Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Ecotoxicol Environ Saf ; 278: 116396, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38696872

RESUMO

The success of the sodic soil reclamation using elemental S (S°) depends on the population of the native S° oxidizers. Augmenting the native flora of the sodic soils with effective S° oxidizers can enhance the success of the sodic soil reclamation. Present study reports for the first time the S° oxidation potential of the Sphingomonas olei strain 20UP7 isolated from sodic soils with pHs 9.8 and ECe 3.6 dS m-1. Inoculation with S. olei strain 20UP7 caused 13.0-24.2 % increase in S° oxidation in different sodic soils (pHs 9.1-10.5). It improved the concentration of the Ca2+, Mg2+, PO43- and declined the HCO3- and total alkalinity of the soil solution. This isolate also showed appreciable P and Zn solubilization, indole acetic acid, ammonia, and titratable acidity production in the growth media. It tended to the formation of biofilm around sulphur particles. The PCR amplification with gene-specific primers showed the occurrence of soxA, soxB, and soxY genes with a single band corresponding to length of 850, 460, and 360 base pairs, respectively. The integration of the S. olei strain 20UP7 with S° caused 21.7-25.4 % increase in the rice and wheat yield compared to the soil treated with S° alone. This study concludes that the S. olei, native to high saline-sodic soils can be utilized for improving the sodicity reclamation and plant growth promotion using elemental S based formulations.


Assuntos
Oxirredução , Microbiologia do Solo , Solo , Solo/química , Enxofre/metabolismo , Sphingomonas , Concentração de Íons de Hidrogênio , Biofilmes/crescimento & desenvolvimento , Desenvolvimento Vegetal/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Oryza/microbiologia , Oryza/crescimento & desenvolvimento , Poluentes do Solo
2.
Microb Ecol ; 84(2): 556-564, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34528105

RESUMO

Henan Province is a major area of peanut production in China but the rhizobia nodulating the crop in this region have not been described. A collection of 217 strains of peanut rhizobia was obtained from six field sites across four soil types in Henan Province, North China, by using peanut as a trap host under glasshouse conditions. The 217 strains separated into 8 distinct types on PCR-RFLP analysis of their IGS sequences. Phylogenetic analysis of the 16S rRNA, recA, atpD, and glnII genes of 11 representative strains of the 8 IGS types identified Bradyrhizobium guangdongense, B. ottawaense and three novel Bradyrhizobium genospecies. Bradyrhizobium guangdongense was dominant, accounting for 75.0% of the total isolates across the field sites while B. ottawaense covered 5.1% and the three novel Bradyrhizobium genospecies 4.1 to 8.8% of the total. The symbiosis-related nodA and nifH gene sequences were not congruent with the core genes on phylogenetic analysis and separated into three groups, two of which were similar to sequences of Bradyrhizobium spp. isolated from peanut in south-east China and the third identical to that of B. yuanmingense isolated from Lespedeza cuneata in northern China. A canonical correlation analysis between the distribution of IGS genotypes and soil physicochemical characteristics and climatic factors indicated that the occurrence of IGS types/species was mainly associated with soil pH and available phosphorus.


Assuntos
Bradyrhizobium , Fabaceae , Rhizobium , Arachis , Bradyrhizobium/genética , DNA Bacteriano/genética , Filogenia , RNA Ribossômico 16S/genética , Rhizobium/genética , Nódulos Radiculares de Plantas , Análise de Sequência de DNA , Solo , Simbiose
3.
World J Microbiol Biotechnol ; 37(10): 164, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34458956

RESUMO

Eucalyptus is the main species for the forestry industry in Brazil. Biotechnology and, more recently, gene editing offer significant opportunities for rapid improvements in Eucalyptus breeding programs. However, the recalcitrance of Eucalyptus species to in vitro culture is also a major limitation for commercial deployment of biotechnology techniques in Eucalyptus improvement. We evaluated various clones of Eucalyptus urophylla for their in vitro regeneration potential identified a clone, BRS07-01, with considerably higher regeneration rate (85%) in organogenesis, and significantly higher than most works described in literature. Endophytic bacteria are widely reported to improve in vitro plant growth and development. Hence, we believe that inclusion of endophytic plant growth promoting bacteria enhanced was responsible for the improved plantlets growth and development of this clone under in vitro culture. Metagenomic analysis was performed to isolate and characterize the prominent endophytic bacteria on BRS07-01 leaf tissue in vitro micro-cultures, and evaluate their impact on plant growth promotion. The analysis revealed the presence of the phyla Firmicutes (35%), Proteobacteria (30%) and much smaller quantities of Actinobacteria, Bacteroidetes, Gemmatimonadetes, Crenarchaeota, Euryarchaeota and Acidobacteria. Of the thirty endophytic bacterial strains isolated, eleven produced indole-3-acetic acid. Two of the isolates were identified as Enterobacter sp. and Paenibacillus polymyxa, which are nitrogen-fixing and capable of phosphate and produce ammonium. These isolates also showed similar positive effects on the germination of common beans (Phaseolus spp.). The isolates will now be tested as a growth promoter in Eucalyptus in vitro cultures. Graphical abstract for the methodology using cultivation independent and dependent methodologies to investigate the endophytic bacteria community from in vitro Eucalyptus urophylla BRS07-01.


Assuntos
Bactérias/isolamento & purificação , Endófitos/isolamento & purificação , Eucalyptus/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Brasil , DNA Bacteriano/genética , DNA Ribossômico/genética , Endófitos/classificação , Endófitos/genética , Endófitos/metabolismo , Eucalyptus/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Metagenômica , Filogenia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , RNA Ribossômico 16S/genética
4.
World J Microbiol Biotechnol ; 37(1): 9, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33392828

RESUMO

Current worldwide challenges are to increase the food production and decrease the environmental contamination by industrial emissions. For this, bacteria can produce plant growth promoter phytohormones and mediate the bioremediation of sewage by heavy metals removal. We developed a Rational Design of Immobilized Derivatives (RDID) strategy, applicable for protein, spore and cell immobilization and implemented in the RDID1.0 software. In this work, we propose new algorithms to optimize the theoretical maximal quantity of cells to immobilize (tMQCell) on solid supports, implemented in the RDIDCell software. The main modifications to the preexisting algorithms are related to the sphere packing theory and exclusive immobilization on the support surface. We experimentally validated the new tMQCell parameter by electrostatic immobilization of ten microbial strains on AMBERJET® 4200 Cl- porous solid support. All predicted tMQCell match the practical maximal quantity of cells to immobilize with a 10% confidence. The values predicted by the RDIDCell software are more accurate than the values predicted by the RDID1.0 software. 3-indolacetic acid (IAA) production by one bacterial immobilized derivative was higher (~ 2.6 µg IAA-like indoles/108 cells) than that of the cell suspension (1.5 µg IAA-like indoles/108 cells), and higher than the tryptophan amount added as indole precursor. Another bacterial immobilized derivative was more active (22 µg Cr(III)/108 cells) than the resuspended cells (14.5 µg Cr(III)/108 cells) in bioconversion of Cr(VI) to Cr(III). Optimized RDID strategy can be used to synthesize bacterial immobilized derivatives with useful biotechnological applications.


Assuntos
Biodegradação Ambiental , Células Imobilizadas/metabolismo , Biologia Computacional/métodos , Algoritmos , Bactérias/metabolismo , Biomassa , Poluentes Ambientais , Metais Pesados/metabolismo , Software , Eletricidade Estática
5.
Int J Mol Sci ; 18(8)2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-28788047

RESUMO

Salinity is a serious limiting factor for the growth of rhizobia. Some rhizobia are tolerant to salt stress and promote plant growth, but the mechanisms underlying these effects are poorly characterized. The growth responses and osmoprotectants in four Bradyrhizobium strains were examined under salt stress in this study. Two-dimensional electrophoresis (2-DE) and mass spectrometry were conducted to investigate protein profiles in rhizobia exposed to salt stress. Subsequently, salt tolerance in stylo (Stylosanthesguianensis) inoculated with rhizobia was further detected in hydroponics. Results showed that the Bradyrhizobium strain RJS9-2 exhibited higher salt tolerance than the other three Bradyrhizobium strains. RJS9-2 was able to grow at 0.35 M NaCl treatment, while the other three Bradyrhizobium strains did not grow at 0.1 M NaCl treatment. Salt stress induced IAA production, and accumulation of proline, betaine, ectoine, and trehalose was observed in RJS9-2 but not in PN13-1. Proteomics analysis identified 14 proteins regulated by salt stress in RJS9-2 that were mainly related to the ABC transporter, stress response, and protein metabolism. Furthermore, under saline conditions, the nodule number, plant dry weight, and N concentration in stylo plants inoculated with RJS9-2 were higher than those in plants inoculated with PN13-1. These results suggest that the tolerance of RJS9-2 to salt stress may be achieved by the coordination of indole-3-acetic acid (IAA) production, osmoprotectant accumulation, and protein expression, thus promoting stylo growth.


Assuntos
Bradyrhizobium/fisiologia , Fabaceae/crescimento & desenvolvimento , Fabaceae/microbiologia , Salinidade , Tolerância ao Sal , Proteínas de Bactérias , Fabaceae/metabolismo , Ácidos Indolacéticos/metabolismo , Viabilidade Microbiana , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estresse Fisiológico
6.
Acta Biol Hung ; 68(2): 175-186, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28605980

RESUMO

Bacterial endophytes from the phyllosphere and rhizosphere have been used to produce bioactive metabolites and to promote plant growth. However, little is known about the endophytes residing in seeds. This study aimed to isolate and identify seed-borne bacterial endophytes from rice and elucidate their potential for phytohormone production and growth enhancement. The isolated endophytes included Micrococcus yunnanensis RWL-2, Micrococcus luteus RWL-3, Enterobacter soli RWL-4, Leclercia adecarboxylata RWL-5, Pantoea dispersa RWL-6, and Staphylococcus epidermidis RWL-7, which were identified using 16S rRNA sequencing and phylogenetic analysis. These strains were analyzed for indoleacetic acid (IAA) production by using GC-MS and IAA was found in the range of 11.50 ± 0.77 µg ml-1 to 38.80 ± 1.35 µg ml-1. We also assessed the strains for plant growth promoting potential because these isolates were able to produce IAA in pure culture. Most of the growth attributes of rice plants (shoot and root length, fresh and dry biomass, and chlorophyll content) were significantly increased by bacterial endophytes compared to the controls. These results show that IAA producing bacterial endophytes can improve hostplant growth traits and can be used as bio-fertilizers.


Assuntos
Bactérias Gram-Positivas , Ácidos Indolacéticos/metabolismo , Oryza , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Sementes/microbiologia , Bactérias Gram-Positivas/classificação , Bactérias Gram-Positivas/isolamento & purificação , Bactérias Gram-Positivas/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/microbiologia
7.
J Appl Microbiol ; 117(3): 786-99, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24916921

RESUMO

AIMS: The study mainly aimed quantitative analysis of IAA produced by endophytic bacteria under various conditions including the presence of extract from Piper nigrum. Analysis of genetic basis of IAA production was also conducted by studying the presence and diversity of the ipdc gene among the selected isolates. MATERIALS AND METHODS: Five endophytic bacteria isolated previously from P. nigrum were used for the study. The effect of temperature, pH, agitation, tryptophan concentration and plant extract on modulating IAA production of selected isolates was analysed by colorimetric method. Comparative and quantitative analysis of IAA production by colorimetric isolates under optimal culture condition was analysed by HPTLC method. Presence of ipdc gene and thereby biosynthetic basis of IAA production among the selected isolates were studied by PCR-based amplification and subsequent insilico analysis of sequence obtained. CONCLUSIONS: Among the selected bacterial isolates from P. nigrum, isolate PnB 8 (Klebsiella pneumoniae) was found to have the maximum yield of IAA under various conditions optimized and was confirmed by colorimetric, HPLC and HPTLC analysis. Very interestingly, the study showed stimulating effect of phytochemicals from P. nigrum on IAA production by endophytic bacteria isolated from same plant. SIGNIFICANCE AND IMPACT OF THE STUDY: This study is unique because of the selection of endophytes from same source for comparative and quantitative analysis of IAA production under various conditions. Study on stimulatory effect of phytochemicals on bacterial IAA production as explained in the study is a novel approach. Studies on molecular basis of IAA production which was confirmed by sequence analysis of ipdc gene make the study scientifically attractive. Even though microbial production of IAA is well known, current report on detailed optimization, effect of plant extract and molecular confirmation of IAA biosynthesis is comparatively novel in its approach.


Assuntos
Bactérias/metabolismo , Carboxiliases/genética , Endófitos/metabolismo , Ácidos Indolacéticos/metabolismo , Piper nigrum/microbiologia , Bactérias/genética , Bactérias/isolamento & purificação , Carboxiliases/química , Endófitos/genética , Endófitos/isolamento & purificação , Genes Bacterianos , Klebsiella pneumoniae/genética , Filogenia , Alinhamento de Sequência , Análise de Sequência de Proteína
8.
Environ Sci Pollut Res Int ; 30(14): 40147-40161, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36607575

RESUMO

Endophytic bacteria inhabit plant tissues such as roots, stems, leaves, fruits, and seeds and can multiply inside plant tissue without damaging them. This study involves the isolation, characterization, metabolic profiling, and effect of endophytic bacteria isolated from the roots of Scots pine (Pinus sylvestris), on the growth of sunflower. In the current study, fifteen isolates of endophytic bacteria were obtained from the roots of Scots pine, and their molecular characterization was performed using 16 s rRNA ribotyping. The molecular characterization revealed that the strains belonged to Bacillus spp., Pseudomonas spp., Micrococcus sp., Serratia sp., Enterobacter sp., Pantoea sp., Staphylococcus sp., and Microbacterium sp. Among the isolated strains, 9 strains showed positive results for ammonium production, 12 strains for calcium solubilization, 11 strains for magnesium solubilization, 5 strains for zinc solubilization, 12 strains for phosphate solubilization, 8 strains for potassium solubilization, 10 strains for indole acetic acid (IAA) production, 9 strains for siderophore, and 6 strains for hydrogen cyanide (HCN) production. The greenhouse experiment results demonstrated that all isolated endophytic bacteria improved the shoot length, dry weight, and chlorophyll content of sunflower, whereas a significant increase was observed by PS-3 (Bacillus cereus), PS-6 (Serratia marcescens), and PS-8 (Pseudomonas putida). Besides, the concentration of nitrogen, phosphorus, and potassium were also measured in sunflower shoots, and results asserted that bacterial inoculation increased the bioavailability of these essential nutrients to plants compared to uninoculated control. Thus, these endophytic bacteria could be used as an encouraging option to improve plant growth and performance.


Assuntos
Asteraceae , Helianthus , Pinus sylvestris , Endófitos/metabolismo , Bactérias/metabolismo , Metaboloma , Raízes de Plantas
9.
Front Plant Sci ; 14: 1104927, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492766

RESUMO

Despite Northeastern India being "Treasure House of Citrus Genetic Wealth," genetic erosion of citrus diversity poses severe concern with a corresponding loss in seed microbial diversity. The seed microbiome of citrus species unique to the Purvanchal Himalaya is seldom explored for their use in sustainable orchard management. Isolation and characterization of culturable seed microbiomes of eight citrus species, namely, Citrus reticulata Blanco, C. grandis (L.) Osbeck, C. latipes Tanaka, C. megaloxycarpa Lushaigton, C. jambhiri Lush, C. sinensis (L.) Osbeck, C. macroptera Montr, and C. indica Tanaka collected from NE India were carried out. The isolates were then screened for an array of plant growth-promoting (PGP) traits [indole acetic acid (IAA) production, N2 fixation, phosphate and zinc complex dissolution, siderophores, and Hydrogen Cyanide (HCN) production]. The pure culture isolates of seed microbiomes were capable of dissolving insoluble Ca3(PO4)2 (1.31-4.84 µg Pi ml-1 h-1), Zn3(PO4)2 (2.44-3.16 µg Pi ml-1 h-1), AlPO4 (1.74-3.61 µg Pi ml-1 h-1), and FePO4 (1.54-4.61µg Pi ml-1 h-1), mineralized phytate (12.17-18.00 µg Pi ml-1 h-1) and produced IAA-like substances (4.8-187.29 µg ml-1 h-1). A few isolates of the seed microbiome were also able to fix nitrogen, secrete siderophore-like compounds and HCN, and dissolve ZnSO4 and ZnO. The 16S ribosomal Ribonucleic Acid (rRNA)-based taxonomic findings revealed that Bacillus was the most dominant genus among the isolates across citrus species. Isolates CG2-1, CME6-1, CME6-4, CME6-5, CME6-9, CJ7-1, CMA10-1, CI11-3, and CI11-4 were identified as promising bioinoculants for development of microbial consortium having multifaceted PGP traits for nutritional benefits of nitrogen, phosphorus and zinc, and IAA hormonal benefits to citrus crops for better fitness in acid soils.

10.
Mycology ; 13(4): 257-270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405335

RESUMO

The protective and growth-promoting activities of Colletrotrichum and Diaporthe endophytes on tomato plants (Lycopersicon esculentum Mill.) are underexplored. We screened 40 endophytic fungi associated with Mexican shrimp plant (Justicia brandegeana) using an in vitro dual culture assay for Fusarium oxysporum, one of the most important phytopathogens of tomato plants. The three best antagonists, Colletotrichum siamense (JB224.g1), C. siamense (JB252.g1), and Diaporthe masirevicii (JB270), were identified based on multilocus sequence analysis. They were assessed in vitro for their inhibition of F. oxysporum and phosphate solubilisation capacity, and for the production of indole acetic acid. Greenhouse experiments verified the growth-promoting effects of these endophytes and the suppression of F. oxysporum symptoms in tomato plants.   Under greenhouse conditions, the JB252.g1 and JB270 isolates showed positive results for seedling emergence speed. The radicular system depth of plants inoculated with JB270 was greater than that in uninoculated plants (27.21 vs 21.95 cm). The soil plant analysis development chlorophyll metre (SPAD) index showed statistically significant results, especially for the endophyte JB224.g1 (36.99) compared to the control plants (30.90) and plants infected solely with F. oxysporum (33.64).

11.
Plants (Basel) ; 10(1)2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401438

RESUMO

In this study, 15 bacterial endophytes linked with the leaves of the native medicinal plant Pulicaria incisa were isolated and identified as Agrobacterium fabrum, Acinetobacter radioresistant, Brevibacillus brevis, Bacillus cereus, Bacillus subtilis, Paenibacillus barengoltzii, and Burkholderia cepacia. These isolates exhibited variant tolerances to salt stress and showed high efficacy in indole-3-acetic acid (IAA) production in the absence/presence of tryptophan. The maximum productivity of IAA was recorded for B. cereus BI-8 and B. subtilis BI-10 with values of 117 ± 6 and 108 ± 4.6 µg mL-1, respectively, in the presence of 5 mg mL-1 tryptophan after 10 days. These two isolates had a high potential in phosphate solubilization and ammonia production, and they showed enzymatic activities for amylase, protease, xylanase, cellulase, chitinase, and catalase. In vitro antagonistic investigation showed their high efficacy against the three phytopathogens Fusarium oxysporum, Alternaria alternata, and Pythium ultimum, with inhibition percentages ranging from 20% ± 0.2% to 52.6% ± 0.2% (p ≤ 0.05). Therefore, these two endophytic bacteria were used as bio-inoculants for maize seeds, and the results showed that bacterial inoculations significantly increased the root length as well as the fresh and dry weights of the roots compared to the control plants. The Zea mays plant inoculated with the two endophytic strains BI-8 and BI-10 significantly improved (p ≤ 0.05) the growth performance as well as the nutrient uptake compared with an un-inoculated plant.

12.
Front Microbiol ; 12: 587431, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054741

RESUMO

Pythium myriotylum is a notorious soil-borne oomycete that causes post-emergence damping-off in chili pepper. Of various disease management strategies, utilization of plant growth promoting rhizobacteria (PGPR) in disease suppression and plant growth promotion is an interesting strategy. The present study was performed to isolate and characterize PGPR indigenous to the chili rhizosphere in Pakistan, and to test the potential to suppress the damping-off and plant growth promotion in chili. Out of a total of 28 antagonists, eight bacterial isolates (4a2, JHL-8, JHL-12, 1C2, RH-24, 1D, 5C, and RH-87) significantly suppressed the colony growth of P. myriotylum in a dual culture experiment. All the tested bacterial isolates were characterized for biochemical attributes, and 16S rRNA sequence based phylogenetic analysis identified these isolates as Flavobacterium spp., Bacillus megaterium, Pseudomonas putida, Bacillus cereus, and Pseudomonas libanensis. All the tested bacterial isolates showed positive test results for ammonia production, starch hydrolase (except 4a2), and hydrogen cyanide production (except 4a2 and 1D). All the tested antagonists produced indole-3-acetic acid (13.4-39.0 µg mL-1), solubilized inorganic phosphate (75-103 µg mL-1), and produced siderophores (17.1-23.7%) in vitro. All the tested bacterial isolates showed varying levels of susceptibility and resistance response against different antibiotics and all these bacterial isolates were found to be non-pathogenic to chili seeds and notably enhanced percentage seed germination, plumule, redical length, and vigor index over un-inoculated control. Additionally, under pathogen pressure, bacterization increased the defense related enzymes such as Peroxidase (PO), polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL) activates. Moreover, the treatment of chili seeds with these bacterial isolates significantly suppressed the damping-off caused by P. myriotylum and improved PGP traits compared to the control. In addition, a positive correlation was noticed between shoot, root length, and dry shoot and root weight, and there was a negative correlation between dry shoot, root weight, and seedling percentage mortality. These results showed that native PGPR possesses multiple traits beneficial to the chili plants and can be used to develop eco-friendly and effective seed treatment formulation as an alternative to synthetic chemical fungicides.

13.
Chemosphere ; 266: 128983, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33272662

RESUMO

Organic fertilizers became a better alternative to chemical fertilizers in modern agricultural practices however, contamination of copper (Cu) from organic fertilizer is still a major concern for the globe. Plant growth promoting (PGP) microorganisms showed their efficiency to combat with this problem and thus Cu tolerant PGP endophytes from roots of Odontarrhena obovata (Alyssum obovatum) growing on Cu smelter contaminated serpentine soil were explored in present study. Out of twenty-four isolates, Pseudomonas lurida strain EOO26 identified by 16s rRNA gene sequencing was selected to check its efficacy for Cu-remediation. The strain EOO26 showed multi-metal tolerance, drought resistance and exhibited PGP attributes such as 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, siderophore and ammonia production. Significant production of indole-3-acetic acid and phosphate-solubilization under different Cu concentration (0-100 mg L-1) at varying pH (5.0-8.0) suggests potentiality of this strain to work effectively under wide range of abiotic stress conditions. Plant growth experiment (pH 6.8 ± 0.3) in copper spiked soil suggested a significant increase in length and dry weight of root and shoot of sunflower (Helianthus annuus) after inoculation with strain EOO26. Plants inoculated with strain EOO26 resulted in increase in Cu uptake by 8.6-fold for roots and 1.9-fold for leaves than uninoculated plants. The total plant uptake in inoculated Cu treatment was 2.6-fold higher than uninoculated one, which is much higher than the previously reported Cu accumulating plants. The excellent adaptation abilities and promising metal removal efficiency strongly indicate superiority of strain EOO26 for phytoremediation of Cu-contamination and may work effectively for Cu removal from contaminated soils.


Assuntos
Helianthus , Poluentes do Solo , Biodegradação Ambiental , Cobre/análise , Endófitos/genética , Raízes de Plantas/química , Pseudomonas , RNA Ribossômico 16S/genética , Microbiologia do Solo , Poluentes do Solo/análise
14.
Microbiol Res ; 238: 126506, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32540731

RESUMO

Plant growth promoting rhizobacteria are known to improve plant performance by developing healthy and productive interactions with the host plants. These associations may be symbiotic or asymbiotic depending upon the genetic potential of the resident microbe and promiscuity of the host. Present study describes the potential of two Serratia spp. strains for promotion of plant growth in homologous as well as non-homologous hosts. The strains KPS-10 and KPS-14; native to potato rhizosphere belong to genus Serratia based on 16S rRNA gene sequences (accession no. LN831934 and LN831937 respectively) and contain multiple plant growth promoting properties along-with the production of quorum sensing acyl homoserine lactone (AHL) molecules. Both Serratia spp. strains showed solubilization of inorganic tri-calcium phosphate while KPS-14 also exhibited phytase activity (1.98 10-10 kcat). KPS-10 showed higher P-solubilization activity (128.5 µg/mL), IAA production (8.84 µg/mL), antifungal activity and also showed the production of two organic acids i.e., gluconic acid and lactic acid. Both strains produced three common AHLs: C6-HSL, 3oxo-C10-HSL, 3oxo-C12-HSL while some strain-specific AHLs (3OH-C5-HSL, 3OH-C6-HSL, C10-HSL specific to KPS-10 and 3OH-C6-HSL, C8-HSL, 3oxo-C9-HSL, 3OH-C9-HSL specific to KPS-14). Strains showed roots and rhizosphere colonization of potato and other non-homologous hosts up to one month. In planta AHLs-detection confirmed a likely role of AHLs during seedling growth and development where both extracted AHLs or bacteria inoculated roots showed extensive root hair. A significant increase in root/shoot lengths, root/ shoot fresh weights, root/shoot dry weights was observed by inoculation in different hosts. PGP-characteristics along with the AHLs-production signify the potential of both strains as candidate for the development of bio-inoculum for potato crop in specific and other crops in general. This inoculum will not only reduce the input of chemical fertilizer to the environment but also improve soil quality and plant growth.


Assuntos
Acil-Butirolactonas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Serratia/fisiologia , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/microbiologia , DNA Bacteriano , Ácidos Indolacéticos/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Desenvolvimento Vegetal , Percepção de Quorum/genética , RNA Ribossômico 16S , Rizosfera , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Serratia/genética , Microbiologia do Solo , Triticum/crescimento & desenvolvimento , Triticum/microbiologia , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia
15.
Microorganisms ; 8(3)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32245141

RESUMO

In the midst of the major soil degradation and erosion faced by tropical ecosystems, rehabilitated forests are being established to avoid the further deterioration of forest lands. In this context, cellulolytic, nitrogen-fixing (N-fixing), phosphate-solubilizing bacteria are very important functional groups in regulating the elemental cycle and plant nutrition, hence replenishing the nutrient content in forest soils. As is the case for other potential plant growth-promoting (PGP) rhizobacteria, these functional bacteria could have cross-functional abilities or beneficial traits that are essential for plants and can improve their growth. This study was conducted to isolate, identify, and characterize selected PGP properties of these three functional groups of bacteria from tropical rehabilitated forest soils at Universiti Putra Malaysia Bintulu Sarawak Campus, Malaysia. The bacteria were isolated based on their colonial growth on respective functional media, identified using both molecular and selected biochemical properties, and were assessed for their functional quantitative activities as well as PGP properties based on seed germination tests and indole-3-acetic acid (IAA) production. Out of the 15 identified bacterial isolates that exhibited beneficial phenotypic traits, a third belong to the genus Burkholderia and a fifth to Stenotrophomonas sp., with both genera consisting of members from two different functional groups. The results of the experiments confirm the multiple PGP traits of some selected bacterial isolates based on their respective high functional activities, root and shoot lengths, and seedling vigor improvements when bacterized on mung bean seeds, as well as significant IAA production. The results of this study suggest that these functional bacterial strains could potentially be included in bio-fertilizer formulations for crop growth on acid soils.

16.
Plants (Basel) ; 9(5)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466288

RESUMO

Plant growth promoting rhizobacteria provide an innovative solution to address challenges in sustainable agro-ecosystems, improving plant growth as well as acting as agents of biocontrol. In this study autochthonous bacteria were isolated from the rhizosphere of processing tomato plants (Solanum lycopersicum L.) cultivated with conservation agriculture practices (i.e., reduced tillage and cover crops), and evaluated for both growth-promoting activities (PGPAs), and antagonistic potential against the phytopathogenic pest Sclerotinia sclerotiorum. Considering the several activities of PGPR, we decided to structure the screening with a hierarchic approach, starting from testing the capability of fixing nitrogen. The obtained bacteria were processed through the molecular typing technique rep-PCR (Repetitive Extragenic Palindromic) in order to discriminate microbial strains with the same profiles, and identified via 16S rDNA sequencing. Thirty-eight selected isolates were screened in vitro for different activities related to plant nutrition and plant growth regulation as well as for antifungal traits. Isolated bacteria were found to exhibit different efficiencies in indoleacetic acid production and siderophore production, phosphate solubilization and biocontrol activity against the widespread soil-borne plant pathogen S. sclerotiorum. All the 38 bacterial isolates showed at least one property tested. With a view to detect the suitable candidates to be developed as biofertilizers, the selected isolates were ranked by their potential ability to function as PGPR. Thus, consortium of native PGPR bacteria inoculants may represent a suitable solution to address the challenges in sustainable agriculture, to ensure crop yield and quality, lowering the application of chemicals input.

17.
Environ Sci Pollut Res Int ; 26(19): 19804-19813, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31090003

RESUMO

The present study focused on the characterization of plant growth promoting rhizospheric (R) and endophytic (E) bacteria and their impact on wheat cultivars growth. In this study, 400 strains were isolated from the rhizosphere soil (250 isolates) and surface-sterilized roots (150 isolates) of wheat and screened for their ability to plant growth promotion (PGP) traits. Four R isolates and four E isolates with different ability were selected to investigate the interaction between R and B bacteria associated with wheat cultivars under in vitro and greenhouse conditions. Plant growth parameters were found to be enhanced by the combined inoculation of two groups of R and E bacteria compared to individual inoculations (respectively 33.7 and 37.8% increase in root and shoot dry weight), suggesting that PGP rhizobacteria acted synergistically with PGP endophytes in phosphate solubilization. Compared to inoculation with phosphate-solubilizing bacteria (PSB) or indole-3-acetic acid producer bacteria (IAA-PB), inoculation by bacteria with multiple PGP properties (PSB and IAA-PS) showed higher promotion capacity. Also, in greenhouse assay, bacterial inoculation had a positive effect on the soil dehydrogenase (70.2%) and phosphatase (52.2%) activity. It seems PGP traits do not work independently of each other but additively as it was suggested in the "synergistic hypothesis" that multiple mechanisms are responsible for the plant growth promotion and increased yield. Findings of this study could improve the current bio-fertilizer production procedure in research and related industries.


Assuntos
Fenômenos Fisiológicos Bacterianos , Endófitos/fisiologia , Rizosfera , Microbiologia do Solo , Triticum/crescimento & desenvolvimento , Triticum/microbiologia
18.
Chemosphere ; 232: 439-452, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31158639

RESUMO

This study investigated the role of an allochthonous Gram-positive wastewater bacterium (Bacillus sp. KUJM2) selected through rigorous screening, for the removal of potentially toxic elements (PTEs; As, Cd, Cu, Ni) and promotion of plant growth under PTE-stress conditions. The dried biomass of the bacterial strain removed PTEs (5 mg L-1) from water by 90.17-94.75 and 60.4-81.41%, whereas live cells removed 87.15-91.69 and 57.5-78.8%, respectively, under single-PTE and co-contaminated conditions. When subjected to a single PTE, the bacterial production of indole-3-acetic acid (IAA) reached the maxima with Cu (67.66%) and Ni (64.33%), but Cd showed an inhibitory effect beyond 5 mg L-1 level. The multiple-PTE treatment induced IAA production only up to 5 mg L-1 beyond which inhibition ensued. Enhanced germination rate, germination index and seed production of lentil plant (Lens culinaris) under the bacterial inoculation indicated the plant growth promotion potential of the microbial strain. Lentil plants, as a result of bacterial inoculation, responded with higher shoot length (7.1-27.61%), shoot dry weight (18.22-36.3%) and seed production (19.23-29.17%) under PTE-stress conditions. The PTE uptake in lentil shoots decreased by 67.02-79.85% and 65.94-78.08%, respectively, under single- and multiple-PTE contaminated conditions. Similarly, PTE uptake was reduced in seeds up to 72.82-86.62% and 68.68-85.94%, respectively. The bacteria-mediated inhibition of PTE translocation in lentil plant was confirmed from the translocation factor of the respective PTEs. Thus, the selected bacterium (Bacillus sp. KUJM2) offered considerable potential as a PTE remediating agent, plant growth promoter and regulator of PTE translocation curtailing environmental and human health risks.


Assuntos
Bacillus/crescimento & desenvolvimento , Lens (Planta)/crescimento & desenvolvimento , Poluentes do Solo/análise , Águas Residuárias/microbiologia , Bacillus/metabolismo , Biodegradação Ambiental , Germinação/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Lens (Planta)/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Poluentes do Solo/toxicidade
19.
Front Microbiol ; 9: 1907, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30186252

RESUMO

In recent years, Chilean kiwifruit production has been affected by the phytopathogen Pseudomonas syringae pv. actinidiae (Psa), which has caused losses to the industry. In this study, we report the genotypic and phenotypic characterization of 18 Psa isolates obtained from Chilean kiwifruits orchards between 2012 and 2016 from different geographic origins. Genetic analysis by multilocus sequence analysis (MLSA) using four housekeeping genes (gyrB, rpoD, gltA, and gapA) and the identification of type III effector genes suggest that the Chilean Psa isolates belong to the Psa Biovar 3 cluster. All of the isolates were highly homogenous in regard to their phenotypic characteristics. None of the isolates were able to form biofilms over solid plastic surfaces. However, all of the isolates formed cellular aggregates in the air-liquid interface. All of the isolates, except for Psa 889, demonstrated swimming motility, while only isolate Psa 510 demonstrated swarming motility. The biochemical profiles of the isolates revealed differences in 22% of the tests in at least one Psa isolate when analyzed with the BIOLOG system. Interestingly, all of the isolates were able to produce indole using a tryptophan-dependent pathway. PCR analysis revealed the presence of the genes aldA/aldB and iaaL/matE, which are associated with the production of indole-3-acetic acid (IAA) and indole-3-acetyl-3-L-lysine (IAA-Lys), respectively, in P. syringae. In addition, IAA was detected in the cell free supernatant of a representative Chilean Psa strain. This work represents the most extensive analysis in terms of the time and geographic origin of Chilean Psa isolates. To our knowledge, this is the first report of Psa being able to produce IAA. Further studies are needed to determine the potential role of IAA in the virulence of Psa during kiwifruit infections and whether this feature is observed in other Psa biovars.

20.
Braz J Microbiol ; 47(3): 542-50, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27133558

RESUMO

The main objective of the present study was to isolate phytohormone-producing, phosphate-solubilizing strains of Azospirillum from wheat to be used as inoculants for plant growth promotion. Five Azospirillum strains were isolated from the rhizosphere of field-grown wheat (Triticum aestivum L.), and it was confirmed by BOX-polymerase chain reaction (PCR) that the isolates were different and not re-isolates of the same strain. Sequence analysis of the PCR-amplified 16S rRNA gene indicated that four isolates showed maximum similarity to Azospirillum brasilense and one isolate showed maximum similarity to Azospirillum zeae. This is the first report indicating the presence of an A. zeae like isolate in the wheat rhizosphere in Pakistan. The bacterial isolates were characterized for their plant growth-promoting traits, phosphate solubilization, and indole-3-acetic acid (IAA) production. None of the isolates showed phosphate solubilization activity in the commonly used Pikovskaya medium. However, all strains (except AzoK4) exhibited ability to solubilize tricalcium phosphate (TCP) in modified Pikovskaya medium in which sucrose was replaced by Na-malate, as well as in TCP-supplemented Luria-Bertani (LB) medium. Organic acids, such as acetic, citric, lactic, malic, and succinic acids, were detected in culture supernatants of the tested Azospirillum strains. All strains exhibited ability to produce IAA in the growth medium, except Azospirillum sp. AzoK1. Among the strains tested, the maximum IAA production (30.49±1.04mgL(-1)) and phosphate solubilization (105.50±4.93mgL(-1)) were shown by a pure culture of Azospirillum sp. AzoK2. In pot experiments, single-strain inocula of Azospirillum sp. AzoK1 and AzoK2 improved wheat plant growth.


Assuntos
Azospirillum/classificação , Azospirillum/fisiologia , Reguladores de Crescimento de Plantas/biossíntese , Rizosfera , Triticum/microbiologia , Genes Bacterianos , Nitrogênio/metabolismo , Paquistão , Ácidos de Fósforo/metabolismo , Filogenia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa