Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Chemistry ; : e202401733, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934891

RESUMO

In several biological processes, H2S is known to function as an endogenous gaseous agent. It is very necessary to monitor H2S and relevant physiological processes in vivo. Herein, a new type of fluorophore with a reliable leaving group allows for excited-state intramolecular transfer characteristics (ESIPT), inspired by mycophenolic acid. A morpholine ring was connected at the maleimide position to target the lysosome. Subsequently, the dinitrophenyl group known for a photoinduced electron transfer (PET) effect, was connected to allow for an effective "turn-on" probe Lyso-H2S. Lyso-H2S demonstrated strong selectivity towards H2S, large Stokes shift (111 nm), and an incredibly low detection limit (41.8 nM). The imaging of endogenous and exogenous H2S in living cells (A549 cell line) was successfully achieved because of the specificity and ultra-low toxicity (100 % cell viability at 50 µM concentration of Lyso-H2S.) Additionally, Lyso-H2S was also employed to visualize the activity of H2S in the gallbladder and intestine in a living zebrafish model. This is the first report of a fluorescent probe to track H2S sensing in specific organ systems to our knowledge.

2.
Cell Biol Toxicol ; 39(1): 183-199, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34523043

RESUMO

The autophagy-mediated lysosomal pathway plays an important role in conferring stress tolerance to tumor cells during cellular stress such as increased metabolic demands. Thus, targeted disruption of this function and inducing lysosomal cell death have been proved to be a useful cancer therapeutic approach. In this study, we reported that octyl syringate (OS), a novel phenolic derivate, was preferentially cytotoxic to various cancer cells but was significantly less cytotoxic to non-transformed cells. Treatment with OS resulted in non-apoptotic cell death in a caspase-independent manner. Notably, OS not only enhanced accumulation of autophagic substrates, including lapidated LC3 and sequestosome-1, but also inhibited their degradation via an autophagic flux. In addition, OS destabilized the lysosomal function, followed by the intracellular accumulation of the non-digestive autophagic substrates such as bovine serum albumin and stress granules. Furthermore, OS triggered the release of lysosomal enzymes into the cytoplasm that contributed to OS-induced non-apoptotic cell death. Finally, we demonstrated that OS was well tolerated and reduced tumor growth in mouse xenograft models. Taken together, our study identifies OS as a novel anticancer agent that induces lysosomal destabilization and subsequently inhibits autophagic flux and further supports development of OS as a lysosome-targeting compound in cancer therapy. • Octyl syringate, a phenolic derivate, is preferentially cytotoxic to various cancer cells. • Octyl syringate destabilizes the lysosomal function. • Octyl syringate blocks the autophagic flux. • Octyl syringate is a potential candidate compound for cancer therapy.


Assuntos
Antineoplásicos , Neoplasias , Camundongos , Animais , Humanos , Apoptose , Antineoplásicos/farmacologia , Morte Celular , Autofagia , Lisossomos/metabolismo , Neoplasias/metabolismo
3.
Int J Mol Sci ; 23(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35682934

RESUMO

A new chemosensor, namely N-(2-morpholinoethyl)acetamide-4-morpholine-1,8-naphthimide (MMN), was designed and synthesized through an amidation reaction. MMN was fabricated as a multifunctional fluorescent probe for monitoring pH and isoxaflutole. MMN exhibited excellent stability in MeCN/H2O (v/v, 9/1), with an obvious "off-on" fluorescence response toward pH changes due to intramolecular charge transfer (ICT), where the linear response ranges of MMN in the weakly acidic system were from 4.2 to 5.0 and from 5.0 to 6.0 with apparent pKa = 4.62 ± 0.02 and 5.43 ± 0.02. Based on morpholine as the lysosome targetable unit, MMN could selectively locate lysosomes in live cells. MMN also successfully detected the presence of H+ in test papers. Finally, MMN could specifically recognize isoxaflutole at a detection limit of 0.88 µM. A possible sensing mechanism was identified based on density function theory calculations. These results indicate that MMN could be a superior potential chemosensor for detecting pH and isoxaflutole selectively and sensitively and could be used in real sample detection.


Assuntos
Corantes Fluorescentes , Lisossomos , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Isoxazóis , Lisossomos/química , Morfolinas
4.
Chemistry ; 25(55): 12801-12809, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31381210

RESUMO

Photodynamic therapy (PDT) is a promising cancer ablation method, but its efficiency is easily affected by several factors, such as the insufficient delivery of photosensitizers, low oxygen levels as well as long distance between singlet oxygen and intended organelles. A multifunctional nanohybrid, named MGAB, consisting of gelatin-coated manganese dioxide and albumin-coated gold nanoclusters, was designed to overcome these issues by improving chlorin e6 (Ce6) delivery and stimulating oxygen production in lysosomes. MGAB were quickly degraded in a high hydrogen peroxide, high protease activity, and low pH microenvironment, which is closely associated with tumor growth. The Ce6-loaded MGAB were picked up by tumor cells through endocytosis, degraded within the lysosomes, and released oxygen and photosensitizers. Upon near-infrared light irradiation, the close proximity of oxygen with photosensitizer within lysosomes enabled the production of cytotoxic singlet oxygen, resulting in more effective PDT.


Assuntos
Portadores de Fármacos/química , Endocitose/fisiologia , Lisossomos/química , Compostos de Manganês/química , Óxidos/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/química , Oxigênio Singlete/metabolismo , Clorofilídeos , Humanos , Raios Infravermelhos , Oxigênio , Fármacos Fotossensibilizantes/farmacocinética , Porfirinas/metabolismo , Oxigênio Singlete/química
5.
Front Bioeng Biotechnol ; 11: 1181448, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214289

RESUMO

The lysosome is an important target for realizing antitumor therapy. Lysosomal cell death exerts significant therapeutic effects on apoptosis and drug-resistance. The development of lysosome-targeting nanoparticles to obtain efficient cancer treatment is challenging. In this article, nanoparticles composed of DSPE@M-SiPc and possessing bright two-photon fluorescence, lysosome targeting ability, and photodynamic therapy multifunctionalities are prepared by encapsulating morpholinyl-substituted silicon phthalocyanine (M-SiPc) with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(poly(ethylene glycol))-2000] (DSPE). Two photon fluorescence bioimaging showed that M-SiPc and DSPE@M-SiPc mainly locate in lysosomes after cellular internalization. Upon irradiation, DSPE@M-SiPc effectively generates reactive oxygen species and damages the function of lysosome, subsequently leading to lysosomal cell death. DSPE@M-SiPc is a promising photosensitizer for cancer treatment.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 270: 120835, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35032762

RESUMO

Hydrogen sulfide (H2S) has been recently regarded as one of the most important gasotransmitters in the metabolic system, while abnormal H2S concentration is associated with various diseases. Although numerous fluorescent probes have been developed for the detection of cellular H2S, only a few of them can monitor lysosomal H2S with ratiometric fluorescent output. Here, we developed a water-soluble probe 1 toward H2S by introducing 2,4-dinitrophenyl ether into a novel merocyanine-based dye. As expected, H2S induced an obvious red-shift of the probe from 520 nm to 580 nm in neat aqueous solution, and this fluorescent ratiometric response is highly selective and sensitive (with the detection limit of 0.81 nM), rapid (within 10 s), and effective in a wide pH range (2.0-10.0). In particular, the probe was successfully applied for tracing H2S in the lysosomes of living cells and in zebrafish.


Assuntos
Corantes Fluorescentes , Sulfeto de Hidrogênio , Animais , Células HeLa , Humanos , Lisossomos , Água , Peixe-Zebra
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 231: 118110, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32007906

RESUMO

A morpholine-functionalized pyrrole-cyanine probe was synthesized via a simple condensation reaction in high yield. This probe exhibits high selectivity toward ClO- on fluorescence and UV-vis spectra in neat aqueous solution. The strong green emission of the probe solution was quenched and the yellow color faded immediately upon the addition of ClO-. The detection limit of the probe for ClO- was 0.165 µM. The mechanism of hypochlorite-induced CC breakage was supposed on the basis of EIS-MS, NMR, and density functional theory (DFT) calculation. Finally, the probe was utilized to image ClO- in lysosomes of living cells.


Assuntos
Corantes Fluorescentes/química , Ácido Hipocloroso/análise , Lisossomos/química , Células HeLa , Humanos , Lisossomos/ultraestrutura , Microscopia Confocal , Modelos Moleculares , Imagem Óptica , Solubilidade , Espectrometria de Fluorescência , Água/química
8.
ACS Appl Mater Interfaces ; 9(34): 28222-28232, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28787116

RESUMO

The development of a suitable fluorescent probe for the specific labeling and imaging of lysosomes through the direct visual fluorescent signal is extremely important for understanding the dysfunction of lysosomes, which might induce various pathologies, including neurodegenerative diseases, cancer, and Alzheimer's disease. Herein, a new carbon dot-based fluorescent probe (CDs-PEI-ML) was designed and synthesized for highly selective imaging of lysosomes in live cells. In this probe, PEI (polyethylenimine) is introduced to improve water solubility and provide abundant amine groups for the as-prepared CDs-PEI, and the morpholine group (ML) serves as a targeting unit for lysosomes. More importantly, passivation with PEI could dramatically increase the fluorescence quantum yield of CDs-PEI-ML as well as their stability in fluorescence emission under different excitation wavelength. Consequently, experimental data demonstrated that the target probe CDs-PEI-ML has low cytotoxicity and excellent photostability. Additionally, further live cell imaging experiment indicated that CDs-PEI-ML is a highly selective fluorescent probe for lysosomes. We speculate the mechanism for selective staining of lysosomes that CDs-PEI-ML was initially taken up by lysosomes through the endocytic pathway and then accumulated in acidic lysosomes. It is notable that there was less diffusion of CDs-PEI-ML into cytoplasm, which could be ascribed to the presence of lysosome target group morpholine on surface of CDs-PEI-ML. The blue emission wavelength combined with the high photo stability and ability of long-lasting cell imaging makes CDs-PEI-ML become an alternative fluorescent probe for multicolor labeling and long-term tracking of lysosomes in live cells and the potential application in super-resolution imaging. To best of our knowledge, there are still limited carbon dots-based fluorescent probes that have been studied for specific lysosomal imaging in live cells. The concept of surface functionality of carbon dots will also pave a new avenue for developing carbon dots-based fluorescent probes for subcellular labeling.


Assuntos
Pontos Quânticos , Carbono , Sobrevivência Celular , Corantes Fluorescentes , Morfolinas , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa