similar findings were observed in patients with and without obesity and alcohol or tobacco use disorders. GLP-1RA combination therapies were associated with decreased risk for HCC and hepatic decompensations compared with monotherapies. CONCLUSIONS: GLP-1RAs were associated with a reduced risk of incident HCC and hepatic decompensation compared with other anti-diabetes medications in patients with T2DM. These findings provide supporting evidence for future studies to investigate the underlying mechanisms and their clinical use.


Assuntos
Carcinoma Hepatocelular , Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1 , Hipoglicemiantes , Neoplasias Hepáticas , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Carcinoma Hepatocelular/epidemiologia , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/epidemiologia , Masculino , Feminino , Incidência , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Estudos Retrospectivos , Pessoa de Meia-Idade , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/efeitos adversos , Idoso , Fatores de Risco , Incretinas/uso terapêutico , Incretinas/efeitos adversos , Medição de Risco , Fatores de Tempo , Falência Hepática/epidemiologia , Agonistas do Receptor do Peptídeo 1 Semelhante ao Glucagon
9.
Eur J Immunol ; 54(8): e2350678, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38700055

RESUMO

BACKGROUND AND AIMS: Second-generation direct-acting antivirals (2G DAA) to cure HCV have led to dramatic clinical improvements. HCV-associated hepatocellular carcinoma (HCC), however, remains common. Impaired immune tumor surveillance may play a role in HCC development. Our cohort evaluated the effects of innate immune types and clinical variables on outcomes including HCC. METHODS: Participants underwent full HLA class I/KIR typing and long-term HCV follow-up. RESULTS: A total of 353 HCV+ participants were followed for a mean of 7 years. Cirrhosis: 25% at baseline, developed in 12% during follow-up. 158 participants received 2G DAA therapy. HCC developed without HCV therapy in 20 subjects, 24 HCC after HCV therapy, and 10 of these after 2G DAA. Two predictors of HCC among 2G DAA-treated patients: cirrhosis (OR, 10.0, p = 0.002) and HLA/KIR profiles predicting weak natural killer (NK) cell-mediated immunity (NK cell complementation groups 6, 9, 11, 12, OR of 5.1, p = 0.02). Without 2G DAA therapy: cirrhosis was the main clinical predictor of HCC (OR, 30.8, p < 0.0001), and weak NK-cell-mediated immunity did not predict HCC. CONCLUSION: Cirrhosis is the main risk state predisposing to HCC, but weak NK-cell-mediated immunity may predispose to post-2G DAA HCC more than intermediate or strong NK-cell-mediated immunity.


Assuntos
Antivirais , Carcinoma Hepatocelular , Hepacivirus , Células Matadoras Naturais , Neoplasias Hepáticas , Receptores KIR , Humanos , Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/imunologia , Células Matadoras Naturais/imunologia , Masculino , Antivirais/uso terapêutico , Feminino , Pessoa de Meia-Idade , Receptores KIR/imunologia , Idoso , Hepacivirus/imunologia , Hepatite C/imunologia , Hepatite C/tratamento farmacológico , Hepatite C/complicações , Antígenos HLA/imunologia , Adulto , Imunidade Celular , Seguimentos , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/imunologia , Hepatite C Crônica/complicações
10.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38197309

RESUMO

Although some pyroptosis-related (PR) prognostic models for cancers have been reported, pyroptosis-based features have not been fully discovered at the single-cell level in hepatocellular carcinoma (HCC). In this study, by deeply integrating single-cell and bulk transcriptome data, we systematically investigated significance of the shared pyroptotic signature at both single-cell and bulk levels in HCC prognosis. Based on the pyroptotic signature, a robust PR risk system was constructed to quantify the prognostic risk of individual patient. To further verify capacity of the pyroptotic signature on predicting patients' prognosis, an attention mechanism-based deep neural network classification model was constructed. The mechanisms of prognostic difference in the patients with distinct PR risk were dissected on tumor stemness, cancer pathways, transcriptional regulation, immune infiltration and cell communications. A nomogram model combining PR risk with clinicopathologic data was constructed to evaluate the prognosis of individual patients in clinic. The PR risk could also evaluate therapeutic response to neoadjuvant therapies in HCC patients. In conclusion, the constructed PR risk system enables a comprehensive assessment of tumor microenvironment characteristics, accurate prognosis prediction and rational therapeutic options in HCC.


Assuntos
Carcinoma Hepatocelular , Aprendizado Profundo , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Transcriptoma , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Comunicação Celular , Microambiente Tumoral/genética
11.
Hum Genomics ; 18(1): 58, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840185

RESUMO

BACKGROUND: Liver transplantation (LT) is offered as a cure for Hepatocellular carcinoma (HCC), however 15-20% develop recurrence post-transplant which tends to be aggressive. In this study, we examined the transcriptome profiles of patients with recurrent HCC to identify differentially expressed genes (DEGs), the involved pathways, biological functions, and potential gene signatures of recurrent HCC post-transplant using deep machine learning (ML) methodology. MATERIALS AND METHODS: We analyzed the transcriptomic profiles of primary and recurrent tumor samples from 7 pairs of patients who underwent LT. Following differential gene expression analysis, we performed pathway enrichment, gene ontology (GO) analyses and protein-protein interactions (PPIs) with top 10 hub gene networks. We also predicted the landscape of infiltrating immune cells using Cibersortx. We next develop pathway and GO term-based deep learning models leveraging primary tissue gene expression data from The Cancer Genome Atlas (TCGA) to identify gene signatures in recurrent HCC. RESULTS: The PI3K/Akt signaling pathway and cytokine-mediated signaling pathway were particularly activated in HCC recurrence. The recurrent tumors exhibited upregulation of an immune-escape related gene, CD274, in the top 10 hub gene analysis. Significantly higher infiltration of monocytes and lower M1 macrophages were found in recurrent HCC tumors. Our deep learning approach identified a 20-gene signature in recurrent HCC. Amongst the 20 genes, through multiple analysis, IL6 was found to be significantly associated with HCC recurrence. CONCLUSION: Our deep learning approach identified PI3K/Akt signaling as potentially regulating cytokine-mediated functions and the expression of immune escape genes, leading to alterations in the pattern of immune cell infiltration. In conclusion, IL6 was identified to play an important role in HCC recurrence.


Assuntos
Carcinoma Hepatocelular , Aprendizado Profundo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Transplante de Fígado , Recidiva Local de Neoplasia , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/cirurgia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/cirurgia , Transplante de Fígado/efeitos adversos , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Regulação Neoplásica da Expressão Gênica/genética , Transcriptoma/genética , Perfilação da Expressão Gênica , Transdução de Sinais/genética , Redes Reguladoras de Genes/genética , Mapas de Interação de Proteínas/genética , Masculino , Feminino , Biomarcadores Tumorais/genética , Pessoa de Meia-Idade
12.
J Pathol ; 264(1): 17-29, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38922876

RESUMO

DICER1 syndrome is a tumor predisposition syndrome caused by familial genetic mutations in DICER1. Pathogenic variants of DICER1 have been discovered in many rare cancers, including cystic liver tumors. However, the molecular mechanisms underlying liver lesions induced by these variants remain unclear. In the present study, we sought to gain a better understanding of the pathogenesis of these variants by generating a mouse model of liver-specific DICER1 syndrome. The mouse model developed bile duct hyperplasia with fibrosis, similar to congenital hepatic fibrosis, as well as cystic liver tumors resembling those in Caroli's syndrome, intrahepatic cholangiocarcinoma, and hepatocellular carcinoma. Interestingly, the mouse model of DICER1 syndrome showed abnormal formation of primary cilia in the bile duct epithelium, which is a known cause of bile duct hyperplasia and cyst formation. These results indicated that DICER1 mutations contribute to cystic liver tumors by inducing defective primary cilia. The mouse model generated in this study will be useful for elucidating the potential mechanisms of tumorigenesis induced by DICER1 variants and for obtaining a comprehensive understanding of DICER1 syndrome. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Cílios , RNA Helicases DEAD-box , Modelos Animais de Doenças , Neoplasias Hepáticas , Ribonuclease III , Animais , Ribonuclease III/genética , Ribonuclease III/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/deficiência , Cílios/patologia , Cílios/metabolismo , Camundongos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Mutação , Fígado/patologia , Fígado/metabolismo , Ductos Biliares/patologia
13.
Exp Cell Res ; 435(2): 113947, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301989

RESUMO

Cancer-associated fibroblasts (CAFs) are the main components in the tumor microenvironment. Tumors activate fibroblasts from quiescent state into activated state by secreting cytokines, and activated CAFs may in turn promote tumor progression and metastasis. Therefore, studies targeting CAFs could enrich the therapeutic options for tumor treatment. In this study, we demonstrate that the content of lipid droplets and the expression of autophagosomes were higher in CAFs than in peri-tumor fibroblasts (PTFs), which was inhibited by 5-(tetradecyloxy)-2-furoic acid(TOFA). The expression of CD36 in CAFs was higher than that in PTFs at both mRNA and protein levels. Inhibition of CD36 activity using either the CD36 inhibitor SSO or siRNA had a significant negative impact on the proliferation and migration abilities of CAFs, which was associated with reduced levels of relevant activated genes (α-SMA, FAP, Vimentin) and cytokines (IL-6, TGF-ß and VEGF-α). SSO also inhibited HCC growth and tumorigenesis in nude mice orthotopically implanted with CAFs and HCC cells. Our data further show that CD36+CAFs affected the expression of PD-1 in CTLs leading to CTL exhaustion, and that patients with high CD36 expression in CAFs were correlated with shorter overall survival (OS). Together, our data demonstrate that CAFs were active in lipid metabolism with increased lipid content and lipophagy activity. CD36 may play a key role in the regulation of the biological behaviors of CAFs, which may influence the proliferation and migration of tumor cells by reprograming the lipid metabolism in tumor cells. Thus, CD36 could be an effective therapeutic target for the treatment of HCC.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Humanos , Carcinoma Hepatocelular/patologia , Fibroblastos Associados a Câncer/patologia , Neoplasias Hepáticas/patologia , Camundongos Nus , Reprogramação Metabólica , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Citocinas/metabolismo , Microambiente Tumoral , Proliferação de Células
14.
Exp Cell Res ; 440(1): 114117, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38848952

RESUMO

PURPOSE: Membrane associated ubiquitin ligase MARCH2 majorly involves in inflammation response and protein trafficking. However, its comprehensive role in hepatocellular carcinoma (HCC) is largely unknown. METHODS: Firstly, multiple bioinformatic analyses were applied to determine MARCH2 mRNA level, its expression comparison in diverse molecular and immune subtypes, and diagnostic value in HCC. Subsequently, RNA-seq, real-time quantitative PCR, immunohistochemistry and cell proliferation assay are used to explore the epithelial-mesenchymal transition (EMT) and proliferation by gene-silencing or overexpressing in cultured HCC cells or in vivo xenograft. Moreover, dual luciferase reporter assay and immunoblotting are delved into verify the transcription factor that activating MARCH2 promoter. RESULTS: Multiple bioinformatic analyses demonstrate that MARCH2 is upregulated in multiple cancer types and exhibits startling diagnostic value as well as distinct molecular and immune subtypes in HCC. RNA-seq analysis reveals MARCH2 may promote EMT, cell proliferation and migration in HepG2 cells. Furthermore, overexpression of MARCH2 triggers EMT and significantly enhances HCC cell migration, proliferation and colony formation in a ligase activity-dependent manner. Additionally, above observations are validated in the HepG2 mice xenografts. For up-stream mechanism, transcription factor KLF15 is highly expressed in HCC and activates MARCH2 expression. CONCLUSION: KLF15 activated MARCH2 triggers EMT and serves as a fascinating biomarker for precise diagnosis of HCC. Consequently, MARCH2 emerges as a promising candidate for target therapy in cancer management.


Assuntos
Carcinoma Hepatocelular , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição Kruppel-Like , Neoplasias Hepáticas , Ubiquitina-Proteína Ligases , Animais , Feminino , Humanos , Masculino , Camundongos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/metabolismo , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Células Hep G2 , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/diagnóstico , Camundongos Endogâmicos BALB C , Camundongos Nus , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
15.
Exp Cell Res ; 439(1): 114073, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38704079

RESUMO

Determining the appropriate source of antigens for optimal antigen presentation to T cells is a major challenge in designing dendritic cell (DC) -based therapeutic strategies against hepatocellular carcinoma (HCC). Tumor-derived exosomes (Tex) express a wide range of tumor antigens, making them a promising source of antigens for DC vaccines. As reported, the exosomes secreted by tumor cells can inhibit the antitumor function of immune cells. In this study, we transfected hepatocellular carcinoma cells with Rab27a to enhance the yield of exosomes, which were characterized using transmission electron microscopy and Western blot analysis. We found that Tex secreted by overexpressing Rab27a Hepatocellular carcinoma cell lines pulsed DC is beneficial for the differentiation and maturation of DCs but inhibits the secretion of the IL-12 cytokine. Consequently, we developed a complementary immunotherapy approach by using Tex as an antigen loaded onto DCs, in combination with the cytokine IL-12 to induce antigen-specific cytotoxic T lymphocytes (CTLs). The results indicated that the combination of DC-Tex and IL-12 was more effective in stimulating T lymphocyte proliferation, releasing IFN-γ, and enhancing cytotoxicity compared to using exosomes or IL-12 alone. Additionally, the inclusion of IL-12 also compensated for the reduced IL-2 secretion by DCs caused by Tex. Moreover, in a BALB/c nude mice model of hepatocellular carcinoma, CTLs induced by DC-Tex combined with IL-12 maximized the tumor-specific T-cell immune effect and suppressed tumor growth. Thus, Tex provides a novel and promising source of antigens, with cytokines compensating for the shortcomings of Tex as a tumor antigen. This work helps to clarify the role of exosomes in tumor immunotherapy and may offer a safe and effective prospective strategy for the clinical application of exosome-based cellular immunotherapy.


Assuntos
Carcinoma Hepatocelular , Células Dendríticas , Exossomos , Interleucina-12 , Neoplasias Hepáticas , Proteínas rab27 de Ligação ao GTP , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Exossomos/metabolismo , Animais , Interleucina-12/metabolismo , Interleucina-12/genética , Proteínas rab27 de Ligação ao GTP/metabolismo , Proteínas rab27 de Ligação ao GTP/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Camundongos , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Camundongos Endogâmicos BALB C , Imunoterapia/métodos
16.
Exp Cell Res ; 442(1): 114192, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39127439

RESUMO

N6-methyladenosine (m6A) alteration is an epigenetic regulator widely involved in the tumorigenicity of hepatocellular carcinoma (HCC). The role of YTH N6-methyladenosine RNA binding protein F3 (YTHDF3), an m6A reader in HCC, requires further investigation. Here, we aim to explore the biological properties of YTHDF3 in HCC and its potential mechanisms. The predictive risk model for HCC was developed by analyzing the expression of genes associated with m6A in HCC using online datasets. WB and qPCR were employed to assess YTHDF3 expression in HCC and its correlation with the disease's clinicopathological characteristics. Both in vitro and in vivo methods were utilized to evaluate the biological effects of YTHDF3 in HCC. The potential targets of YTHDF3 were identified and confirmed using RNA-seq, meRIP-seq, and linear amplification and sequencing of cDNA ends (Lace-seq). We confirmed that YTHDF3 is overexpressed in HCC. Patients with higher YTHDF3 expression had a greater risk of cancer recurrence. In both in vitro and in vivo settings, YTHDF3 boosts the migration and invasion capabilities of HCC cells. Through multi-omics research, we identified YTHDF3's downstream target genes as NKD inhibitors of the WNT signaling pathway 1 (NKD1) and the WNT/ß-catenin signaling pathway. With m6A modification, YTHDF3 suppresses the transcription and translation of NKD1. Additionally, NKD1 inhibited tumor growth by blocking the WNT/ß-catenin signaling pathway. The investigation found that the oncogene YTHDF3 stimulates the WNT/ß-catenin signaling pathway by m6A-dependently suppressing NKD1 expression in HCC cells. Our findings suggest that YTHDF3 regulates hepatocarcinogenesis, providing fresh perspectives on potential biomarkers and therapeutic targets for HCC.

17.
Mol Ther ; 32(3): 749-765, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38310356

RESUMO

Approximately 80%-90% of hepatocellular carcinomas (HCC) occur in a premalignant environment of fibrosis and abnormal extracellular matrix (ECM), highlighting an essential role of ECM in the tumorigenesis and progress of HCC. However, the determinants of ECM in HCC are poorly defined. Here, we show that nuclear receptor RORγ is highly expressed and amplified in HCC tumors. RORγ functions as an essential activator of the matrisome program via directly driving the expression of major ECM genes in HCC cells. Elevated RORγ increases fibronectin-1 deposition, cell-matrix adhesion, and collagen production, creating a favorable microenvironment to boost liver cancer metastasis. Moreover, RORγ antagonists effectively inhibit tumor growth and metastasis in multiple HCC xenografts and immune-intact models, and they effectively sensitize HCC tumors to sorafenib therapy in mice. Notably, elevated RORγ expression is associated with ECM remodeling and metastasis in patients with HCC. Taken together, we identify RORγ as a key player of ECM remodeling in HCC and as an attractive therapeutic target for advanced HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/metabolismo , Linhagem Celular Tumoral , Sorafenibe , Colágeno/metabolismo , Microambiente Tumoral
18.
Mol Ther ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39113358

RESUMO

Liver cancer is one of the most prevalent malignant tumors worldwide. According to the staging criteria of Barcelona Clinic Liver Cancer, clinical guidelines provide tutorials to clinical management of liver cancer at their individual stages. However, most patients diagnosed with liver cancer are at advanced stage, thereby, many researchers conduct investigations on targeted therapy, aiming to improve the overall survival of these patients. To date, small molecule-based targeted therapies are highly recommended (fist-line: Sorafenib and Lenvatinib; second-line: Regorafenib and Cabozantinib) by current clinical guidelines of American Society of Clinical Oncology, European Society for Medical Oncology, and National Comprehensive Cancer Network. Herein, we summarize the small molecule-based targeted therapies in liver cancer, including the approved and preclinical therapies as well as the therapies under clinical trials, and introduce their history of discovery, clinical trials, indications, and molecular mechanisms. For drug resistance, the revealed mechanisms of action and the combination therapies are also discussed. In fact, the known small molecule-based therapies still have limited clinical benefits to liver cancer patients. Therefore, we analyze the current status and give our ideas for the urgent issues and future directions in this field, suggesting the clues for novel techniques in liver cancer treatment.

19.
Cell Mol Life Sci ; 81(1): 82, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340178

RESUMO

Interaction between programmed death-1 (PD-1) ligand 1 (PD-L1) on tumor cells and PD-1 on T cells allows tumor cells to evade T cell-mediated immune surveillance. Strategies targeting PD-1/PD-L1 have shown clinical benefits in a variety of cancers. However, limited response rates in hepatocellular carcinoma (HCC) have prompted us to investigate the molecular regulation of PD-L1. Here, we identify B cell lymphoma-2-associated transcription factor 1 (BCLAF1) as a key PD-L1 regulator in HCC. Specifically, BCLAF1 interacts with SPOP, an E3 ligase that mediates the ubiquitination and degradation of PD-L1, thereby competitively inhibiting SPOP-PD-L1 interaction and subsequent ubiquitination and degradation of PD-L1. Furthermore, we determined an SPOP-binding consensus (SBC) motif mediating the BCLAF1-SPOP interaction on BCLAF1 protein and mutation of BCLAF1-SBC motif disrupts the regulation of the SPOP-PD-L1 axis. In addition, BCLAF1 expression was positively correlated with PD-L1 expression and negatively correlated with biomarkers of T cell activation, including CD3 and CD8, as well as with the level of immune cell infiltration in HCC tissues. Besides, BCLAF1 depletion leads to a significant reduction of PD-L1 expression in vitro, and this reduction of PD-L1 promoted T cell-mediated cytotoxicity. Notably, overexpression of BCLAF1 sensitized tumor cells to checkpoint therapy in an in vitro HCC cells-Jurkat cells co-culture model, whereas BCLAF1-SBC mutant decreased tumor cell sensitivity to checkpoint therapy, suggesting that BCLAF1 and its SBC motif serve as a novel therapeutic target for enhancing anti-tumor immunity in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular , Neoplasias Hepáticas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Receptor de Morte Celular Programada 1 , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor , Evasão da Resposta Imune/genética
20.
Cell Mol Life Sci ; 81(1): 284, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967794

RESUMO

Hepatocellular carcinoma (HCC) is a malignancy that occurs worldwide and is generally associated with poor prognosis. The development of resistance to targeted therapies such as sorafenib is a major challenge in clinical cancer treatment. In the present study, Ten-eleven translocation protein 1 (TET1) was found to be highly expressed in sorafenib-resistant HCC cells and knockdown of TET1 can substantially improve the therapeutic effect of sorafenib on HCC, indicating the potential important roles of TET1 in sorafenib resistance in HCC. Mechanistic studies determined that TET1 and Yes-associated protein 1 (YAP1) synergistically regulate the promoter methylation and gene expression of DNA repair-related genes in sorafenib-resistant HCC cells. RNA sequencing indicated the activation of DNA damage repair signaling was extensively suppressed by the TET1 inhibitor Bobcat339. We also identified TET1 as a direct transcriptional target of YAP1 by promoter analysis and chromatin-immunoprecipitation assays in sorafenib-resistant HCC cells. Furthermore, we showed that Bobcat339 can overcome sorafenib resistance and synergized with sorafenib to induce tumor eradication in HCC cells and mouse models. Finally, immunostaining showed a positive correlation between TET1 and YAP1 in clinical samples. Our findings have identified a previously unrecognized molecular pathway underlying HCC sorafenib resistance, thus revealing a promising strategy for cancer therapy.


Assuntos
Carcinoma Hepatocelular , Reparo do DNA , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Transdução de Sinais , Sorafenibe , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Via de Sinalização Hippo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais/efeitos dos fármacos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Sinalização YAP/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa