Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 95(14): e0053121, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33952644

RESUMO

Mouse mammary tumor virus (MMTV) encodes a Rem precursor protein that specifies both regulatory and accessory functions. Rem is cleaved at the endoplasmic reticulum (ER) membrane into a functional N-terminal signal peptide (SP) and the C terminus (Rem-CT). Rem-CT lacks a membrane-spanning domain and a known ER retention signal, and yet it was not detectably secreted into cell supernatants. Inhibition of intracellular trafficking by the drug brefeldin A (BFA), which interferes with the ER-to-Golgi secretory pathway, resulted in dramatically reduced intracellular Rem-CT levels that were not rescued by proteasomal or lysosomal inhibitors. A Rem mutant lacking glycosylation was cleaved into SP and Rem-CT but was insensitive to BFA, suggesting that unglycosylated Rem-CT does not reach this BFA-dependent compartment. Treatment with endoglycosidase H indicated that Rem-CT does not traffic through the Golgi apparatus. Analysis of wild-type Rem-CT and its glycosylation mutant by confocal microscopy revealed that both were primarily localized to the ER lumen. A small fraction of wild-type Rem-CT, but not the unglycosylated mutant, was colocalized with Rab5-positive (Rab5+) early endosomes. The expression of a dominant-negative (DN) form of ADP ribosylation factor 1 (Arf1) (containing a mutation of threonine to asparagine at position 31 [T31N]) mimicked the effects of BFA by reducing Rem-CT levels and increased Rem-CT association with early and late endosomes. Inhibition of the AAA ATPase p97/VCP rescued Rem-CT in the presence of BFA or DN Arf1 and prevented localization to Rab5+ endosomes. Thus, Rem-CT uses an unconventional p97-mediated scheme for trafficking to early endosomes. IMPORTANCE Mouse mammary tumor virus is a complex retrovirus that encodes a regulatory/accessory protein, Rem. Rem is a precursor protein that is processed at the endoplasmic reticulum (ER) membrane by signal peptidase. The N-terminal SP uses the p97/VCP ATPase to elude ER-associated degradation to traffic to the nucleus and serve a human immunodeficiency virus Rev-like function. In contrast, the function of the C-terminal glycosylated cleavage product (Rem-CT) is unknown. Since localization is critical for protein function, we used mutants, inhibitors, and confocal microscopy to localize Rem-CT. Surprisingly, Rem-CT, which lacks a transmembrane domain or an ER retention signal, was detected primarily within the ER and required glycosylation and the p97 ATPase for early endosome trafficking without passage through the Golgi apparatus. Thus, Rem-CT uses a novel intracellular trafficking pathway, potentially impacting host antiviral immunity.


Assuntos
Adenosina Trifosfatases/metabolismo , Retículo Endoplasmático/metabolismo , Vírus do Tumor Mamário do Camundongo/metabolismo , Proteínas Nucleares/metabolismo , Adenosina Trifosfatases/antagonistas & inibidores , Transporte Biológico/efeitos dos fármacos , Brefeldina A/farmacologia , Endossomos/metabolismo , Células HEK293 , Humanos , Microscopia Confocal , Proteínas Nucleares/antagonistas & inibidores , Precursores de Proteínas/metabolismo , Proteínas do Envelope Viral/metabolismo
2.
Intervirology ; 65(4): 188-194, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35640537

RESUMO

INTRODUCTION: Human papillomaviruses (HPVs), Epstein-Barr virus (EBV), and mouse mammary tumor virus-like virus (MMTV-like virus) can be present and contribute to breast cancer development and progression. However, the role of these oncoviruses and their crosstalk in breast cancer is still unclear. METHODS: We explored the co-presence of high-risk HPVs, EBV, and MMTV-like virus in 74 breast cancer samples from Qatar using PCR. RESULTS: We found the presence of HPV and EBV in 65% and 49% of our cancer sample cohorts; 47% of the samples are positive for both oncoviruses. The MMTV-like virus alone was detected in 15% of the samples with no significant association with clinicopathological features. The three oncoviruses were co-present in 14% of the cases; no significant association was noted between the co-presence of these viruses and the clinicopathological features. CONCLUSION: Despite the presence of the oncoviruses, additional studies are necessary to understand their interactions in human breast carcinogenesis.


Assuntos
Alphapapillomavirus , Neoplasias da Mama , Infecções por Vírus Epstein-Barr , Camundongos , Animais , Humanos , Feminino , Herpesvirus Humano 4/genética , Vírus do Tumor Mamário do Camundongo/genética , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/epidemiologia , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/etiologia , Neoplasias da Mama/patologia , Incidência , Catar/epidemiologia , Papillomaviridae/genética
3.
J Biol Chem ; 295(26): 8819-8833, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32385109

RESUMO

Retroviral Gag polyproteins are targeted to the inner leaflet of the plasma membrane through their N-terminal matrix (MA) domain. Because retroviruses of different morphogenetic types assemble their immature particles in distinct regions of the host cell, the mechanism of MA-mediated plasma membrane targeting differs among distinct retroviral morphogenetic types. Here, we focused on possible mechanistic differences of the MA-mediated plasma membrane targeting of the B-type mouse mammary tumor virus (MMTV) and C-type HIV-1, which assemble in the cytoplasm and at the plasma membrane, respectively. Molecular dynamics simulations, together with surface mapping, indicated that, similarly to HIV-1, MMTV uses a myristic switch to anchor the MA to the membrane and electrostatically interacts with phosphatidylinositol 4,5-bisphosphate to stabilize MA orientation. We observed that the affinity of MMTV MA to the membrane is lower than that of HIV-1 MA, possibly related to their different topologies and the number of basic residues in the highly basic MA region. The latter probably reflects the requirement of C-type retroviruses for tighter membrane binding, essential for assembly, unlike for D/B-type retroviruses, which assemble in the cytoplasm. A comparison of the membrane topology of the HIV-1 MA, using the surface-mapping method and molecular dynamics simulations, revealed that the residues at the HIV-1 MA C terminus help stabilize protein-protein interactions within the HIV-1 MA lattice at the plasma membrane. In summary, HIV-1 and MMTV share common features such as membrane binding of the MA via hydrophobic interactions and exhibit several differences, including lower membrane affinity of MMTV MA.


Assuntos
Membrana Celular/metabolismo , Infecções por HIV/metabolismo , HIV-1/fisiologia , Vírus do Tumor Mamário do Camundongo/fisiologia , Infecções por Retroviridae/metabolismo , Infecções Tumorais por Vírus/metabolismo , Animais , Membrana Celular/patologia , Infecções por HIV/patologia , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Modelos Moleculares , Infecções por Retroviridae/patologia , Infecções Tumorais por Vírus/patologia , Montagem de Vírus
4.
Microb Pathog ; 130: 283-294, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30905715

RESUMO

Breast cancer (BC) is a complex and heterogeneous disease whose evolution depends on the tumor-host interaction. This type of cancer occurs when the mammary cells begin to grow wildly and become able to invade nearby tissues and/or promote metastases. Mouse mammary tumor virus (MMTV) is the accepted etiological agent of mammary tumors in mice. The identification of MMTV-like sequences and antigens in human mammary carcinoma has supported the theory that a virus homologous to MMTV (namely, HMTV) may be involved in human BC, but the role of retroviral elements in this disease remains elusive, as results from different research groups were contradictory. In the present review we present works for and against the involvement of HMTV in BC and discuss possible causes of divergences among studies. In the final section we fit current data regarding this issue to stablished causality criteria. We conclude that there is convincing data supporting the association of HMTV with BC, however there is still a need for epidemiological and basic research studies focusing on carcinogenic mechanisms for this virus in humans to fully understand its role in BC. This knowledge may open the way for the development of new preventive and therapeutic approaches in human BC.


Assuntos
Neoplasias da Mama/virologia , Carcinoma/virologia , Vírus do Tumor Mamário do Camundongo/isolamento & purificação , Vírus do Tumor Mamário do Camundongo/patogenicidade , Infecções por Retroviridae/virologia , Animais , Neoplasias da Mama/fisiopatologia , Carcinoma/fisiopatologia , Humanos , Camundongos , Infecções por Retroviridae/complicações
5.
Subcell Biochem ; 88: 211-243, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29900499

RESUMO

Integration of the reverse-transcribed viral cDNA into the host's genome is a critical step in the lifecycle of all retroviruses. Retrovirus integration is carried out by integrase (IN), a virus-encoded enzyme that forms an oligomeric 'intasome' complex with both ends of the linear viral DNA to catalyze their concerted insertions into the backbones of the host's DNA. IN also forms a complex with host proteins, which guides the intasome to the host's chromosome. Recent structural studies have revealed remarkable diversity as well as conserved features among the architectures of the intasome assembly from different genera of retroviruses. This chapter will review how IN oligomerizes to achieve its function, with particular focus on alpharetrovirus including the avian retrovirus Rous sarcoma virus. Another chapter (Craigie) will focus on the structure and function of IN from HIV-1.


Assuntos
DNA Complementar , DNA Viral , Integrases , Vírus do Sarcoma de Rous , Proteínas Virais , Integração Viral/fisiologia , Animais , DNA Complementar/química , DNA Complementar/genética , DNA Complementar/metabolismo , DNA Viral/química , DNA Viral/genética , DNA Viral/metabolismo , Humanos , Integrases/genética , Integrases/metabolismo , Vírus do Sarcoma de Rous/química , Vírus do Sarcoma de Rous/fisiologia , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
6.
Cancer Sci ; 109(6): 1825-1833, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29683229

RESUMO

The initiation of spontaneous breast cancer (SBC) in Tientsin Albino 2 (TA2) mice is related to mouse mammary tumor virus (MMTV) infection, and MMTV amplification is hormonally regulated. To explore the insertion site of MMTVLTR in TA2 mouse genome, reverse PCR and nested PCR were used to amplify the unknown sequence on both sides of the MMTV-LTRSAG gene in SBC and normal breast tissue of TA2 mice. Furthermore, the clinicopathological significance of the insertion site was evaluated in 43 samples of normal breast tissue, 46 samples of breast cystic hyperplasia, 54 samples of ductal carcinoma in situ, 142 samples of primary breast cancer and 47 samples of lymph node metastatic breast cancer by RNA in situ hybridization. We confirmed that the insertion site of the MMTV-LTRSAG gene was located between Igκv2-112 and Igκv14-111 in chromosome 6 of TA2 mouse. IGκC was localized in the stromal cells of TA2 mouse with SBC and in human breast cancer tissues. Tumor cells were negative for IGκC in RNA in situ hybridization. The positive staining index of IGκC in stromal cells was the highest in lymph node metastatic breast cancer, followed by primary breast cancer, ductal carcinoma in situ, and breast cystic hyperplasia. Furthermore, the positive staining index of IGκC was related to the expression of ER, PR, HER2 and Ki-67. Our findings showed that stromal IGκC expression was associated with the initiation of SBC in TA2 mice. IGκC may be a high-risk factor for the initiation and progression of human breast cancer.


Assuntos
Neoplasias da Mama/genética , Carcinoma Intraductal não Infiltrante/genética , Cadeias kappa de Imunoglobulina/genética , Neoplasias Mamárias Animais/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Sítios de Ligação/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Intraductal não Infiltrante/metabolismo , Carcinoma Intraductal não Infiltrante/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Cadeias kappa de Imunoglobulina/metabolismo , Hibridização In Situ , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Vírus do Tumor Mamário do Camundongo/genética , Camundongos , Pessoa de Meia-Idade , Células Estromais/metabolismo , Superantígenos/genética , Sequências Repetidas Terminais/genética
7.
BMC Cancer ; 18(1): 170, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29426297

RESUMO

BACKGROUND: Breast cancer is considered the most common cancer in women worldwide and is the leading cause of cancer mortality. Sequences similar to Mouse Mammary Tumor Virus (MMTV) were detected in human breast cancer in several studies from different geographical areas. However, the role played by this virus in breast cancer tumorigenesis is not completely understood. These MMTV-like sequences were found to be associated with breast cancer of more malignant types. The aim of this study is to determine the prevalence of MMTV-like envelope gene (env) positivity in breast cancer and non-cancerous breast tissue from Saudi Arabia. METHODS: Detection of MMTV-like env proviral sequences was done using newly designed primers for conventional polymerase chain reaction (PCR). One hundred nighty four samples were collected from 103 females with breast cancer in addition to 51 control breast tissue obtained from individuals without cancer. We additionally investigated the association of proviral positivity with age of the patients, grade of breast cancer and presence of lymph node metastasis. The results were confirmed by sequencing. RESULTS: The prevalence of MMTV-like env proviral positivity was 8.7% (9/103). MMTV env proviral sequences were detected in 5.9% (6/101) of breast cancer tissues and 9.7% (9/93) of non-cancerous adjacent tissues obtained from the same patients. None of the 51 control sample showed positive result for the MMTV env gene. No significant association was found between detection of the virus and the age of the patient, grade of the cancer or presence of metastasis. CONCLUSION: We document the presence of low frequency of MMTV env provirus sequence among breast cancer patients from Saudi Arabia. Further studies are needed to explore the role of the MMTV in breast cancer.


Assuntos
Neoplasias da Mama/virologia , Infecções por Retroviridae/epidemiologia , Infecções Tumorais por Vírus/epidemiologia , Feminino , Humanos , Vírus do Tumor Mamário do Camundongo , Prevalência , Estudos Retrospectivos , Arábia Saudita/epidemiologia
8.
RNA Biol ; 15(8): 1047-1059, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29929424

RESUMO

Packaging the mouse mammary tumor virus (MMTV) genomic RNA (gRNA) requires the entire 5' untranslated region (UTR) in conjunction with the first 120 nucleotides of the gag gene. This region includes several palindromic (pal) sequence(s) and stable stem loops (SLs). Among these, stem loop 4 (SL4) adopts a bifurcated structure consisting of three stems, two apical loops, and an internal loop. Pal II, located in one of the apical loops, mediates gRNA dimerization, a process intricately linked to packaging. We thus hypothesized that the bifurcated SL4 structure could constitute the major gRNA packaging determinant. To test this hypothesis, the two apical loops and the flanking sequences forming the bifurcated SL4 were individually mutated. These mutations all had deleterious effects on gRNA packaging and propagation. Next, single and compensatory mutants were designed to destabilize then recreate the bifurcated SL4 structure. A structure-function analysis using bioinformatics predictions and RNA chemical probing revealed that mutations that led to the loss of the SL4 bifurcated structure abrogated RNA packaging and propagation, while compensatory mutations that recreated the native SL4 structure restored RNA packaging and propagation to wild type levels. Altogether, our results demonstrate that SL4 constitutes the principal packaging determinant of MMTV gRNA. Our findings further suggest that SL4 acts as a structural switch that can not only differentiate between RNA for translation versus packaging/dimerization, but its location also allows differentiation between spliced and unspliced RNAs during gRNA encapsidation.


Assuntos
Dimerização , Vírus do Tumor Mamário do Camundongo/metabolismo , Biossíntese de Proteínas , RNA Viral/química , RNA Viral/metabolismo , Montagem de Vírus , Animais , Genômica , Vírus do Tumor Mamário do Camundongo/química , Vírus do Tumor Mamário do Camundongo/genética , Camundongos , Conformação de Ácido Nucleico , RNA Viral/genética
9.
Biochim Biophys Acta Mol Basis Dis ; 1863(10 Pt B): 2594-2600, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27816520

RESUMO

Active participation of endogenous retroviruses (ERVs) in disease processes has been exemplified by the finding that the HERV (human ERV)-W envelope protein is involved in the pathogenesis of multiple sclerosis, an autoimmune disease. We also demonstrated that injury-elicited stressors alter the expression of murine ERVs (MuERVs), both murine leukemia virus-type and mouse mammary tumor virus (MMTV)-type (MMTV-MuERV). In this study, to evaluate MMTV-MuERVs' responses to stress (e.g., injury, infection)-elicited systemic glucocorticoid (GC) levels, we examined the GC-stress response of 64 MMTV-MuERV promoters isolated from the genomes of 23 mouse strains. All 64 promoters responded to treatment with a synthetic GC, dexamethasone (DEX), at a wide range from a 0.6- to 85.7-fold increase in reporter activity compared to no treatment. An analysis of the 10 lowest and 10 highest DEX responders revealed specific promoter elements exclusively present in either the three lowest or the two highest responders. Each promoter had a unique profile of transcription regulatory elements and the glucocorticoid response element (GRE) was identified in all promoters with the number of GREs ranging from 2 to 7. The three lowest DEX responders were the only promoters with two GREs. The findings from this study suggest that certain MMTV-MuERVs are more responsive to stress-elicited systemic GC elevation compared to the others. The mouse strain-specific genomic MMTV-MuERV profiles and individual MMTV-MuERVs' differential responses to GC-stress might explain, at least in part, the variable inflammatory responses to injury and/or infection, often observed among different mouse strains. This article is part of a Special Issue entitled: Immune and Metabolic Alterations in Trauma and Sepsis edited by Dr. Raghavan Raju.


Assuntos
Dexametasona/farmacologia , Retrovirus Endógenos/imunologia , Glucocorticoides/farmacologia , Vírus da Leucemia Murina/imunologia , Vírus do Tumor Mamário do Camundongo/imunologia , Estresse Fisiológico , Animais , Retrovirus Endógenos/genética , Vírus da Leucemia Murina/genética , Vírus do Tumor Mamário do Camundongo/genética , Camundongos , Elementos de Resposta/imunologia , Especificidade da Espécie , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/imunologia
10.
Curr Med Chem ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38721792

RESUMO

Over the past few decades, women have been troubled by grave diseases such as breast cancer, which are biologically and molecularly classified as hereditary diseases. Even though the risk of other cancers is relatively different and the downstream pathway of genetic mutation differs from breast cancer, the continued transformation of genes such as BRCA1 and BRCA2 leads to breast cancer malignancy. Notably at the molecular level, a parallel connection between the normal growth of breast and the progression of mammary cancer where the breast cancer stem cells play a crucial role in the advancement of mammary carcinoma. Arguably, several significant signaling pathways, for instance, ER signaling, HER2 signaling, and Wnt signaling control the typical breast development as well as breast stem cells, thereby cell proliferation, cell differentiation, and cell motility are involved. Incidentally, the Mouse Mammary Tumor Virus (MMTV) is notable among the unexplained viral components influenced by virus-corrupting mammary carcinomas. According to the genesis, MMTV proviral DNA is integrated into mammary epithelial cells, and genomic lymphoid cells during viral replication and triggers the progression of cellular oncogenesis. This overview reveals the deadliest theories on breast cancer, molecular mechanisms, and the MMTV transmission cycle. To establish prevention therapies that are both acceptable and efficacious, addressing apprehensions related to the toxicity of these interventions must be a preliminary hurdle to overcome.

11.
Int J Cancer ; 133(7): 1517-29, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23280523

RESUMO

Viral infections are important risk factors for tumor development in humans. Selected types of cancers, either lymphomas or carcinomas, for which there is sufficient evidence in humans of a causal association with specific viruses, have been identified. Experimental and clinical data on the possible association of other tumor types and carcinogenic viruses are presently controversial. In this article, we review the current evidence on the relationship between breast, colorectal and lung cancers and carcinogenic viruses. The majority of the publications reviewed do not provide definitive evidence that the viruses studied are associated with breast, colon and lung cancers. However, since this association may be clinically relevant for some tumor subtypes (i.e., lung cancer and papillomaviruses), there is an urgent need for further investigation on this topic. Using innovative laboratory techniques for viral detection on well-defined tumor types, National and International networks against cancer should encourage and organize concerted research programs on viruses and solid cancer association.


Assuntos
Neoplasias da Mama/virologia , Carcinoma de Célula de Merkel/virologia , Neoplasias do Colo/virologia , Neoplasias Pulmonares/virologia , Infecções Tumorais por Vírus/complicações , Animais , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/epidemiologia , Feminino , Humanos , Vírus do Tumor Mamário do Camundongo , Camundongos , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/epidemiologia , Infecções por Polyomavirus/complicações , Infecções por Polyomavirus/epidemiologia , Infecções por Retroviridae/complicações , Infecções por Retroviridae/epidemiologia , Infecções Tumorais por Vírus/epidemiologia
12.
Int J Cancer ; 133(7): 1530-5, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23580334

RESUMO

There remains great controversy as to whether mouse mammary tumor virus (MMTV), the etiological agent of mammary cancer in mice, or a closely related human retrovirus, plays a role in the development of breast cancer in humans. On one hand, retroviruses such as human T-cell lymphotropic virus and human immunodeficiency virus (HIV) are known causative agents of cancer (in the case of HIV, albeit, indirectly), but attempts to associate other retroviruses with human cancers have been difficult. A recent, high profile, example has been the postulated involvement of another mouse virus, xenotropic murine leukemia virus-related virus, in human prostate cancer, which is now thought to be due to contamination. Here, we review some of the more recent evidence for and against the involvement of MMTV in human breast cancer and suggest future studies that may allow a definitive answer to this conundrum.


Assuntos
Neoplasias da Mama/virologia , Vírus do Tumor Mamário do Camundongo/patogenicidade , Infecções por Retroviridae/virologia , Infecções Tumorais por Vírus/virologia , Animais , Feminino , Humanos , Camundongos , Infecções por Retroviridae/epidemiologia , Infecções por Retroviridae/transmissão , Infecções Tumorais por Vírus/epidemiologia , Infecções Tumorais por Vírus/transmissão
13.
Protein Expr Purif ; 92(1): 94-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24056256

RESUMO

N-terminal myristoylation of retroviral matrix proteins is essential for the targeting of the Gag polyproteins to the plasma membrane. To investigate the effect of the myristoylation on the structure and membrane binding ability of the matrix proteins, it is necessary to prepare their myristoylated forms. We present purification of myristoylated matrix proteins of the mouse mammary tumor virus and murine leukemia virus, two morphogenetically distinct retroviruses. The proteins were expressed in Escherichia coli coexpressing a yeast N-myristoyltransferase. This E. coli expression system yielded a mixture of myristoylated and nonmyristoylated matrix proteins. We established efficient one-step metal affinity purification that enabled to obtain pure myristoylated matrix proteins suitable for structural and functional studies.


Assuntos
Vírus da Leucemia Murina/metabolismo , Ácido Mirístico/metabolismo , Proteínas dos Retroviridae/isolamento & purificação , Proteínas dos Retroviridae/metabolismo , Animais , Cromatografia de Afinidade , Clonagem Molecular , Vírus da Leucemia Murina/química , Vírus da Leucemia Murina/genética , Camundongos , Ácido Mirístico/química , Ressonância Magnética Nuclear Biomolecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Infecções por Retroviridae/virologia , Proteínas dos Retroviridae/química , Proteínas dos Retroviridae/genética
14.
Exp Mol Pathol ; 95(1): 32-7, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23545399

RESUMO

Mouse parvoviruses (MPVs) are small, single-stranded, 5 kb DNA viruses that are subclinical and endemic in many laboratory mouse colonies. MPVs cause more distinctive deleterious effects in immune-compromised or genetically-engineered mice than immuno-competent mice. At the University of Louisville (U of L), there was an unexpected increase of MPV sero-positivity for MPV infections in mouse colonies between January 2006 and February 2007, resulting in strategic husbandry changes aimed at controlling MPV spread throughout the animal facility. To investigate these MPVs, VP2 genes of seven MPVs were cloned and sequenced from eight documented incidences by PCR technology. The mutations in these VP2 genes were compared to those found at the Genbank database (NCBI; http://www.ncbi.nlm.nih.gov) and an intra-institutional phylogenetic tree for MPV infections at U of L was constructed. We discovered that the seven MPV isolates were different from those in Genbank and were not identical to each other. These MPVs were designated MPV-UL1 to 7; none of them were minute virus of mice (MVMs). Four isolates could be classified as MPV1, one was classified as MPV2, and two were defined as novel types with less than 96% and 94% homology with existing MPV types. Considering that all seven isolates had mutations in their VP2 genes and no mutations were observed in VP2 genes of MPV during a four-month time period of incubation, we concluded that all seven MPVs isolated at U of L between 2006 and 2007 probably originated from different sources. Serological survey for MPV infections verified that each MPV outbreak was controlled without further contamination within the institution.


Assuntos
Infecções por Parvoviridae/virologia , Parvovirus/genética , Filogenia , Doenças dos Roedores/virologia , Animais , Proteínas do Capsídeo/genética , Camundongos/virologia , Vírus Miúdo do Camundongo/genética , Infecções por Parvoviridae/epidemiologia , Infecções por Parvoviridae/veterinária , Parvovirus/isolamento & purificação , Doenças dos Roedores/epidemiologia , Homologia de Sequência de Aminoácidos
15.
Infect Agent Cancer ; 18(1): 39, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340312

RESUMO

BACKGROUND: Breast cancer, although the most frequently diagnosed malignant tumor in humans, has a less clear etiology compared to other frequent cancer types. Mouse-mammary tumor virus (MMTV) is involved in breast cancer in mice and dogs and might play a role in the etiology of some breast cancers in humans, since an MMTV-like sequence was identified in 20-40% of breast cancer samples in Western Europe, USA, Australia and some other parts of the world. The purpose of our study was to identify MMTV-like DNA sequences in breast tissue samples from breast cancer patients who underwent curative surgery in our regional academic center in Romania, EU. METHODS: We selected 75 patients with non-metastatic breast cancer treated surgically with curative intent, who did not undergo any neoadjuvant treatment. Out of these patients, 50 underwent radical lumpectomy and 25 modified radical mastectomy. Based on previous reports in the literature we searched using PCR the MMTV-like DNA env sequence in the breast cancer tissue and normal breast tissue obtained from the same patients. RESULTS: None of the examined samples was positive for MMTV-like target sequences on PCR. CONCLUSIONS: We could not prove that MMTV plays a role in the etiology of breast cancer in our patient group. This finding is similar to those from publications of other geographically related research groups.

16.
Diagnostics (Basel) ; 13(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36980505

RESUMO

The association between mouse mammary tumor virus (MMTV)-like sequences and human breast cancer (BC) is largely documented in the literature, but further research is needed to determine how they influence carcinogenesis. APOBEC3 cytidine deaminases are viral restriction factors that have been implicated in cancer mutagenesis, and a germline deletion that results in the fusion of the APOBEC3A coding region with the APOBEC3B 3'-UTR has been linked to increased mutagenic potential, enhanced risk of BC development, and poor prognosis. However, little is known about factors influencing APOBEC3 family activation in cancer. Thus, we hypothesized that MMTV infection and APOBEC3-mediated mutagenesis may be linked in the pathogenesis of BC. We investigated APOBEC3A/B genotyping, MMTV-like positivity, and clinicopathological parameters of 209 BC patients. We show evidence for active APOBEC3-mediated mutagenesis in human-derived MMTV sequences and comparatively investigate the impact of APOBEC3A/B germline deletion in MMTV-like env positive and negative BC in a Brazilian cohort. In MMTV-like negative samples, APOBEC3A/B deletion was negatively correlated with tumor stage while being positively correlated with estrogen receptor expression. Although APOBEC3A/B was not associated with MMTV-like positivity, samples carrying both MMTV-like positivity and APOBEC3A/B deletion had the lowest age-at-diagnosis of all study groups, with all patients being less than 50 years old. These results indicate that APOBEC3 mutagenesis is active against MMTV-like sequences, and that APOBEC3A/B deletion might act along with the MMTV-like presence to predispose people to early-onset BC.

17.
Microbiome ; 11(1): 39, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869359

RESUMO

BACKGROUND: Following viral infection, genetically manipulated mice lacking immunoregulatory function may develop colitis and dysbiosis in a strain-specific fashion that serves as a model for inflammatory bowel disease (IBD). We found that one such model of spontaneous colitis, the interleukin (IL)-10 knockout (IL-10-/-) model derived from the SvEv mouse, had evidence of increased Mouse mammary tumor virus (MMTV) viral RNA expression compared to the SvEv wild type. MMTV is endemic in several mouse strains as an endogenously encoded Betaretrovirus that is passaged as an exogenous agent in breast milk. As MMTV requires a viral superantigen to replicate in the gut-associated lymphoid tissue prior to the development of systemic infection, we evaluated whether MMTV may contribute to the development of colitis in the IL-10-/- model. RESULTS: Viral preparations extracted from IL-10-/- weanling stomachs revealed augmented MMTV load compared to the SvEv wild type. Illumina sequencing of the viral genome revealed that the two largest contigs shared 96.4-97.3% identity with the mtv-1 endogenous loci and the MMTV(HeJ) exogenous virus from the C3H mouse. The MMTV sag gene cloned from IL-10-/- spleen encoded the MTV-9 superantigen that preferentially activates T-cell receptor Vß-12 subsets, which were expanded in the IL-10-/- versus the SvEv colon. Evidence of MMTV cellular immune responses to MMTV Gag peptides was observed in the IL-10-/- splenocytes with amplified interferon-γ production versus the SvEv wild type. To address the hypothesis that MMTV may contribute to colitis, we used HIV reverse transcriptase inhibitors, tenofovir and emtricitabine, and the HIV protease inhibitor, lopinavir boosted with ritonavir, for 12-week treatment versus placebo. The combination antiretroviral therapy with known activity against MMTV was associated with reduced colonic MMTV RNA and improved histological score in IL-10-/- mice, as well as diminished secretion of pro-inflammatory cytokines and modulation of the microbiome associated with colitis. CONCLUSIONS: This study suggests that immunogenetically manipulated mice with deletion of IL-10 may have reduced capacity to contain MMTV infection in a mouse-strain-specific manner, and the antiviral inflammatory responses may contribute to the complexity of IBD with the development of colitis and dysbiosis. Video Abstract.


Assuntos
Colite , Disbiose , Doenças Inflamatórias Intestinais , Vírus do Tumor Mamário do Camundongo , Animais , Camundongos , Colite/virologia , Modelos Animais de Doenças , Disbiose/virologia , Doenças Inflamatórias Intestinais/virologia , Interleucina-10 , Camundongos Endogâmicos C3H
18.
Front Oncol ; 13: 1161410, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37496658

RESUMO

Introduction: Tientsin albino 2 (TA2) mice can develop spontaneous breast cancer (SBC), which is associated with multiple pregnancies and infection with the mouse mammary tumor virus (MMTV). In this study, we sought to elucidate the molecular mechanisms underlying the development of SBC in TA2 mice induced by MMTV. Methods: The integration site of MMTV in TA2 SBC was identified using whole-genome sequencing. The expression of fibroblast growth factor 3 (FGF3) in SBCs and normal breast tissues was compared. The primary cell line, TA-1106, derived from SBC, was cultured. The proliferation, cell cycle, migration, invasion, and tumorigenicity abilities, as well as the expression of epithelial-mesenchymal transition-related proteins, phosphorylated STAT3, and phosphorylated Akt, were assessed in MA-891cell line from TA2 and TA-1106 cells after FGF3 knockdown. The binding of FGF3 to FGF receptor 1 (FGFR1) was determined by co-immunoprecipitation. Additionally, the relationship between STAT3 and Akt phosphorylation was investigated using a small molecule inhibitor and STAT3 knockdown. Results: MMTV integrated upstream of the FGF3 gene, and the FGF3 protein was highly expressed in TA2 SBCs. FGF3 knockdown in MA-891 and TA-1106 decreased their proliferation, migration, and invasion abilities, affected the cell cycle and expression of epithelial-mesenchymal transition-related proteins, and inhibited the growth of animal xenografts. FGF3 binds to FGFR1, and either FGF3 or FGFR1 knockdown decreases STAT3 and Akt phosphorylation levels. Inhibition of phosphorylation or expression of STAT3 resulted in decreased Akt phosphorylation levels. Inhibition of Akt phosphorylation also resulted in decreased STAT3 phosphorylation levels. Furthermore, treatment of MA-891 and TA-1106 cells with Wortmannin or Stattic caused FGFR1 upregulation in addition to inhibiting Akt or STAT3 phosphorylation. Conclusion: The results of this study demonstrate that FGF3 plays a significant role in the development of SBC through the FGF3/FGFR1/STAT3 signaling pathway. There is a reciprocal activation between STAT3 and Akt. Inhibition of STAT3 or Akt phosphorylation promoted the expression of FGFR1. Validating the conclusions obtained in this study in human breast cancer (HBC) may contribute to targeted therapy and it is worth exploring whether the homologous sequences of MMTV in HBC have a similar oncogenic effect.

19.
J Histotechnol ; 46(2): 80-89, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35975713

RESUMO

Transforming growth factor alpha (TGFα), a member of the epidermal growth factor (EGF) family, regulates cell proliferation, differentiation, and development, and involves follicular development and viability. In ovaries, TGFα is shown localized in granulosa cells (GCs) of primary follicles, theca cells (TCs) of pre-antral, antral and pre-ovulatory follicles. TGFα overexpression in mouse mammary tumor virus (MMTV-TGFα) transgenic mice causes mammary tumor after 50 weeks. However, follicular development and preservation of the ovarian follicle reserve-mediating follicle stimulating hormone (FSH) response are unknown. Mammalian target of rapamycin (mTOR) is a key regulator for cell proliferation, growth, differentiation, and apoptosis, and important for ovarian folliculogenesis and oocyte maturation. The study aim determines TGFα overexpression during folliculogenesis via mTOR signaling pathway in ovaries from 10-, 18-, 50-, and 82-week-old MMTV-TGFα mice. Histological analysis was performed, along with western blot for mTOR, p-mTOR, P70S6K, PCNA, and Caspase-3, and quantitative RNA (qRT-PCR) for mTOR and P70S6K. Developing follicles number decreased and atretic follicles number increased with aging in MMTV-TGFα mice ovary. Ovaries at 18 and 82 weeks had decreased PCNA and increased Caspase-3 protein expression levels as compared to 10-week ovaries. Protein expression levels of mTOR and p-mTOR decreased gradually from ovaries at 10-18 weeks, increased at 50 weeks and decreased again at 82 weeks. These results indicate that TGFα may be one regulator of healthy follicular development and affect mTOR signaling pathway during ovarian aging. Thus, over-expression of TGFα might lead to reduced ovarian reserve and premature ovarian insufficiency.


Assuntos
Ovário , Fator de Crescimento Transformador alfa , Feminino , Camundongos , Animais , Fator de Crescimento Transformador alfa/genética , Fator de Crescimento Transformador alfa/metabolismo , Caspase 3/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Vírus do Tumor Mamário do Camundongo/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Mamíferos/metabolismo
20.
Viruses ; 15(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37243196

RESUMO

Mouse mammary tumor virus (MMTV) is a betaretrovirus that causes breast cancer in mice. The mouse mammary epithelial cells are the most permissive cells for MMTV, expressing the highest levels of virus upon infection and being the ones later transformed by the virus due to repeated rounds of infection/superinfection and integration, leading eventually to mammary tumors. The aim of this study was to identify genes and molecular pathways dysregulated by MMTV expression in mammary epithelial cells. Towards this end, mRNAseq was performed on normal mouse mammary epithelial cells stably expressing MMTV, and expression of host genes was analyzed compared with cells in its absence. The identified differentially expressed genes (DEGs) were grouped on the basis of gene ontology and relevant molecular pathways. Bioinformatics analysis identified 12 hub genes, of which 4 were up-regulated (Angp2, Ccl2, Icam, and Myc) and 8 were down-regulated (Acta2, Cd34, Col1a1, Col1a2, Cxcl12, Eln, Igf1, and Itgam) upon MMTV expression. Further screening of these DEGs showed their involvement in many diseases, especially in breast cancer progression when compared with available data. Gene Set Enrichment Analysis (GSEA) identified 31 molecular pathways dysregulated upon MMTV expression, amongst which the PI3-AKT-mTOR was observed to be the central pathway down-regulated by MMTV. Many of the DEGs and 6 of the 12 hub genes identified in this study showed expression profile similar to that observed in the PyMT mouse model of breast cancer, especially during tumor progression. Interestingly, a global down-regulation of gene expression was observed, where nearly 74% of the DEGs in HC11 cells were repressed by MMTV expression, an observation similar to what was observed in the PyMT mouse model during tumor progression, from hyperplasia to adenoma to early and late carcinomas. Comparison of our results with the Wnt1 mouse model revealed further insights into how MMTV expression could lead to activation of the Wnt1 pathway independent of insertional mutagenesis. Thus, the key pathways, DEGs, and hub genes identified in this study can provide important clues to elucidate the molecular mechanisms involved in MMTV replication, escape from cellular anti-viral response, and potential to cause cell transformation. These data also validate the use of the MMTV-infected HC11 cells as an important model to study early transcriptional changes that could lead to mammary cell transformation.


Assuntos
Neoplasias Mamárias Experimentais , Vírus do Tumor Mamário do Camundongo , Camundongos , Animais , Vírus do Tumor Mamário do Camundongo/genética , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Transformação Celular Neoplásica , Células Epiteliais/metabolismo , Regulação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa