Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.307
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Exp Cell Res ; 442(1): 114219, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39182664

RESUMO

N6-methyladenosine (m6A) modification plays an important role in RNA molecular functions, therefore affecting the initiation and development of hepatocellular carcinoma (HCC). Herein, multiple datasets were applied to conduct a comprehensive analysis of DEGs within HCC and the analysis revealed significant dysregulation of numerous genes. Functional and signaling pathway enrichment analyses were performed. Further, TP53RK binding protein (TPRKB) emerged as a significant factor, exhibiting high expression level within HCC tissue samples and cells which could predict HCC patients' poor OS. Knockdown investigations of TPRKB in vitro demonstrated the effect of TPRKB knockdown on attenuating the aggressiveness of HCC cells by suppressing the viability, colony formation, invasive ability, and migratory ability, inducing cell cycle arrest, and facilitating the apoptosis of HCC cells. Investigations in vivo revealed that TPRKB knockdown significantly suppressed tumor growth in mice model. Additionally, the study identified methyltransferase 5, N6-adenosine (METTL5) as a potential regulator of TPRKB expression via m6A modification, positively regulating TPRKB expression by enhancing TPRKB mRNA stability. The dynamic effects of METTL5 and TPRKB upon the phenotypes of HCC cells further confirmed that TPRKB overexpression partially abolished the anti-cancer effects of METTL5 knockdown upon the aggressiveness of HCC cells. Conclusively, our findings uncover that TPRKB, significantly overexpressed in HCC, exerts a critical effect on promoting tumor aggressiveness, and its expression shows to be positively regulated by METTL5 via m6A methylation. These insights deepen the understanding of HCC pathogenesis and open new avenues for targeted therapies, highlighting that METTL5-TPRKB axis is an underlying new therapeutic target in HCC management.

2.
J Proteome Res ; 23(8): 3571-3584, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38994555

RESUMO

Aberrant glycosylation has gained significant interest for biomarker discovery. However, low detectability, complex glycan structures, and heterogeneity present challenges in glycoprotein assay development. Using haptoglobin (Hp) as a model, we developed an integrated platform combining functionalized magnetic nanoparticles and zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) for highly specific glycopeptide enrichment, followed by a data-independent acquisition (DIA) strategy to establish a deep cancer-specific Hp-glycosylation profile in hepatitis B virus (HBV, n = 5) and hepatocellular carcinoma (HCC, n = 5) patients. The DIA strategy established one of the deepest Hp-glycosylation landscapes (1029 glycopeptides, 130 glycans) across serum samples, including 54 glycopeptides exclusively detected in HCC patients. Additionally, single-shot DIA searches against a DIA-based spectral library outperformed the DDA approach by 2-3-fold glycopeptide coverage across patients. Among the four N-glycan sites on Hp (N-184, N-207, N-211, N-241), the total glycan type distribution revealed significantly enhanced detection of combined fucosylated-sialylated glycans, which were the most dominant glycoforms identified in HCC patients. Quantitation analysis revealed 48 glycopeptides significantly enriched in HCC (p < 0.05), including a hybrid monosialylated triantennary glycopeptide on the N-184 site with nearly none-to-all elevation to differentiate HCC from the HBV group (HCC/HBV ratio: 2462 ± 766, p < 0.05). In summary, DIA-MS presents an unbiased and comprehensive alternative for targeted glycoproteomics to guide discovery and validation of glyco-biomarkers.


Assuntos
Carcinoma Hepatocelular , Glicopeptídeos , Haptoglobinas , Neoplasias Hepáticas , Polissacarídeos , Humanos , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/metabolismo , Glicosilação , Haptoglobinas/metabolismo , Haptoglobinas/análise , Haptoglobinas/química , Polissacarídeos/sangue , Polissacarídeos/química , Polissacarídeos/análise , Glicopeptídeos/sangue , Glicopeptídeos/análise , Glicopeptídeos/química , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Biomarcadores Tumorais/sangue , Hepatite B/virologia , Hepatite B/sangue , Vírus da Hepatite B/química , Interações Hidrofóbicas e Hidrofílicas
3.
J Cell Mol Med ; 28(7): e18171, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38506084

RESUMO

SRC-1 functions as a transcriptional coactivator for steroid receptors and various transcriptional factors. Notably, SRC-1 has been implicated in oncogenic roles in multiple cancers, including breast cancer and prostate cancer. Previous investigations from our laboratory have established the high expression of SRC-1 in human HCC specimens, where it accelerates HCC progression by enhancing Wnt/beta-catenin signalling. In this study, we uncover a previously unknown role of SRC-1 in HCC metastasis. Our findings reveal that SRC-1 promotes HCC metastasis through the augmentation of MMP-9 expression. The knockdown of SRC-1 effectively mitigated HCC cell metastasis both in vitro and in vivo by suppressing MMP-9 expression. Furthermore, we observed a positive correlation between SRC-1 mRNA levels and MMP-9 mRNA levels in limited and larger cohorts of HCC specimens from GEO database. Mechanistically, SRC-1 operates as a coactivator for NF-κB and AP-1, enhancing MMP-9 promoter activity in HCC cells. Higher levels of SRC-1 and MMP-9 expression are associated with worse overall survival in HCC patients. Treatment with Bufalin, known to inhibit SRC-1 expression, significantly decreased MMP-9 expression and inhibited HCC metastasis in both in vitro and in vivo settings. Our results demonstrated the pivotal role of SRC-1 as a critical modulator in HCC metastasis, presenting a potential therapeutic target for HCC intervention.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Masculino , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Coativador 1 de Receptor Nuclear/genética , Coativador 1 de Receptor Nuclear/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , RNA Mensageiro , Invasividade Neoplásica/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
4.
Mol Cancer ; 23(1): 137, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970074

RESUMO

BACKGROUND: The outcome of hepatocellular carcinoma (HCC) is limited by its complex molecular characteristics and changeable tumor microenvironment (TME). Here we focused on elucidating the functional consequences of Maternal embryonic leucine zipper kinase (MELK) in the tumorigenesis, progression and metastasis of HCC, and exploring the effect of MELK on immune cell regulation in the TME, meanwhile clarifying the corresponding signaling networks. METHODS: Bioinformatic analysis was used to validate the prognostic value of MELK for HCC. Murine xenograft assays and HCC lung metastasis mouse model confirmed the role of MELK in tumorigenesis and metastasis in HCC. Luciferase assays, RNA sequencing, immunopurification-mass spectrometry (IP-MS) and coimmunoprecipitation (CoIP) were applied to explore the upstream regulators, downstream essential molecules and corresponding mechanisms of MELK in HCC. RESULTS: We confirmed MELK to be a reliable prognostic factor of HCC and identified MELK as an effective candidate in facilitating the tumorigenesis, progression, and metastasis of HCC; the effects of MELK depended on the targeted regulation of the upstream factor miR-505-3p and interaction with STAT3, which induced STAT3 phosphorylation and increased the expression of its target gene CCL2 in HCC. In addition, we confirmed that tumor cell-intrinsic MELK inhibition is beneficial in stimulating M1 macrophage polarization, hindering M2 macrophage polarization and inducing CD8 + T-cell recruitment, which are dependent on the alteration of CCL2 expression. Importantly, MELK inhibition amplified RT-related immune effects, thereby synergizing with RT to exert substantial antitumor effects. OTS167, an inhibitor of MELK, was also proven to effectively impair the growth and progression of HCC and exert a superior antitumor effect in combination with radiotherapy (RT). CONCLUSIONS: Altogether, our findings highlight the functional role of MELK as a promising target in molecular therapy and in the combination of RT therapy to improve antitumor effect for HCC.


Assuntos
Carcinoma Hepatocelular , Quimiocina CCL2 , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Proteínas Serina-Treonina Quinases , Microambiente Tumoral , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/radioterapia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/radioterapia , Humanos , Animais , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Quimiocina CCL2/metabolismo , Linhagem Celular Tumoral , Tolerância a Radiação , Prognóstico , Fator de Transcrição STAT3/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , MicroRNAs/genética
5.
Curr Issues Mol Biol ; 46(5): 4251-4270, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38785527

RESUMO

Hepatocellular carcinoma (HCC) is a heterogeneous malignancy with complex carcinogenesis. Although there has been significant progress in the treatment of HCC over the past decades, drug resistance to chemotherapy remains a major obstacle in its successful management. In this study, we were able to reduce chemoresistance in cisplatin-resistant HepG2 cells by either silencing the expression of transglutaminase type 2 (TG2) using siRNA or by the pre-treatment of cells with the TG2 enzyme inhibitor cystamine. Further analysis revealed that, whereas the full-length TG2 isoform (TG2-L) was almost completely cytoplasmic in its distribution, the majority of the short TG2 isoform (TG2-S) was membrane-associated in both parental and chemoresistant HepG2 cells. Following the induction of cisplatin toxicity in non-chemoresistant parental cells, TG2-S, together with cisplatin, quickly relocated to the cytosolic fraction. Conversely, no cytosolic relocalisation of TG2-S or nuclear accumulation cisplatin was observed, following the identical treatment of chemoresistant cells, where TG2-S remained predominantly membrane-associated. This suggests that the deficient subcellular relocalisation of TG2-S from membranous structures into the cytoplasm may limit the apoptic response to cisplatin toxicity in chemoresistant cells. Structural analysis of TG2 revealed the presence of binding motifs for interaction of TG2-S with the membrane scaffold protein LC3/LC3 homologue that could contribute to a novel mechanism of chemotherapeutic resistance in HepG2 cells.

6.
Cancer Sci ; 115(2): 465-476, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37991109

RESUMO

NR0B1 is frequently activated in hepatocellular carcinoma (HCC). However, the role of NR0B1 is controversial in HCC. In this study, we observed that NR0B1 was an independent poor prognostic factor, negatively correlated with the overall survival of HCC and the relapse-free survival of patients treated with sorafenib. Meanwhile, NR0B1 promoted the proliferation, migration, and invasion of HCC cells, inhibited sorafenib-induced apoptosis, and elevated the IC50 of sorafenib in HCC cells. NR0B1 was further displayed to increase sorafenib-induced autophagic vesicles and activate Beclin1/LC3-II-dependent autophagy pathway. Finally, NR0B1 was revealed to transcriptionally suppress GSK3ß that restrains AMPK/mTOR-driven autophagy and increases BAX-mediated apoptosis. Collectively, our study uncovered that the ectopic expression of NR0B1 augmented sorafenib-resistance in HCC cells by activating autophagy and inhibiting apoptosis. Our findings supported that NR0B1 was a detrimental factor for HCC prognosis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Sorafenibe/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Recidiva Local de Neoplasia , Apoptose , Autofagia , Proliferação de Células , Linhagem Celular Tumoral , Receptor Nuclear Órfão DAX-1
7.
Funct Integr Genomics ; 24(1): 29, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353724

RESUMO

Hepatocellular carcinoma (HCC) is a common malignant tumor with a high recurrence rate and a poor prognosis. Long intergenic nonprotein coding RNA 942 (LINC00942) is reported to be related to ferroptosis and the immune response in HCC and serves as an oncogene in various cancers. This research aimed to explore the contribution of LINC00942 in HCC progression. Functional assays were used to evaluate the functional role of LINC00942 in vitro and in vivo. Mechanistic assays were conducted to assess the association of LINC00942 with insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) and solute carrier family 7 member 11 (SLC7A11) and the regulatory pattern of LINC00942 in HCC cells. LINC00942 was found to exhibit upregulation in HCC tissue and cells. LINC00942 facilitated HCC cell proliferation, suppressed ferroptosis, and converted naive CD4+ T cells to inducible Treg (iTreg) cells by regulating SLC7A11. Furthermore, SLC7A11 expression was positively modulated by LINC00942 in HCC cells. IGF2BP3 was a shared RNA-binding protein (RBP) for LINC00942 and SLC7A11. The binding between the SLC7A11 3' untranslated region and IGF2BP3 was verified, and LINC00942 was found to recruit IGF2BP3 to promote SLC7A11 mRNA stability in an m6A-dependent manner. Moreover, mouse tumor growth and proliferation were inhibited, and the number of FOXP3+CD25+ T cells was increased, while ferroptosis was enhanced after LINC00942 knockdown in vivo. LINC00942 suppresses ferroptosis and induces Treg immunosuppression in HCC by recruiting IGF2BP3 to enhance SLC7A11 mRNA stability, which may provide novel therapeutic targets for HCC.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/genética , Linfócitos T Reguladores , Ferroptose/genética , Neoplasias Hepáticas/genética , Terapia de Imunossupressão
8.
J Gene Med ; 26(9): e3723, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39228142

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) remains a formidable challenge in oncology, with its pathogenesis and progression influenced by myriad factors. Among them, the pervasive organic synthetic compound, bisphenol A (BPA), previously linked with various adverse health effects, has been speculated to play a role. This study endeavors to elucidate the complex interplay between BPA, the immune microenvironment of HCC, and the broader molecular landscape of this malignancy. METHODS: A comprehensive analysis was undertaken using data procured from both The Cancer Genome Atlas and the Comparative Toxicogenomics Database. Rigorous differential expression analyses were executed, supplemented by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. In addition, single-sample gene set enrichment analysis, gene set enrichment analysis and gene set variation analysis were employed to reveal potential molecular links and insights. Immune infiltration patterns were delineated, and a series of in vitro experiments on HCC cells were conducted to directly assess the impact of BPA exposure. RESULTS: Our findings unveiled a diverse array of active immune cells and functions within HCC. Distinct correlations emerged between high-immune-related scores, established markers of the tumor microenvironment and the expression of immune checkpoint genes. A significant discovery was the identification of key genes simultaneously associated with immune-related pathways and BPA exposure. Leveraging these genes, a prognostic model was crafted, offering predictive insights into HCC patient outcomes. Intriguingly, in vitro studies suggested that BPA exposure could promote proliferation in HCC cells. CONCLUSION: This research underscores the multifaceted nature of HCC's immune microenvironment and sheds light on BPA's potential modulatory effects therein. The constructed prognostic model, if validated further, could serve as a robust tool for risk stratification in HCC, potentially guiding therapeutic strategies. Furthermore, the implications of the findings for immunotherapy are profound, suggesting new avenues for enhancing treatment efficacy. As the battle against HCC continues, understanding of environmental modulators like BPA becomes increasingly pivotal.


Assuntos
Compostos Benzidrílicos , Carcinoma Hepatocelular , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Fenóis , Microambiente Tumoral , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/patologia , Compostos Benzidrílicos/efeitos adversos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/patologia , Humanos , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Fenóis/efeitos adversos , Fenóis/toxicidade , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Biomarcadores Tumorais/genética
9.
Cancer Immunol Immunother ; 73(7): 127, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739169

RESUMO

Lactate dehydrogenase B (LDHB) reversibly catalyzes the conversion of pyruvate to lactate or lactate to pyruvate and expressed in various malignancies. However, the role of LDHB in modulating immune responses against hepatocellular carcinoma (HCC) remains largely unknown. Here, we found that down-regulation of lactate dehydrogenase B (LDHB) was coupled with the promoter hypermethylation and knocking down the DNA methyltransferase 3A (DNMT 3A) restored LDHB expression levels in HCC cell lines. Bioinformatics analysis of the HCC cohort from The Cancer Genome Atlas revealed a significant positive correlation between LDHB expression and immune regulatory signaling pathways and immune cell infiltrations. Moreover, immune checkpoint inhibitors (ICIs) have shown considerable promise for HCC treatment and patients with higher LDHB expression responded better to ICIs. Finally, we found that overexpression of LDHB suppressed HCC growth in immunocompetent but not in immunodeficient mice, suggesting that the host immune system was involved in the LDHB-medicated tumor suppression. Our findings indicate that DNMT3A-mediated epigenetic silencing of LDHB may contribute to HCC progression through remodeling the tumor immune microenvironment, and LDHB may become a potential prognostic biomarker and therapeutic target for HCC immunotherapy.


Assuntos
Carcinoma Hepatocelular , DNA Metiltransferase 3A , Epigênese Genética , L-Lactato Desidrogenase , Neoplasias Hepáticas , Microambiente Tumoral , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/metabolismo , Microambiente Tumoral/imunologia , Humanos , Animais , Camundongos , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/genética , DNA Metiltransferase 3A/metabolismo , Regulação Neoplásica da Expressão Gênica , Metilação de DNA , Isoenzimas/genética , Isoenzimas/metabolismo , Linhagem Celular Tumoral , Inativação Gênica , Prognóstico
10.
Cancer Immunol Immunother ; 73(3): 49, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349553

RESUMO

T-cell receptor (TCR) engineered T-cell therapy has recently emerged as a promising adoptive immunotherapy approach for tumor treatment, yet hindered by tumor immune evasion resulting in poor therapeutic efficacy. The introduction of ferroptosis-targeted inducers offers a potential solution, as they empower T cells to induce ferroptosis and exert influence over the tumor microenvironment. Atovaquone (ATO) stands as a prospective pharmaceutical candidate with the potential to target ferroptosis, effectively provoking an excessive generation and accumulation of reactive oxygen species (ROS). In this study, we evaluated the effectiveness of a combination therapy comprising ATO and TCR-T cells against hepatocellular carcinoma (HCC), both in vitro and in vivo. The results of lactate dehydrogenase and cytokine assays demonstrated that ATO enhanced cytotoxicity mediated by AFP-specific TCR-T cells and promoted the release of IFN-γ in vitro. Additionally, in an established HCC xenograft mouse model, the combined therapy with low-dose ATO and TCR-T cells exhibited heightened efficacy in suppressing tumor growth, with no apparent adverse effects, comparable to the results achieved through monotherapy. The RNA-seq data unveiled a significant activation of the ferroptosis-related pathway in the combination therapy group in comparison to the TCR-T cells group. Mechanistically, the synergy between ATO and TCR-T cells augmented the release of IFN-γ by TCR-T cells, while concurrently elevating the intracellular and mitochondrial levels of ROS, expanding the labile iron pool, and impairing the integrity of the mitochondrial membrane in HepG2 cells. This multifaceted interaction culminated in the potentiation of ferroptosis within the tumor, primarily induced by an excess of ROS. In summary, the co-administration of ATO and TCR-T cells in HCC exhibited heightened vulnerability to ferroptosis. This heightened susceptibility led to the inhibition of tumor growth and the stimulation of an anti-tumor immune response. These findings suggest that repurposing atovaquone for adoptive cell therapy combination therapy holds the potential to enhance treatment outcomes in HCC.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/terapia , Atovaquona/farmacologia , Atovaquona/uso terapêutico , Espécies Reativas de Oxigênio , Estudos Prospectivos , Neoplasias Hepáticas/terapia , Receptores de Antígenos de Linfócitos T , Modelos Animais de Doenças , Microambiente Tumoral
11.
Mol Genet Genomics ; 299(1): 1, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170228

RESUMO

Mutation is the major cause of phenotypic innovations. Apart from DNA mutations, the alteration on RNA such as the ADAR-mediated A-to-I RNA editing could also shape the phenotype. These two layers of variations have not been systematically combined to study their collective roles in cancers. We collected the high-quality transcriptomes of ten hepatocellular carcinoma (HCC) and the matched control samples. We systematically identified HCC-specific mutations in the exonic regions and profiled the A-to-I RNA editome in each sample. All ten HCC samples had mutations in the CDS of ADAR2 gene (dsRNA-binding domain or catalytic domain). The consequence of these mutations converged to the elevation of ADAR2 efficiency as reflected by the global increase of RNA editing levels in HCC. The up-regulated editing sites (UES) were enriched in the CDS and UTR of oncogenes and tumor suppressor genes (TSG), indicating the possible roles of these target genes in HCC oncogenesis. We present the mutation-ADAR2-UES-oncogene/TSG-HCC axis that explains how mutations at different layers would finally lead to abnormal phenotype. In the light of central dogma, our work provides novel insights into how to fully take advantage of the transcriptome data to decipher the consequence of mutations.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/genética , Mutação , RNA , RNA não Traduzido
12.
Mol Carcinog ; 63(1): 173-189, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37787401

RESUMO

Lenvatinib is a clinically effective multikinase inhibitor approved for first-line therapy of advanced hepatocellular carcinoma (HCC). Although resistance against lenvatinib often emerges and limits its antitumor activity, the underlying molecular mechanisms involved in endogenous and acquired resistance remain elusive. In this study, we identified focal adhesion kinase (FAK) as a critical contributor to lenvatinib resistance in HCC. The elevated expression and phosphorylation of FAK were observed in both acquired and endogenous lenvatinib-resistant (LR) HCC cells. Furthermore, inhibition of FAK reversed lenvatinib resistance in vitro and in vivo. Mechanistically, FAK promoted lenvatinib resistance through regulating lysine-deficient kinase 1 (WNK1). Phosphorylation of WNK1 was significantly increased in LR-HCC cells. Further, WNK1 inhibitor WNK463 resensitized either established or endogenous LR-HCC cells to lenvatinib treatment. In addition, overexpression of WNK1 desensitized parental HCC cells to lenvatinib treatment. Conclusively, our results establish a crucial role and novel mechanism of FAK in lenvatinib resistance and suggest that targeting the FAK/WNK1 axis is a promising therapeutic strategy in HCC patients showing lenvatinib resistance.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Lisina/uso terapêutico , Linhagem Celular Tumoral
13.
J Transl Med ; 22(1): 72, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238845

RESUMO

BACKGROUND: Nonalcoholic steatohepatitis (NASH) is a progressive manifestation of nonalcoholic fatty liver disease (NAFLD) that can lead to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Despite the growing knowledge of NASH and HCC, the association between the two conditions remains to be fully explored. Bioinformatics has emerged as a valuable approach for identifying disease-specific feature genes, enabling advancements in disease prediction, prevention, and personalized treatment strategies. MATERIALS AND METHODS: In this study, we utilized CellChat, copy number karyotyping of aneuploid tumors (CopyKAT), consensus Non-negative Matrix factorization (cNMF), Gene set enrichment analysis (GSEA), Gene set variation analysis (GSVA), Monocle, spatial co-localization, single sample gene set enrichment analysis (ssGSEA), Slingshot, and the Scissor algorithm to analyze the cellular and immune landscape of NASH and HCC. Through the Scissor algorithm, we identified three cell types correlating with disease phenotypic features and subsequently developed a novel clinical prediction model using univariate, LASSO, and multifactor Cox regression. RESULTS: Our results revealed that macrophages are a significant pathological factor in the development of NASH and HCC and that the macrophage migration inhibitory factor (MIF) signaling pathway plays a crucial role in cellular crosstalk at the molecular level. We deduced three prognostic genes (YBX1, MED8, and KPNA2), demonstrating a strong diagnostic capability in both NASH and HCC. CONCLUSION: These findings shed light on the pathological mechanisms shared between NASH and HCC, providing valuable insights for the development of novel clinical strategies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Carcinoma Hepatocelular/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Neoplasias Hepáticas/patologia , Modelos Estatísticos , Prognóstico , Progressão da Doença , Fibrose
14.
J Transl Med ; 22(1): 76, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243292

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a common liver malignancy with limited treatment options. Previous studies expressed the potential synergy of sorafenib and NK cell immunotherapy as a promising approach against HCC. MRI is commonly used to assess response of HCC to therapy. However, traditional MRI-based metrics for treatment efficacy are inadequate for capturing complex changes in the tumor microenvironment, especially with immunotherapy. In this study, we investigated potent MRI radiomics analysis to non-invasively assess early responses to combined sorafenib and NK cell therapy in a HCC rat model, aiming to predict multiple treatment outcomes and optimize HCC treatment evaluations. METHODS: Sprague Dawley (SD) rats underwent tumor implantation with the N1-S1 cell line. Tumor progression and treatment efficacy were assessed using MRI following NK cell immunotherapy and sorafenib administration. Radiomics features were extracted, processed, and selected from both T1w and T2w MRI images. The quantitative models were developed to predict treatment outcomes and their performances were evaluated with area under the receiver operating characteristic (AUROC) curve. Additionally, multivariable linear regression models were constructed to determine the correlation between MRI radiomics and histology, aiming for a noninvasive evaluation of tumor biomarkers. These models were evaluated using root-mean-squared-error (RMSE) and the Spearman correlation coefficient. RESULTS: A total of 743 radiomics features were extracted from T1w and T2w MRI data separately. Subsequently, a feature selection process was conducted to identify a subset of five features for modeling. For therapeutic prediction, four classification models were developed. Support vector machine (SVM) model, utilizing combined T1w + T2w MRI data, achieved 96% accuracy and an AUROC of 1.00 in differentiating the control and treatment groups. For multi-class treatment outcome prediction, Linear regression model attained 85% accuracy and an AUC of 0.93. Histological analysis showed that combination therapy of NK cell and sorafenib had the lowest tumor cell viability and the highest NK cell activity. Correlation analyses between MRI features and histological biomarkers indicated robust relationships (r = 0.94). CONCLUSIONS: Our study underscored the significant potential of texture-based MRI imaging features in the early assessment of multiple HCC treatment outcomes.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratos , Animais , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/tratamento farmacológico , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Radiômica , Ratos Sprague-Dawley , Resultado do Tratamento , Biomarcadores Tumorais , Imageamento por Ressonância Magnética/métodos , Células Matadoras Naturais , Estudos Retrospectivos , Microambiente Tumoral
15.
J Med Virol ; 96(9): e29894, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39206838

RESUMO

A substantial body of literature, including our own, points to a connection between hepatitis B virus (HBV) infection and the development of drug resistance in hepatocellular carcinoma (HCC), particularly against sorafenib. However, the influence of HBV on resistance to regorafenib, another therapeutic agent, has been less studied. In this study, we used the GEO database (GSE87630) and clinical samples to demonstrate that C-C motif chemokine receptor 9 (CCR9) was highly expressed in HBV-related HCC and predicted poor overall survival. Its overexpression correlated with HBsAg-positive HCC patients. Both univariate and multivariable Cox regression analysis elucidated CCR9 was an independent risk factor for poor overall survival in HCC patients. Our in vitro findings further revealed that HBV structural proteins, small HBV surface antigen (SHBs), triggered an upregulation of CCR9. Functional assays showed that SHBs enhanced HCC cell proliferation, migration, and invasion, increased ABCB1 and ABCC1 expression, and promoted regorafenib resistance via CCR9. Intriguingly, overexpression of HBV plasmid and an AAV-HBV mouse model both exhibited a significant elevation in global N6-methyladenosine (m6A) levels. Further investigations revealed that SHBs elevated these m6A levels, upregulated CCR9 and stabilized CCR9 mRNA through KIAA1429-mediated m6A modification, with sites 1373 and 1496 on CCR9 mRNA being critical for modification. In conclusion, SHBs promoted HCC progression and regorafenib resistance via KIAA1429-mediated m6A modification of CCR9. Our findings suggested that CCR9 could be a potential prognostic biomarker and a valuable molecular therapeutic target of regorafenib resistance in HBV-related HCC.


Assuntos
Carcinoma Hepatocelular , Resistencia a Medicamentos Antineoplásicos , Antígenos de Superfície da Hepatite B , Neoplasias Hepáticas , Compostos de Fenilureia , Piridinas , Carcinoma Hepatocelular/virologia , Carcinoma Hepatocelular/tratamento farmacológico , Humanos , Neoplasias Hepáticas/virologia , Neoplasias Hepáticas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Animais , Antígenos de Superfície da Hepatite B/genética , Antígenos de Superfície da Hepatite B/metabolismo , Piridinas/farmacologia , Piridinas/uso terapêutico , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Camundongos , Masculino , Feminino , Receptores CCR/genética , Receptores CCR/metabolismo , Linhagem Celular Tumoral , Vírus da Hepatite B/genética , Vírus da Hepatite B/efeitos dos fármacos , Pessoa de Meia-Idade , Hepatite B/virologia , Hepatite B/complicações , Hepatite B/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Adenosina/análogos & derivados
16.
Invest New Drugs ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212893

RESUMO

Although immune checkpoint inhibitors (ICI) are used for unresectable hepatocellular carcinoma (HCC), it is unclear whether sequential ICI treatment-durvalumab plus tremelimumab (DT) after progression on atezolizumab plus bevacizumab (AB)-is effective for HCC. In this nationwide multicenter study, we aimed to investigate the effect of DT treatment based on the timing of treatment. A total of 85 patients receiving DT treatment were enrolled. The primary endpoint is treatment response at week 8 among patients receiving first-line DT treatment, those receiving second-line or later treatment without prior AB therapy, and those receiving second-line or later treatment with prior AB therapy. Objective response rates (ORRs) in patients with first-line treatment, second-line treatment without AB, and second-line treatment with prior AB were 44%, 54%, and 5%, respectively (p < 0.001). Similarly, disease control rates (DCRs) were 69%, 91%, and 26%, respectively (p < 0.001). ORR and DCR were significantly lower in patients with prior AB treatment. Progression free survival (PFS) was significantly shortened in patients receiving second-line therapy following prior AB treatment and an adjusted hazard ratio (95% confidence interval) in those patients for PFS, using first-line therapy as a reference, was 2.35 (1.1-5.1, p = 0.03). In conclusion, the impact of DT sequencing following AB treatment was limited. However, even after second-line treatment, the treatment effect can be equivalent to that of first-line treatment in cases with no history of AB treatment. Thus, prior treatment history should be taken into account when initiating DT treatment.

17.
BMC Cancer ; 24(1): 969, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39112950

RESUMO

BACKGROUND: Surgical therapy is the most optimal treatment for hepatocellular carcinoma (HCC) combined with bile duct tumor thrombus (BDTT) patients. However, whether to perform bile duct resection (BDR) is still controversial. The purpose of this multicenter research is to compare the effect of BDR on the prognosis of extrahepatic BDTT patients. METHODS: We collected the data of 111 HCC patients combined with extrahepatic BDTT who underwent radical hepatectomy from June 1, 2004 to December 31, 2021. Those patients had either received hepatectomy with extrahepatic bile duct resection (BDR group) or hepatectomy without bile duct resection (NBDR group). Inverse probability of treatment weighting (IPTW) was used to reduce the potential bias between two groups and balance the influence of confounding factors in baseline data. Then compare the prognosis between the two groups of patients. Cox regression model was used for univariate and multivariate analysis to further determine the independent risk factors that influence the prognosis of HCC-BDTT patients. RESULTS: There were 38 patients in the BDR group and 73 patients in the NBDR group. Before and after IPTW, there were no statistical significance in OS, RFS and intraoperative median blood loss between the two groups (all P > 0.05). Before IPTW, the median postoperative hospital stay in the NBDR group was shorter (P = 0.046) and the grade of postoperative complications was lower than BDR group (P = 0.014). After IPTW, there was no difference in postoperative hospital stay between the two groups (P > 0.05). The complication grade in the NBDR group was still lower than that in the BDR group (P = 0.046). The univariate analysis showed that TNM stage and portal vein tumor thrombus (PVTT) were significantly correlated with OS (both P < 0.05). Preoperative AFP level, TNM stage and prognostic nutritional index (PNI) were significantly correlated with postoperative RFS (all P < 0.05). Multivariate analysis showed that tumor TNM stage was an independent risk factor for the OS rate (P = 0.014). TNM stage, PNI and AFP were independent predictors of RFS after radical hepatectomy (all P < 0.05). CONCLUSIONS: For HCC-BDTT patients, hepatocellular carcinoma resection combined with choledochotomy to remove the tumor thrombus may benefit more.


Assuntos
Ductos Biliares Extra-Hepáticos , Carcinoma Hepatocelular , Hepatectomia , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/cirurgia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/complicações , Masculino , Feminino , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/complicações , Pessoa de Meia-Idade , Prognóstico , Ductos Biliares Extra-Hepáticos/cirurgia , Ductos Biliares Extra-Hepáticos/patologia , Trombose/cirurgia , Trombose/etiologia , Trombose/patologia , Estudos Retrospectivos , Neoplasias dos Ductos Biliares/cirurgia , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/complicações , Neoplasias dos Ductos Biliares/mortalidade , Idoso , Adulto
18.
BMC Cancer ; 24(1): 306, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448905

RESUMO

BACKGROUND: Patients with hepatocellular carcinoma (HCC) who undergo transarterial chemoembolization (TACE) may have varied outcomes based on their liver function and tumor burden diversity. This study aims to assess the prognostic significance of the tumor burden score (TBS) in these patients and develop a prognostic model for their overall survival. METHODS: The study involved a retrospective analysis of 644 newly diagnosed HCC patients undergoing TACE treatment. The individuals were assigned randomly to a training cohort (n = 452) and a validation cohort (n = 192). We utilized a multivariate Cox proportional risk model to identify independent preoperative predictive factors. We then evaluated model performance using the area under the curve (AUC), consistency index (c-index), calibration curve, and decision curve analysis (DCA) methods. RESULTS: The multivariate analysis revealed four prognostic factors associated with overall survival: Tumor Burden Score, Tumor Extent, Types of portal vein invasion (PVI), and Child-Pugh score. The total score was calculated based on these factors. The model demonstrated strong discriminative ability with high AUC values and c-index, providing high net clinical benefits for patients. Based on the model's scoring results, patients were categorized into high, medium, and low-risk groups. These results were validated in the validation cohort. CONCLUSIONS: The tumor burden score shows promise as a viable alternative prognostic indicator for assessing tumor burden in cases of HCC. The new prognostic model can place patients in one of three groups, which will estimate their individual outcomes. For high-risk patients, it is suggested to consider alternative treatment options or provide the best supportive care, as they may not benefit significantly from TACE treatment.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Prognóstico , Estudos Retrospectivos , Carga Tumoral
19.
BMC Cancer ; 24(1): 672, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824541

RESUMO

BACKGROUND: Patients with primary multifocal hepatocellular carcinoma (HCC) have a poor prognosis and often experience a high rate of treatment failure. Multifocal HCC is mainly caused by intrahepatic metastasis (IM), and though portal vein tumor thrombosis (PVTT) is considered a hallmark of IM, the molecular mechanism by which primary HCC cells invade the portal veins remains unclear. Therefore, it is necessary to recognize the early signs of metastasis of HCC to arrange better treatment for patients. RESULTS: To determine the differential molecular features between primary HCC with and without phenotype of metastasis, we used the CIBERSORTx software to deconvolute cell types from bulk RNA-Seq based on a single-cell transcriptomic dataset. According to the relative abundance of tumorigenic and metastatic hepatoma cells, VEGFA+ macrophages, effector memory T cells, and natural killer cells, HCC samples were divided into five groups: Pro-T, Mix, Pro-Meta, NKC, and MemT, and the transcriptomic and genomic features of the first three groups were analyzed. We found that the Pro-T group appeared to retain native hepatic metabolic activity, whereas the Pro-Meta group underwent dedifferentiation. Genes highly expressed in the group Pro-Meta often signify a worse outcome. CONCLUSIONS: The HCC cohort can be well-typed and prognosis predicted according to tumor microenvironment components. Primary hepatocellular carcinoma may have obtained corresponding molecular features before metastasis occurred.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Transcriptoma , Microambiente Tumoral , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/secundário , Microambiente Tumoral/genética , Prognóstico , Genômica/métodos , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica , Masculino , Feminino , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/imunologia
20.
BMC Cancer ; 24(1): 1056, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39192218

RESUMO

BACKGROUND: The regulator of calcineurin 1 (RCAN1) is expressed in multiple organs, including the heart, liver, brain, and kidney, and is closely linked to the pathogenesis of cardiovascular diseases, Down syndrome, and Alzheimer's disease. It is also implicated in the development of various organ tumors; however, its potential role in hepatocellular carcinoma (HCC) remains poorly understood. Therefore, the objective of this study was to investigate the potential mechanisms of RCAN1 in HCC through bioinformatics analysis. METHODS: We conducted a joint analysis based on the NCBI and TCGA databases, integrating both bulk transcriptome and single-cell analyses to examine the principal biological functions of RCAN1 in HCC, as well as its roles related to phenotype, metabolism, and cell communication. Subsequently, an RCAN1-overexpressing cell line was established, and the effects of RCAN1 on tumor cells were validated through in vitro experiments. Moreover, we endeavored to identify potential related drugs using molecular docking and molecular dynamics simulations. RESULTS: The expression of RCAN1 was found to be downregulated in 19 types of cancer tissues and upregulated in 11 types of cancer tissues. Higher levels of RCAN1 expression were associated with improved patient survival. RCAN1 was predominantly expressed in hepatocytes, macrophages, endothelial cells, and monocytes, and its high expression not only closely correlated with the distribution of cells related to the HCC phenotype but also with the distribution of HCC cells themselves. Additionally, Rcan1 may directly or indirectly participate in metabolic pathways such as alanine, aspartate, and glutamate metabolism, as well as butanoate metabolism, thereby influencing tumor cell proliferation and migration. In vitro experiments confirmed that RCAN1 overexpression promoted apoptosis while inhibiting proliferation and invasion of HCC cells. Through molecular docking of 1615 drugs, we screened brompheniramine as a potential target drug and verified our results by molecular dynamics. CONCLUSION: In this study, we revealed the relationship between RCAN1 and HCC through bioinformatics methods, verified that RCAN1 can affect the progress of the disease through experiments, and finally identified potential therapeutic drugs through drug molecular docking and molecular dynamics.


Assuntos
Carcinoma Hepatocelular , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Hepáticas , Proteínas Musculares , Análise de Célula Única , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Simulação de Acoplamento Molecular , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Biologia Computacional/métodos , Apoptose , Simulação de Dinâmica Molecular , Movimento Celular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa