Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Dairy Sci ; 102(12): 11465-11469, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31629517

RESUMO

Flunixin is a nonsteroidal anti-inflammatory drug and the most commonly prescribed analgesic in cattle in the United States. Recently, the US Food and Drug Administration (FDA) approved a transdermal formulation of flunixin for control of pyrexia associated with bovine respiratory disease and the control of pain associated with foot rot. The transdermal formulation is not currently approved for use in lactating dairy cattle in the United States, but extra-label use in dairy cattle is permissible under US regulations. The objectives of this study were to determine the pharmacokinetics in milk of dairy cows treated with transdermal flunixin and determine an appropriate withdrawal time for milk. Ten lactating Holstein cows were enrolled into the study in mid lactation. Following treatment, cows were milked 3 times per day through 144 h. Milk samples were collected for drug analysis using ultra-high-pressure liquid chromatography coupled with a triple quadrupole mass spectrometer. The geometric mean maximum concentration for flunixin in milk was 0.010 µg/mL and was 0.061 µg/mL for the active metabolite, 5-hydroxyflunixin. The geometric mean terminal half-life was 20.71 h for flunixin and 22.62 h for 5-hydroxyflunixin. Calculations to approximate a withdrawal time in milk following transdermal flunixin administration were accomplished using a statistical tolerance limit procedure. This analysis indicated that it would be prudent to observe a withdrawal period of 96 h following the last treatment. This is more than twice as long as the labeled withdrawal period of 36 h following use of the injectable formulation. The withdrawal period suggested by this work should be applied carefully, as this study was not conducted under the full quality control practices required by the US FDA for a full drug approval study. Caution should be taken when applying this withdrawal time to diseased animals, animals that are milked with different milking frequencies, and those in different stages of production as these have all been shown to affect drug depletion from milk.


Assuntos
Anti-Inflamatórios não Esteroides/farmacocinética , Clonixina/análogos & derivados , Leite/metabolismo , Administração Cutânea , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Bovinos , Cromatografia Líquida de Alta Pressão , Clonixina/administração & dosagem , Clonixina/metabolismo , Clonixina/farmacocinética , Feminino , Lactação , Espectrometria de Massas
2.
Front Vet Sci ; 9: 991772, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105005

RESUMO

Florfenicol is a broad-spectrum antibiotic commonly prescribed in an extra-label manner for treating meat and dairy goats. Scientific data in support of a milk withdrawal interval recommendation is limited to plasma pharmacokinetic data and minimal milk residue data that is limited to cattle. Therefore, a rapid residue detection test (RRDT) could be a useful resource to determine if milk samples are free of drug residues and acceptable for sale. This study compared a commercially available RRDT (Charm® FLT strips) to detect florfenicol residues in fresh milk samples from healthy adult dairy breed goats treated with florfenicol (40 mg/kg subcutaneously twice 4 days apart) with quantitative analysis of florfenicol concentrations using ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS). In addition, storage claims for testing bovine milk using the RRDT were assessed using stored goat milk samples. Milk samples were collected every 12 h for a minimum of 26 days. Commercial RRDT strips remained positive in individual goats ranging from 528 to 792 h (22-33 days) after the second dose, whereas, UPLC-MS/MS indicated the last detectable florfenicol concentration in milk samples ranged from 504 to 720 h (21-30 days) after the second dose. Results from stored milk samples from treated goats indicate that samples can be stored for up to 5 days in the refrigerator and 60 days in the freezer after milking prior to being tested with a low risk of false-negative test results due to drug degradation. Elevated somatic cell counts and bacterial colony were noted in some of the milk samples in this study, but further study is required to understand the impact of these quality factors on RRDT results.

3.
Food Chem Toxicol ; 161: 112848, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35143917

RESUMO

Antibiotic excretion into milk depends on several factors such as the compound's physicochemical properties, the animal physiology, and the milk composition. The objective of this study was to develop a physiologically based pharmacokinetic (PBPK) model describing the passage of drugs into the milk of lactating species. The udder is described as a permeability limited compartment, divided into vascular, extracellular water (EW), intracellular water (IW) and milk, which was stored in alveolar and cistern compartments. The pH and ionization in each compartment and the binding to IW components and to milk fat, casein, whey protein, calcium, and magnesium were considered. Bidirectional passive diffusion across the blood-milk barrier was implemented, based on in vitro permeability studies. The model application used to predict the distribution of oxytetracycline in cow and goat milk, after different doses and routes of administration, was successful. By integrating inter-individual variability and uncertainty, the model also allowed a suitable estimation of the withdrawal periods. Further work is in progress to evaluate the predictive ability of the PBPK model for compounds with different physico-chemical properties that are potentially actively transported in order to extrapolate the excretion of xenobiotics in milk of various animal species including humans.


Assuntos
Bovinos/sangue , Cabras/sangue , Lactação , Leite/química , Modelos Biológicos , Oxitetraciclina/farmacocinética , Animais , Antibacterianos , Área Sob a Curva , Feminino , Glândulas Mamárias Animais/fisiologia , Oxitetraciclina/sangue , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa