RESUMO
Softening in fruit adversely impacts their edible quality and commercial value, leading to substantial economic losses during fruit ripening, long-term storage, long-distance transportation, and marketing. As the apple fruit demonstrates climacteric respiration, its firmness decreases with increasing ethylene release rate during fruit ripening and postharvest storage. However, the molecular mechanisms underlying ethylene-mediated regulation of fruit softening in apple remain poorly understood. In this study, we identified a WRKY transcription factor (TF) MdWRKY31, which is repressed by ethylene treatment. Using transgenic approaches, we found that overexpression of MdWRKY31 delays softening by negatively regulating xyloglucan endotransglucosylase/hydrolases 2 (MdXTH2) expression. Yeast one-hybrid (Y1H), electrophoretic mobility shift (EMSA), and dual-luciferase assays further suggested that MdWRKY31 directly binds to the MdXTH2 promoter via a W-box element and represses its transcription. Transient overexpression of ethylene-induced MdNAC7, a NAC TF, in apple fruit promoted softening by decreasing cellulose content and increasing water-soluble pectin content in fruit. MdNAC7 interacted with MdWRKY31 to form a protein complex, and their interaction decreased the transcriptional repression of MdWRKY31 on MdXTH2. Furthermore, MdNAC7 does not directly regulate MdXTH2 expression, but the protein complex formed with MdWRKY31 hinders MdWRKY31 from binding to the promoter of MdXTH2. Our findings underscore the significance of the regulatory complex NAC7-WRKY31 in ethylene-responsive signalling, connecting the ethylene signal to XTH2 expression to promote fruit softening. This sheds light on the intricate mechanisms governing apple fruit firmness and opens avenues for enhancing fruit quality and reducing economic losses associated with softening.
RESUMO
Malic acid accumulation in the vacuole largely determines acidity and perception of sweetness of apple. It has long been observed that reduction in malate level is associated with increase in ethylene production during the ripening process of climacteric fruits, but the molecular mechanism linking ethylene to malate reduction is unclear. Here, we show that ethylene-modulated WRKY transcription factor 31 (WRKY31)-Ethylene Response Factor 72 (ERF72)-ALUMINUM ACTIVATED MALATE TRANSPORTER 9 (Ma1) network regulates malate accumulation in apple fruit. ERF72 binds to the promoter of ALMT9, a key tonoplast transporter for malate accumulation of apple, transcriptionally repressing ALMT9 expression in response to ethylene. WRKY31 interacts with ERF72, suppressing its transcriptional inhibition activity on ALMT9. In addition, WRKY31 directly binds to the promoters of ERF72 and ALMT9, transcriptionally repressing and activating ERF72 and ALMT9, respectively. The expression of WRKY31 decreases in response to ethylene, lowering the transcription of ALMT9 directly and via its interactions with ERF72. These findings reveal that the regulatory complex WRKY31 forms with ERF72 responds to ethylene, linking the ethylene signal to ALMT9 expression in reducing malate transport into the vacuole during fruit ripening.
Assuntos
Malus , Malus/genética , Malus/metabolismo , Malatos/metabolismo , Alumínio/metabolismo , Frutas/genética , Frutas/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
KEY MESSAGE: Here we describe that the regulation of MdWRKY31 on MdHIR4 in transcription and translation levels associated with disease in apple. The phytohormone salicylic acid (SA) is a main factor in apple (Malus domestica) production due to its function in disease resistance. WRKY transcription factors play a vital role in response to stress. An RNA-seq analysis was conducted with 'Royal Gala' seedlings treated with SA to identify the WRKY regulatory mechanism of disease resistance in apple. The analysis indicated that MdWRKY31 was induced. A quantitative real-time polymerase chain reaction (qPCR) analysis demonstrated that the expression of MdWRKY31 was induced by SA and flg22. Ectopic expression of MdWRKY31 in Arabidopsis and Nicotiana benthamiana increased the resistance to flg22 and Pseudomonas syringae tomato (Pst DC3000). A yeast two-hybrid screen was conducted to further analyze the function of MdWRKY31. As a result, hypersensitive-induced reaction (HIR) protein MdHIR4 interacted with MdWRKY31. Biomolecular fluorescence complementation, yeast two-hybrid, and pull-down assays demonstrated the interaction. In our previous study, MdHIR4 conferred decreased resistance to Botryosphaeria dothidea (B. dothidea). A viral vector-based transformation assay indicated that MdWRKY31 evaluated the transcription of SA-related genes, including MdPR1, MdPR5, and MdNPR1 in an MdHIR4-dependent way. A GUS analysis demonstrated that the w-box, particularly w-box2, of the MdHIR4 promoter played a major role in the responses to SA and B. dothidea. Electrophoretic mobility shift assays, yeast one-hybrid assay, and chromatin immunoprecipitation-qPCR demonstrated that MdWRKY31 directly bound to the w-box2 motif in the MdHIR4 promoter. GUS staining activity and a protein intensity analysis further showed that MdWRKY31 repressed MdHIR4 expression. Taken together, our findings reveal that MdWRKY31 regulated plant resistance to B. dothidea through the SA signaling pathway by interacting with MdHIR4.
Assuntos
Resistência à Doença , Malus/genética , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Ácido Salicílico/farmacologia , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Ascomicetos/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Frutas/genética , Frutas/imunologia , Frutas/microbiologia , Regulação da Expressão Gênica de Plantas , Genes Reporter , Malus/imunologia , Malus/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Pseudomonas syringae/fisiologia , Plântula/genética , Plântula/imunologia , Plântula/microbiologia , Transdução de Sinais , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/microbiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-HíbridoRESUMO
MYB transcription factors (TFs) participate in many biological processes. However, the molecular mechanisms by which MYB TFs affect plant resistance to apple ring rot remain poorly understood. Here, the R2R3-MYB gene MdMYB73 was cloned from "Royal Gala" apples and functionally characterized as a positive regulator of the defense response to Botryosphaeria dothidea. qRT-PCR and GUS staining demonstrated that MdMYB73 was strongly induced in apple fruits and transgenic calli after inoculation with B. dothidea. MdMYB73 overexpression improved resistance to B. dothidea in apple calli and fruits, while MdMYB73 suppression weakened. Increased resistance to B. dothidea was also observed in MdMYB73-expressing Arabidopsis thaliana. Interestingly, salicylic acid (SA) contents and the expression levels of genes related with SA synthesis and signaling were greater in MdMYB73-overexpressing plant materials compared to wild-type controls after inoculation, suggesting that MdMYB73 might enhance resistance to B. dothidea via the SA pathway. Finally, we discovered that MdMYB73 interacts with MdWRKY31, a positive regulator of B. dothidea. Together, MdWRKY31 and MdMYB73 enhanced B. dothidea resistance in apples. Our results clarify the mechanisms by which MdMYB73 improves resistance to B. dothidea and suggest that resistance may be affected by regulating the SA pathway.