Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell Mol Life Sci ; 81(1): 18, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38195959

RESUMO

Prolonged stimulation of ß-adrenergic receptor (ß-AR) can lead to sympathetic overactivity that causes pathologic cardiac hypertrophy and fibrosis, ultimately resulting in heart failure. Recent studies suggest that abnormal protein ubiquitylation may contribute to the pathogenesis of cardiac hypertrophy and remodeling. In this study, we demonstrated that deficiency of a deubiquitinase, Josephin domain-containing protein 2 (JOSD2), ameliorated isoprenaline (ISO)- and myocardial infarction (MI)-induced cardiac hypertrophy, fibrosis, and dysfunction both in vitro and in vivo. Conversely, JOSD2 overexpression aggravated ISO-induced cardiac pathology. Through comprehensive mass spectrometry analysis, we identified that JOSD2 interacts with Calcium-calmodulin-dependent protein kinase II (CaMKIIδ). JOSD2 directly hydrolyzes the K63-linked polyubiquitin chains on CaMKIIδ, thereby increasing the phosphorylation of CaMKIIδ and resulting in calcium mishandling, hypertrophy, and fibrosis in cardiomyocytes. In vivo experiments showed that the cardiac remodeling induced by JOSD2 overexpression could be reversed by the CaMKIIδ inhibitor KN-93. In conclusion, our study highlights the role of JOSD2 in mediating ISO-induced cardiac remodeling through the regulation of CaMKIIδ ubiquitination, and suggests its potential as a therapeutic target for combating the disease. Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary. All have been checked.


Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Cardiomegalia/induzido quimicamente , Fibrose , Insuficiência Cardíaca/induzido quimicamente , Isoproterenol/farmacologia , Remodelação Ventricular
2.
Cell Biol Int ; 46(7): 1089-1097, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35568970

RESUMO

Although a variety of molecular targets have been identified, hepatocellular carcinoma (HCC) remains among the leading causes of death. As functions of they deubiquitinating enzyme Josephin domain containing 2 (JOSD2) in cancers are still poorly understood, we investigated its function and molecular mechanism in the regulation of HCC progression. Here, we indicated that JOSD2 expression is elevated in patient samples with HCC and positively associated with poor prognosis. Moreover, the promoting roles of JOSD2 in HCC cell survival, migration, and invasion were determined using in vitro models. Importantly, a mechanistic study revealed that JOSD2 binds to and decreases the ubiquitination level of catenin beta 1 (CTNNB1), a key component of Wnt signaling, thereby augmenting Wnt pathway transduction. Furthermore, a series of rescue experiments confirmed the significance of CTNNB1 in the modulation of HCC progression by JOSD2. Our study uncovered JOSD2 as a novel prognostic marker for patients with HCC and identified CTNNB1 as a pivotal partner and downstream target protein of JOSD2, which may aid in the development of JOSD2 as a promising molecular target for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Enzimas Desubiquitinantes , Neoplasias Hepáticas , beta Catenina , Humanos , beta Catenina/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Enzimas Desubiquitinantes/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Via de Sinalização Wnt
3.
J Allergy Clin Immunol ; 147(1): 267-279, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32941940

RESUMO

BACKGROUND: Very-early-onset inflammatory bowel disease (VEOIBD) is a chronic inflammatory disease of the gastrointestinal tract occurring during infancy or early childhood. NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome has emerged as a crucial regulator of intestinal homeostasis; however, whether NLRP3 variants may modify VEOIBD risk is unknown. OBJECTIVE: We sought to investigate whether and how a rare NLRP3 variant, found in 3 patients with gastrointestinal symptoms, contributes to VEOIBD development. METHODS: Whole-exome sequencing and bioinformatic analysis were performed to screen disease-associated NLRP3 variants from a cohort of children with VEOIBD. Inflammasome activation was determined in reconstituted HEK293T human embryonic kidney cells with NLRP3 inflammasome components, doxycycline-inducible NLRP3 macrophages, as well as PBMCs and biopsies from patients with NLRP3 variants. Pathogenesis of the variants was determined using a dextran sulfate sodium-induced acute colitis model. RESULTS: We identified a dominant gain-of-function missense variant of NLRP3, encoded by rs772009059 (R779C), in 3 patients with gastrointestinal symptoms. Functional analysis revealed that R779C increased NLRP3 inflammasome activation and pyroptosis in macrophages. This was mediated by enhanced deubiquitination of NLRP3 via binding with deubiquitinases BRCC3 and JOSD2, which are highly expressed in myeloid cells. In a dextran sulfate sodium-induced acute colitis model, NLRP3-R779C in hematopoietic cells resulted in more severe colitis, which can be ameliorated via knockdown of BRCC3 or JOSD2. CONCLUSIONS: BRCC3 and JOSD2 mediate NLRP3-R779C deubiquitination, which promotes NLRP3 inflammasome activation and the risk of developing VEOIBD.


Assuntos
Doenças Inflamatórias Intestinais , Mutação de Sentido Incorreto , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ubiquitinação , Idade de Início , Substituição de Aminoácidos , Animais , Biópsia , Enzimas Desubiquitinantes/imunologia , Feminino , Células HEK293 , Humanos , Lactente , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Masculino , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Fatores de Risco , Células THP-1 , Sequenciamento do Exoma
4.
World J Gastroenterol ; 30(6): 565-578, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38463028

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a deadly malignancy with limited treatment options. Deubiquitinases (DUBs) have been confirmed to play a crucial role in the development of malignant tumors. JOSD2 is a DUB involved in controlling protein deubiquitination and influencing critical cellular processes in cancer. AIM: To investigate the impact of JOSD2 on the progression of ESCC. METHODS: Bioinformatic analyses were employed to explore the expression, prognosis, and enriched pathways associated with JOSD2 in ESCC. Lentiviral transduction was utilized to manipulate JOSD2 expression in ESCC cell lines (KYSE30 and KYSE150). Functional assays, including cell proliferation, colony formation, drug sensitivity, migration, and invasion, were performed, revealing the impact of JOSD2 on ESCC cell lines. JOSD2's role in xenograft tumor growth and drug sensitivity in vivo was also assessed. The proteins that interacted with JOSD2 were identified using mass spectrometry. RESULTS: Preliminary research indicated that JOSD2 was highly expressed in ESCC tissues, which was associated with poor prognosis. Further analysis demonstrated that JOSD2 was upregulated in ESCC cell lines compared to normal esophageal cells. JOSD2 knockdown inhibited ESCC cell activity, including proliferation and colony-forming ability. Moreover, JOSD2 knockdown decreased the drug resistance and migration of ESCC cells, while JOSD2 overexpression enhanced these phenotypes. In vivo xenograft assays further confirmed that JOSD2 promoted tumor proliferation and drug resistance in ESCC. Mechanistically, JOSD2 appears to activate the MAPK/ERK and PI3K/AKT signaling pathways. Mass spectrometry was used to identify crucial substrate proteins that interact with JOSD2, which identified the four primary proteins that bind to JOSD2, namely USP47, IGKV2D-29, HSP90AB1, and PRMT5. CONCLUSION: JOSD2 plays a crucial role in enhancing the proliferation, migration, and drug resistance of ESCC, suggesting that JOSD2 is a potential therapeutic target in ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/patologia , Neoplasias Esofágicas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Enzimas Desubiquitinantes/genética , Regulação Neoplásica da Expressão Gênica , Proteína-Arginina N-Metiltransferases
5.
Exp Hematol Oncol ; 11(1): 42, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35836282

RESUMO

Pyruvate kinase M2 (PKM2) plays an important role in the metabolism and proliferation of leukemia cells. Here, we show that deubiquitinase JOSD2, a novel tumor suppressor, blocks PKM2 nuclear localization by reducing its K433 acetylation in acute myeloid leukemia (AML). Firstly, we show that JOSD2 is significantly down-regulated in primary AML cells. Reconstitute of JOSD2 in AML cells significantly inhibit cell viability and induce cell apoptosis. Next, PKM2 is identified as a novel interaction protein of JOSD2 by mass spectrometry, co- immunoprecipitation and co-immunofluorescence in HL60 cells. However, JOSD2 does not affect PKM2 protein stability. We then found out that JOSD2 inhibits nuclear localization of PKM2 by reducing its K433 acetylation modification, accompanied by decreased downstream gene expression through non-glycolytic functions. Finally, JOSD2 decreases AML progression in vivo. Taken together, we propose that JOSD2 blocks PKM2 nuclear localization and reduces AML progression.

6.
Acta Pharm Sin B ; 11(12): 4008-4019, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35024322

RESUMO

Cholangiocarcinoma (CCA) has emerged as an intractable cancer with scanty therapeutic regimens. The aberrant activation of Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) are reported to be common in CCA patients. However, the underpinning mechanism remains poorly understood. Deubiquitinase (DUB) is regarded as a main orchestrator in maintaining protein homeostasis. Here, we identified Josephin domain-containing protein 2 (JOSD2) as an essential DUB of YAP/TAZ that sustained the protein level through cleavage of polyubiquitin chains in a deubiquitinase activity-dependent manner. The depletion of JOSD2 promoted YAP/TAZ proteasomal degradation and significantly impeded CCA proliferation in vitro and in vivo. Further analysis has highlighted the positive correlation between JOSD2 and YAP abundance in CCA patient samples. Collectively, this study uncovers the regulatory effects of JOSD2 on YAP/TAZ protein stabilities and profiles its contribution in CCA malignant progression, which may provide a potential intervention target for YAP/TAZ-related CCA patients.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa