RESUMO
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has resulted in substantial morbidity and mortality. The basis of severe disease in humans is difficult to determine without the use of experimental animal models. Mice are resistant to infection with ancestral strains of SARS-CoV-2, although many variants that arose later in the pandemic were able to directly infect mice. In almost all cases, viruses that naturally infected mice or were engineered to enable mouse infection required mouse passage to become virulent. In most cases, changes in structural and nonstructural changes occurred during mouse adaptation. However, the mechanism of increased virulence in mice is not understood. Here, using a recently described strain of mouse-adapted SARS-CoV-2 (rSARS2-MA30N501Y), we engineered a series of recombinant viruses that expressed a subset of the mutations present in rSARS2-MA30N501Y. Mutations were detected in the spike protein and in three nonstructural proteins (nsp4, nsp8, and nsp9). We found that infection of mice with recombinant SARS-CoV-2 expressing only the S protein mutations caused very mild infection. Addition of the mutations in nsp4 and nsp8 was required for complete virulence. Of note, all these recombinant viruses replicated equivalently in cultured cells. The innate immune response was delayed after infection with virulent compared to attenuated viruses. Further, using a lineage tracking system, we found that attenuated virus was highly inhibited in the ability to infect the parenchyma, but not the airway after infection. Together, these results indicate that mutations in both the S protein and nonstructural proteins are required for maximal virulence during mouse adaptation.IMPORTANCEUnderstanding the pathogenesis of coronavirus disease 2019 (COVID-19) requires the study of experimental animals after infection with severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). For this purpose, several mouse-adapted SARS-CoV-2 strains have been developed. Here, using a strain of mouse-adapted virus that causes a range of diseases ranging from mild to severe, we show that mutations in both a structural protein [spike (S) protein] and nonstructural proteins are required for maximal virulence. Thus, changes in the S protein, the most widely studied viral protein, while required for mouse adaptation, are not sufficient to result in a virulent virus.
Assuntos
COVID-19 , Modelos Animais de Doenças , Mutação , SARS-CoV-2 , Proteínas não Estruturais Virais , Animais , Camundongos , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , COVID-19/virologia , SARS-CoV-2/patogenicidade , SARS-CoV-2/genética , Virulência , Humanos , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Chlorocebus aethiops , Replicação Viral , FemininoRESUMO
Porcine reproductive and respiratory syndrome (PRRS) is one of the most serious infectious immunosuppressive diseases in the world. The nonstructural protein Nsp4 can be used as an ideal target for anti-PRRSV replication inhibitors. However, little is known about potential inhibitors that target Nsp4 to affect PRRSV replication. The purpose of this study was to screen potential natural inhibitors that affect PRRSV replication by inhibiting Nsp4. Five compounds with strong binding affinity to Nsp4 were selected by structure-based molecular docking method. The complexes of naringin dihydrochalcone (NDC), agathisflavone (AGT), and amentoflavone (AMF) with Nsp4 were stable throughout the molecular dynamics simulation. According to MM/PBSA analysis, the free energies of binding of NDC, AGT, and AMF to Nsp4 were less than-30 Kcal/mol. In conclusion, these three compounds are worthy of further investigation as novel inhibitors of PRRSV. This study provides a theoretical basis for the development of anti-PRRSV natural drugs.
RESUMO
Segmented RNA viruses are capable of exchanging genome segments via reassortment as a means of immune evasion and to maintain viral fitness. Reassortments of single-genome segments are common among group A rotaviruses. Multiple instances of co-reassortment of two genome segments, GS6(VP6) and GS10(NSP4), have been documented in surveillance. Specifically, a division between NSP4 genotypes has been observed in the NSP4 double-layered particle (DLP)-binding domain. A previously hypothesized mechanism for this co-reassortment has been suggested to be the interaction between VP6 and NSP4 during DLP transport from viroplasms for particle maturation. In this study, we used sequence analysis, RNA secondary structure prediction, molecular dynamics and reverse genetics to form a hypothesis regarding the role of the NSP4 DLP-binding domain. Sequence analysis showed that the polarity of NSP4 DLP-binding domain amino acids 169 and 174 is clearly divided between E1 and E2 NSP4 genotypes. Viruses with E1 NSP4s had 169A/I or 169S/T with 174S. E2 NSP4s had 169R/K and 174A. RNA secondary structure prediction showed that mutation in both 545 (aa169) and 561 (aa174) causes global structure remodelling. Molecular dynamics showed that the NSP4/VP6 interaction stability is increased by mutating both aa positions 169 and 174. Using reverse genetics, we showed that an R169I mutation alone does not prevent rescue. Conversely, 174A to 174S prevented rescue, and rescue could be returned by combining 174S with 169I. When compared to rSA11 NSP4-wt, both rSA11 NSP4-R169I and rSA11 NSP4-R169I/A174S had a negligible but significant reduction in titre at specific time points. This study suggests that amino acid 174 of NSP4 may be essential in maintaining the VP6/NSP4 interaction required for DLP transport. Our results suggest that maintenance of specific polarities of amino acids at positions 169 and 174 may be required for the fitness of rotavirus field strains.
Assuntos
Rotavirus , Toxinas Biológicas , Proteínas não Estruturais Virais , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Rotavirus/genética , Toxinas Biológicas/genética , Toxinas Biológicas/metabolismo , Toxinas Biológicas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicoproteínas/química , RNA Viral/genética , RNA Viral/metabolismo , Ligação Proteica , Simulação de Dinâmica Molecular , Vírus Reordenados/genética , Genótipo , Sequência de Aminoácidos , Animais , Aminoácidos/genética , Aminoácidos/metabolismo , Conformação de Ácido NucleicoRESUMO
Rotavirus (RV), the most common cause of gastroenteritis in children, carries a high economic and health burden worldwide. RV encodes six structural proteins and six nonstructural proteins (NSPs) that play different roles in viral replication. NSP4, a multifunctional protein involved in various viral replication processes, has two conserved N-glycosylation sites; however, the role of glycans remains elusive. Here, we used recombinant viruses generated by a reverse genetics system to determine the role of NSP4 N-glycosylation during viral replication and pathogenesis. The growth rate of recombinant viruses that lost one glycosylation site was as high as that of the wild-type virus. However, a recombinant virus that lost both glycosylation sites (glycosylation-defective virus) showed attenuated replication in cultured cell lines. Specifically, replications of glycosylation-defective virus in MA104 and HT29 cells were 10- and 100,000-fold lower, respectively, than that of the wild-type, suggesting that N-glycosylation of NSP4 plays a critical role in RV replication. The glycosylation-defective virus showed NSP4 mislocalization, delay of cytosolic Ca2+ elevation, and less viroplasm formation in MA104 cells; however, these impairments were not observed in HT29 cells. Further analysis revealed that assembly of glycosylation-defective virus was severely impaired in HT29 cells but not in MA104 cells, suggesting that RV replication mechanism is highly cell type dependent. In vivo mouse experiments also showed that the glycosylation-defective virus was less pathogenic than the wild-type virus. Taken together, the data suggest that N-glycosylation of NSP4 plays a vital role in viral replication and pathogenicity. IMPORTANCE Rotavirus is the main cause of gastroenteritis in young children and infants worldwide, contributing to 128,500 deaths each year. Here, we used a reverse genetics approach to examine the role of NSP4 N-glycosylation. An N-glycosylation-defective virus showed attenuated and cell-type-dependent replication in vitro. In addition, mice infected with the N-glycosylation-defective virus had less severe diarrhea than mice infected with the wild type. These results suggest that N-glycosylation affects viral replication and pathogenesis. Considering the reduced pathogenicity in vivo and the high propagation rate in MA104 cells, this glycosylation-defective virus could be an ideal live attenuated vaccine candidate.
Assuntos
Infecções por Rotavirus , Rotavirus , Proteínas não Estruturais Virais , Replicação Viral , Animais , Camundongos , Gastroenterite/etiologia , Gastroenterite/virologia , Glicosilação , Rotavirus/genética , Rotavirus/metabolismo , Infecções por Rotavirus/complicações , Infecções por Rotavirus/patologia , Infecções por Rotavirus/virologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genéticaRESUMO
Group A rotavirus (RVA), one of the leading pathogens causing severe acute gastroenteritis in children and a wide variety of young animals worldwide, induces apoptosis upon infecting cells. Though RVA-induced apoptosis mediated via the dual modulation of its NSP4 and NSP1 proteins is relatively well studied, the nature and signaling pathway(s) involved in RVA-induced necroptosis are yet to be fully elucidated. Here, we demonstrate the nature of RVA-induced necroptosis, the signaling cascade involved, and correlation with RVA-induced apoptosis. Infection with the bovine NCDV and human DS-1 RVA strains was shown to activate receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed-lineage kinase domain-like protein (MLKL), the key necroptosis molecules in virus-infected cells. Using an immunoprecipitation assay, RIPK1 was found to bind phosphorylated RIPK3 (pRIPK3) and pMLKL. pMLKL, the major executioner molecule in the necroptotic pathway, was translocated to the plasma membrane of RVA-infected cells to puncture the cell membrane. Interestingly, transfection of RVA NSP4 also induced necroptosis through the RIPK1/RIPK3/MLKL necroptosis pathway. Blockage of each key necroptosis molecule in the RVA-infected or NSP4-transfected cells resulted in decreased necroptosis but increased cell viability and apoptosis, thereby resulting in decreased viral yields in the RVA-infected cells. In contrast, suppression of RVA-induced apoptosis increased necroptosis and virus yields. Our findings suggest that RVA NSP4 also induces necroptosis via the RIPK1/RIPK3/MLKL necroptosis pathway. Moreover, necroptosis and apoptosis-which have proviral and antiviral effects, respectively-exhibited cross talk in RVA-infected cells. These findings significantly increase our understanding of the nature of RVA-induced necroptosis and the cross talk between RVA-induced necroptosis and apoptosis. IMPORTANCE Viral infection usually culminates in cell death through apoptosis, necroptosis, and, rarely, pyroptosis. Necroptosis is a form of programmed necrosis that is mediated by signaling complexes of the receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed-lineage kinase domain-like protein (MLKL). Although apoptosis induction by rotavirus and its NSP4 protein is well known, rotavirus-induced necroptosis is not fully understood. Here, we demonstrate that rotavirus and also its NSP4 protein can induce necroptosis in cultured cells through activation of the RIPK1/RIPK3/MLKL necroptosis pathway. Moreover, rotavirus-induced necroptosis and apoptosis have opposite effects on viral yield, i.e., they function as proviral and antiviral processes, respectively, and counterbalance each other in rotavirus-infected cells. Our findings provide important insights for understanding the nature of rotavirus-induced necroptosis and the development of novel therapeutic strategies against infection with rotavirus and other RNA viruses.
Assuntos
Apoptose , Interações Hospedeiro-Patógeno , Necroptose , Infecções por Rotavirus/virologia , Rotavirus/fisiologia , Transdução de Sinais , Replicação Viral , Biomarcadores , Células Cultivadas , Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Ligação Proteica , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Infecções por Rotavirus/metabolismo , Toxinas Biológicas/metabolismo , Proteínas não Estruturais Virais/metabolismoRESUMO
The present study was conducted to monitor the genotypes of circulating species A rotavirus (RVA) in Iran and investigate genetic linkages between specific RVA VP7, VP4, VP6, and NSP4 segments. For this purpose, 48 RVA strains were detected during the 2021-2022 seasons. The two combinations of G9P[4] and G9P[8] RVA strains were predominant. However, several other combinations of RVA also were detected. Based on the distribution of I and E genotypes (46 strains) with respect to G and P, the most common strains were G9P[4]-I2-E2 (19.5%), G9P[4]-I2-E1 (6.5%), G9P[4]-I1-E1 (4.3%), G9P[8]-I1-E1 (19.5%), and G9P[8]-I2-E2 (10.9%), which were followed by several other combinations of G and P RVA strains with different pattern of I-E genotypes and also emerging, rare and uncommon strains. The present study described the continued circulation of G9 strains with the emergence of uncommon G9P[4] and G9P[8] reassortants with three and two different I-E genotypes, respectively, which have not been reported previously in Iran. Our findings indicated that these uncommon strains exhibited a unique genotype pattern comprising a mixture of genogroup 1 and 2 genes and suggest the need for further analysis of rare, uncommon, and emerging strains of RVA at all 11 gene segments to determine intergenogroup and intragenotype reassortments.
Assuntos
Gastroenterite , Infecções por Rotavirus , Rotavirus , Criança , Humanos , Rotavirus/genética , Irã (Geográfico) , Filogenia , Genótipo , Genoma ViralRESUMO
Porcine reproductive and respiratory syndrome virus (PRRSV) has continuously mutated since its first isolation in China in 1996, leading to difficulties in infection prevention and control. Infections caused by PRRSV-2 strains are the main epidemic strains in China, as determined by phylogenetic analysis. In this study, we focused on the prevalence and genetic variations of the non-structural protein 4 (NSP4) from PRRSV-2 over the past 20 years in China. The fundamental biological properties of the NSP4 were predicted, and an analysis and comparison of NSP4 homology at the nucleotide and amino acid levels was conducted using 123 PRRSV-2 strains. The predicted molecular weight of the NSP4 protein was determined to be 21.1 kDa, and it was predicted to be a stable hydrophobic protein that lacks a signal peptide. NSP4 from different strains exhibited a high degree of amino acid (85.8-100%) and nucleotide sequence homology (81.0-100%). Multiple amino acid substitutions were identified in NSP4 among 15 representative PRRSV-2 strains. Phylogenetic analysis showed that the lineage 8 and 1 strains, the most prevalent strains in China, were indifferent clades with a long genetic distance. This analysis will help fully elucidate the parameters of the PRRSV NSP4 epidemic in China to lay a foundation for adequate understanding of the function of NSP4. Genetic information results from the accumulation of conserved and non-conserved sequences. The high conservation of the NSP4 gene determines the most basic life traits and functions of PRRSV. Analyzing the spatial structure of NSP4 protein and studying the genetic evolution of NSP4 not only provide the theoretical basis for how NSP4 participates in the regulation of the innate response of the host but also provide a target for genetic manipulation and a reasonable target molecule and structure for new drug molecules.
Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/epidemiologia , Síndrome Respiratória e Reprodutiva Suína/genética , Filogenia , Homologia de Sequência do Ácido Nucleico , Aminoácidos , China/epidemiologia , Variação GenéticaRESUMO
Inconveniences associated with the efficacy and safety of the World Health Organization (WHO) approved/prequalified live attenuated rotavirus (RV) vaccines, sounded for finding alternative non-replicating modals and proper RV antigens (Ags). Herein, we report the development of a RV candidate vaccine based on the combination of RV VP6 nanospheres (S) and NSP4112-175 proteins (VP6S + NSP4). Self-assembled VP6S protein was produced in insect cells. Analyses by western blotting and transmission electron microscopy (TEM) indicated expression of VP6 trimer structures with sizes of ≥140 kDa and presence of VP6S. Four group of mice were immunized (2-dose formulation) intra-peritoneally (IP) by either¨VP6S + NSP4¨ or each protein alone (VP6S or NSP4112-175) emulsified in aluminium hydroxide or control. Results indicated that VP6S + NSP4 formulation induced significant anti-VP6 IgG (P < 0.001) and IgA (P < 0.05) as well as anti-NSP4 IgG (P < 0.001) and enhancement of protective immunity. Analyses of anti-VP6S and anti-NSP4 IgG subclass (IgG1 and IgG2a) showed IgG1/IgG2a ≥6 and IgG1/IgG2a ≥3 ratios, respectively indicating Th2 polarization of immune responses. The combination of VP6S + NSP4 proteins emulsified in aluminum hydroxide adjuvant might present a dual universal, efficient and cost-effective candidate vaccine against RV infection.
Assuntos
Nanosferas , Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Animais , Anticorpos Antivirais , Antígenos Virais , Proteínas do Capsídeo/genética , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Rotavirus/prevenção & controleRESUMO
Porcine reproductive and respiratory syndrome (PRRS) is a highly infectious disease caused by PRRS virus (PRRSV) that causes great economic losses to the swine industry worldwide. PRRSV has been recognized to modulate the host antiviral interferon (IFN) response and downstream interferon-stimulated gene expression to intercept the antiviral effect of host cells. Guanylate-binding proteins (GBPs) are IFN-inducible GTPases that exert broad antiviral activity against several DNA and RNA viruses, of which GBP1 is considered to play a pivotal role. However, the role of GBP1 in PRRSV replication remains unknown. The present study showed that overexpression of GBP1 notably inhibited PRRSV infection, while the knockdown of endogenous GBP1 promoted PRRSV infection. The K51 and R48 residues of GBP1 were essential for the suppression of PRRSV replication. Furthermore, GBP1 abrogated PRRSV replication by disrupting normal fibrous actin structures, which was indispensable for effective PRRSV replication. By using a co-immunoprecipitation assay, we found that GBP1 interacted with the non-structural protein 4 (nsp4) protein of PRRSV, and this interaction was mapped to the N-terminal globular GTPase domain of GBP1 and amino acids 1-69 of nsp4. PRRSV infection significantly downregulated GBP1 protein expression in Marc-145 cells, and nsp4, a 3C-like serine proteinase, was responsible for GBP1 cleavage, and the cleaved site was located at glutamic acid 338 of GBP1. Additionally, the anti-PRRSV activity of GBP1 was antagonized by nsp4. Taken together, these findings expand our understanding of the sophisticated interaction between PRRSV and host cells, PRRSV pathogenesis and its mechanisms of evading the host immune response.
Assuntos
Cisteína Proteases , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Animais , Antivirais , Linhagem Celular , Interações Hospedeiro-Patógeno , Interferons , Suínos , Replicação ViralRESUMO
During coronavirus infection, three non-structural proteins, nsp3, nsp4, and nsp6, are of great importance as they induce the formation of double-membrane vesicles where the replication and transcription of viral gRNA takes place, and the interaction of nsp3 and nsp4 lumenal regions triggers membrane pairing. However, their structural states are not well-understood. We investigated the interactions between nsp3 and nsp4 by predicting the structures of their lumenal regions individually and in complex using AlphaFold2 as implemented in ColabFold. The ColabFold prediction accuracy of the nsp3-nsp4 complex was increased compared to nsp3 alone and nsp4 alone. All cysteine residues in both lumenal regions were modelled to be involved in intramolecular disulphide bonds. A linker region in the nsp4 lumenal region emerged as crucial for the interaction, transitioning to a structured state when predicted in complex. The key interactions modelled between nsp3 and nsp4 appeared stable when the transmembrane regions of nsp3 and nsp4 were added to the modelling either alone or together. While molecular dynamics simulations (MD) demonstrated that the proposed model of the nsp3 lumenal region on its own is not stable, key interactions between nsp and nsp4 in the proposed complex model appeared stable after MD. Together, these observations suggest that the interaction is robust to different modelling conditions. Understanding the functional importance of the nsp4 linker region may have implications for the targeting of double membrane vesicle formation in controlling coronavirus infection.
Assuntos
SARS-CoV-2 , Proteínas não Estruturais Virais , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Conformação ProteicaRESUMO
Rotavirus is known to be responsible for remarkable numbers of severe diarrheal episodes and even death in infants and young children. In this study, we aimed to survey genetic diversity and variation analysis of viroporin, which is encoded by the rotavirus NSP4 segment. Thirty-five rotavirus-positive specimens were obtained, and RNA extraction and polymerase chain reaction amplification were performed. After the sequencing process, four specimens were excluded, and the final 31 samples remained for genetic diversity and variation analysis. The predominant single G/P combination was G1P[8] (~78%), followed by G2P[8] (~13%), and equal percentages (3%) of G2P[4], G3P[8], and G-non-typeable-P[8]. Further analyses revealed that variations could be found in the three regions of NSP4, including VP4 binding site (aa 112-146), double-layered particle binding site (aa 161-175), and finally, in the predicted amphipathic alpha-helix. Phylogenic tree analysis demonstrated that the mentioned samples clustered with genotype E1 and E2 reference sequences. As previously reported in the literature, in this study, it was revealed that no apparent correlation exists in the deduced amino acid sequences corresponding to this region between the rotaviruses collected from patients with and without diarrhea.
Assuntos
Infecções por Rotavirus/epidemiologia , Rotavirus/genética , Toxinas Biológicas/genética , Proteínas não Estruturais Virais/genética , Pré-Escolar , Feminino , Variação Genética , Genótipo , Humanos , Lactente , Irã (Geográfico)/epidemiologia , Masculino , Epidemiologia Molecular , Filogenia , RNA Viral/genética , Infecções por Rotavirus/virologia , Proteínas Viroporinas/genéticaRESUMO
Chikungunya virus (CHIKV) has caused large-scale epidemics of fever, rash and arthritis since 2004. This unprecedented re-emergence has been associated with mutations in genes encoding structural envelope proteins, providing increased fitness in the secondary vector Aedes albopictus. In the 2008-2013 CHIKV outbreaks across Southeast Asia, an R82S mutation in non-structural protein 4 (nsP4) emerged early in Malaysia or Singapore and quickly became predominant. To determine whether this nsP4-R82S mutation provides a selective advantage in host cells, which may have contributed to the epidemic, the fitness of infectious clone-derived CHIKV with wild-type nsP4-82R and mutant nsP4-82S were compared in Ae. albopictus and human cell lines. Viral infectivity, dissemination and transmission in Ae. albopictus were not affected by the mutation when the two variants were tested separately. In competition, the nsP4-82R variant showed an advantage over nsP4-82S in dissemination to the salivary glands, but only in late infection (10 days). In human rhabdomyosarcoma (RD) and embryonic kidney (HEK-293T) cell lines coinfected at a 1â:â1 ratio, wild-type nsP4-82R virus was rapidly outcompeted by nsP4-82S virus as early as one passage (3 days). In conclusion, the nsP4-R82S mutation provides a greater selective advantage in human cells than in Ae. albopictus, which may explain its apparent natural selection during CHIKV spread in Southeast Asia. This is an unusual example of a naturally occurring mutation in a non-structural protein, which may have facilitated epidemic transmission of CHIKV.
Assuntos
Vírus Chikungunya/crescimento & desenvolvimento , Aptidão Genética , Mutação de Sentido Incorreto , Proteínas não Estruturais Virais/genética , Fatores de Virulência/genética , Aedes , Animais , Linhagem Celular , Vírus Chikungunya/genética , Humanos , Proteínas Mutantes/genética , Seleção GenéticaRESUMO
Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of PRRS, which has important impacts on the pig industry. PRRSV infection results in disruption of the swine leukocyte antigen class I (SLA-I) antigen presentation pathway. In this study, highly pathogenic PRRSV (HP-PRRSV) infection inhibited transcription of the ß2-microglobulin (ß2M) gene (B2M) and reduced cellular levels of ß2M, which forms a heterotrimeric complex with the SLA-I heavy chain and a variable peptide and plays a critical role in SLA-I antigen presentation. HP-PRRSV nonstructural protein 4 (Nsp4) was involved in the downregulation of ß2M expression. Exogenous expression of Nsp4 downregulated ß2M expression at both the mRNA and the protein level and reduced SLA-I expression on the cell surface. Nsp4 bound to the porcine B2M promoter and inhibited its transcriptional activity. Domain III of Nsp4 and the enhancer PAM element of the porcine B2M promoter were identified as essential for the interaction between Nsp4 and B2M These findings demonstrate a novel mechanism whereby HP-PRRSV may modulate the SLA-I antigen presentation pathway and provide new insights into the functions of HP-PRRSV Nsp4. IMPORTANCE PRRSV modulates the host response by disrupting the SLA-I antigen presentation pathway. We show that HP-PRRSV downregulates SLA-I expression on the cell surface via transcriptional inhibition of B2M expression by viral Nsp4. The interaction between domain III of Nsp4 and the enhancer PAM element of the porcine B2M promoter is essential for inhibiting B2M transcription. These observations reveal a novel mechanism whereby HP-PRRSV may modulate SLA-I antigen presentation and provide new insights into the functions of viral Nsp4.
Assuntos
Antígenos de Histocompatibilidade Classe II/genética , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Microglobulina beta-2/genética , Animais , Linhagem Celular , Regulação para Baixo , Expressão Gênica , Inativação Gênica/imunologia , Antígenos de Histocompatibilidade Classe I , Antígenos de Histocompatibilidade Classe II/metabolismo , Interações Hospedeiro-Patógeno , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Regiões Promotoras Genéticas , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteólise , Sus scrofa , Suínos , Proteínas não Estruturais Virais , Microglobulina beta-2/metabolismoRESUMO
Rotavirus causes severe diarrhea in small children and is typically treated using glucose-containing oral rehydration solutions; however, glucose may have a detrimental impact on these patients, because it increases chloride secretion and presumably water loss. The rotavirus enterotoxin nonstructural protein 4 (NSP4) directly inhibits glucose-mediated sodium absorption. We examined the effects of NSP4 and glucose on sodium and chloride transport in mouse small intestines and Caco-2 cells. Mouse small intestines and Caco-2 cells were incubated with NSP4114-135 in the presence/absence of glucose. Absorption and secretion of sodium and chloride, fluid movement, peak amplitude of intracellular calcium fluorescence, and expression of Ano1 and sodium-glucose cotransporter 1 were assessed. NHE3 activity increased, and chloride secretory activity decreased with age. Net chloride secretion increased, and net sodium absorption decreased in the intestines of 3-week-old mice compared to 8-week-old mice with NSP4. Glucose increased NSP4-stimulated chloride secretion. Glucose increased NSP4-stimulated increase in short-circuit current measurements (I sc) and net chloride secretion. Ano1 cells with siRNA knockdown showed a significant difference in I sc in the presence of NSP4 and glucose without a significant difference in peak calcium fluorescence intracellular when compared to non-silencing (N.S.) cells. The failure of glucose to stimulate significant sodium absorption was likely due to the inhibition of sodium-hydrogen exchange and sodium-glucose cotransport by NSP4. Since glucose enhances intestinal chloride secretion and fails to increase sodium absorption in the presence of NSP4, glucose-based oral rehydration solutions may not be ideal for the management of rotaviral diarrhea.
Assuntos
Enterotoxinas/farmacologia , Glucose/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/fisiologia , Rotavirus/metabolismo , Animais , Anoctamina-1/metabolismo , Transporte Biológico/fisiologia , Células CACO-2 , Cálcio/metabolismo , Linhagem Celular Tumoral , Cloretos/metabolismo , Glicoproteínas/metabolismo , Humanos , Masculino , Camundongos , Sódio/metabolismo , Transportador 1 de Glucose-Sódio/metabolismo , Toxinas Biológicas/metabolismo , Proteínas não Estruturais Virais/metabolismoRESUMO
Rotavirus (RV) is the predominant cause of infantile gastroenteritis with multiple pathogenic factors, among which enterotoxin NSP4 is the most significant factor. NSP4 has been shown to induce elevation of the intracellular calcium concentration, alteration of the cytoskeleton organization, and cytopathic effect among other processes. However, increasing evidence suggests that RVs can escape from the gastrointestinal tract and invade other organs and tissues to cause extra-intestinal diseases. In this study, we investigated whether NSP4 has a pathogenic effect on extra-intestinal cells and examined possible molecular mechanisms in vitro. Our results showed that NSP486-175 has important functions in increasing intracellular Ca2+ concentration, altering actin cytoskeleton organization and inducing cellular damage in H9c2(2-1) cells. Blockade of the integrin α2 receptor using a specific antibody attenuated the increase of intracellular Ca2+ concentration and alleviated the observed cytopathic effects, suggesting that integrin α2 may be a receptor for NSP486-175. Collectively, these results indicate that extracellular NSP486-175 can induce elevation of the intracellular Ca2+ concentration, cause cytotoxic changes, and disrupt the actin cytoskeleton in H9c2(2-1) cells, which may constitute a possible mechanism for RV extra-intestinal pathogenesis.
Assuntos
Citoesqueleto de Actina/genética , Glicoproteínas/metabolismo , Infecções por Rotavirus/genética , Rotavirus/genética , Toxinas Biológicas/metabolismo , Proteínas não Estruturais Virais/metabolismo , Citoesqueleto de Actina/patologia , Animais , Células CACO-2 , Cálcio/metabolismo , Trato Gastrointestinal/patologia , Trato Gastrointestinal/virologia , Glicoproteínas/genética , Humanos , Intestinos/patologia , Intestinos/virologia , Rotavirus/patogenicidade , Infecções por Rotavirus/patologia , Infecções por Rotavirus/virologia , Toxinas Biológicas/genética , Proteínas não Estruturais Virais/genéticaRESUMO
AIMS: The aim of this study was to determine the antiviral activity of four probiotic metabolites (Lactobacillus and Bifidobacetrium species) against rotavirus in vitro infection monitored by the NSP4 protein production and Ca(2+) release. METHODS AND RESULTS: The antiviral effect of the metabolites was performed due a comparison between a blocking model and an intracelullar model on MA104 cells, with the response of NSP4 production and Ca(2+) liberation measured by flow cytometry. Significant results were obtained with the metabolites of Lactobacillus casei, and Bifidobacterium adolescentis in the reduction of the protein production (P = 0·04 and P = 0·014) and Ca(2+) liberation (P = 0·094 and P = 0·020) in the intracellular model, which suggests a successful antiviral activity against RV infection. CONCLUSIONS: This study demonstrates that probiotic metabolites were able to interfere with the final amount of intracellular NSP4 protein and a successful Ca(2+) regulation, which suggests a new approach to the mechanism exerted by probiotics against the rotavirus infection. SIGNIFICANCE AND IMPACT OF THE STUDY: A novel anti-rotaviral effect exerted by probiotic metabolites monitored by the NSP4 protein during the RV in vitro infection and the effect on the Ca(2+) release is reported; suggesting a reduction on the impact of the infection by decreasing the damage of the cells preventing the electrolyte loss.
Assuntos
Antivirais/farmacologia , Bifidobacterium adolescentis/metabolismo , Glicoproteínas/metabolismo , Lacticaseibacillus casei/metabolismo , Probióticos/farmacologia , Rotavirus/efeitos dos fármacos , Toxinas Biológicas/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Antivirais/uso terapêutico , Linhagem Celular , Macaca mulatta , Probióticos/uso terapêutico , Rotavirus/metabolismo , Infecções por Rotavirus/tratamento farmacológico , Infecções por Rotavirus/virologiaRESUMO
Because imminent introduction into Vietnam of a vaccine against Rotavirus A is anticipated, baseline information on the whole genome of representative strains is needed to understand changes in circulating strains that may occur after vaccine introduction. In this study, the whole genomes of two G2P[4] strains detected in Nha Trang, Vietnam in 2008 were sequenced, this being the last period during which virtually no rotavirus vaccine was used in this country. The two strains were found to be >99.9% identical in sequence and had a typical DS-1 like G2-P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2 genotype constellation. Analysis of the Vietnamese strains with >184 G2P[4] strains retrieved from GenBank/EMBL/DDBJ DNA databases placed the Vietnamese strains in one of the lineages commonly found among contemporary strains, with the exception of the NSP2 and NSP4 genes. The NSP2 genes were found to belong to a previously undescribed lineage that diverged from Chinese sheep and goat rotavirus strains, including a Chinese rotavirus vaccine strain LLR with 95% nucleotide identity; the time of their most recent common ancestor was 1975. The NSP4 genes were found to belong, together with Thai and USA strains, to an emergent lineage (VIII), adding further diversity to ever diversifying NSP4 lineages. Thus, there is a need to enhance surveillance of locally-circulating strains from both children and animals at the whole genome level to address the effect of rotavirus vaccines on changing strain distribution.
Assuntos
Genoma Viral/genética , Glicoproteínas/genética , Proteínas de Ligação a RNA/genética , Infecções por Rotavirus/veterinária , Rotavirus/genética , Toxinas Biológicas/genética , Proteínas não Estruturais Virais/genética , Animais , Sequência de Bases , China , Doenças das Cabras/genética , Doenças das Cabras/virologia , Cabras/genética , Cabras/virologia , Humanos , Dados de Sequência Molecular , RNA Viral/genética , Rotavirus/classificação , Rotavirus/imunologia , Vacinas contra Rotavirus/imunologia , Análise de Sequência de RNA , Ovinos/genética , Ovinos/virologia , Doenças dos Ovinos , VietnãRESUMO
OBJECTIVES: T-705, also known as favipiravir, is a small-molecule inhibitor that is currently in clinical development for the treatment of influenza virus infections. This molecule also inhibits the replication of a broad spectrum of other RNA viruses. The objective of this study was to investigate the antiviral effect of favipiravir on chikungunya virus (CHIKV) replication and to contribute to unravelling the molecular mechanism of action against this virus. METHODS: The anti-CHIKV effect of favipiravir was examined in cell culture and in a mouse model of lethal infection. A five-step protocol was used to select for CHIKV variants with reduced susceptibility to favipiravir. The resistant phenotype was confirmed in cell culture and the whole genome was sequenced. The identified mutations were reverse-engineered into an infectious clone to confirm their impact on the antiviral efficacy of favipiravir. RESULTS: Favipiravir inhibits the replication of laboratory strains and clinical isolates of CHIKV, as well as of a panel of other alphaviruses. Several favipiravir-resistant CHIKV variants were independently selected and all of them in particular acquired the unique K291R mutation in the RNA-dependent RNA polymerase (RdRp). Reverse-engineering of this K291R mutation into an infectious clone of CHIKV confirmed the link between the mutant genotype and the resistant phenotype. Interestingly, this particular lysine is also highly conserved in the RdRp of positive-stranded RNA viruses in general. CONCLUSIONS: This study provides an important insight into the precise molecular mechanism by which favipiravir exerts its antiviral activity against (alpha)viruses, which may be of help in designing other potent broad-spectrum antivirals.
Assuntos
Amidas/farmacologia , Antivirais/farmacologia , Vírus Chikungunya/efeitos dos fármacos , Vírus Chikungunya/genética , Farmacorresistência Viral/genética , Mutação , Pirazinas/farmacologia , Proteínas não Estruturais Virais/genética , Amidas/química , Animais , Antivirais/química , Linhagem Celular , Febre de Chikungunya/tratamento farmacológico , Febre de Chikungunya/virologia , Efeito Citopatogênico Viral/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Camundongos , Testes de Sensibilidade Microbiana , Fenótipo , Pirazinas/química , Reprodutibilidade dos Testes , Replicação Viral/efeitos dos fármacosRESUMO
The genetic diversity of the NSP4 gene of rotavirus G1P[8] strains obtained in Sapporo was analyzed, Japan from 1987 to 2000. Sixty-four strains, which were distributed across the whole study period, were included. All G1P[8] NSP4 genes detected in this study belonged to genotype E1, which divided into at least three lineages. The Sapporo rotavirus G1P[8] isolates were found in each lineage. The mean estimated substitution rate was 1.40 × 10(-3) nucleotide substitutions per site per year, which was comparable to that of the G1P[8] VP7 gene. Comparison of the deduced NSP4 amino acid sequences showed genetic diversity at the center of antigenic site II, but not in the enterotoxic domain. This report represents the first investigation of the genetic diversity and evolution of group A rotavirus NSP4 genes in Asia.
Assuntos
Variação Genética , Glicoproteínas/genética , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/virologia , Rotavirus/classificação , Rotavirus/genética , Toxinas Biológicas/genética , Proteínas não Estruturais Virais/genética , Criança , Pré-Escolar , Análise por Conglomerados , Evolução Molecular , Genótipo , Humanos , Japão/epidemiologia , Rotavirus/isolamento & purificação , Homologia de SequênciaRESUMO
BACKGROUND: The NSP4 protein of group A rotavirus (RVA) has been recognized as a viral enterotoxin and plays important roles in viral pathogenesis and morphogenesis. Domains involved in structural and functional interactions have been proposed mainly based on the simian SA11 strain. METHODS: NSP4 has been classified into 15 different genotypes (E1-E15), and the aim of this study was to analyze the sequences of 46 RVA strains in order to determine the aminoacid (aa) differences between E1 and E2 genotypes. Another aspect was to characterize the structural and physicochemical properties of these strains. RESULTS: Comparison of deduced aa sequences of the NSP4 protein showed that divergences between NSP4 genotypes E1 and E2 were mostly observed in the VP4-binding, the interspecies variable domain (ISVD) and the double-layered particle (DLP) binding domains. Interestingly, uncommon variations in residues 131 and 138, which are known to be important aa in pathogenesis, were found in one unusual animal derived strain belonging to the E2 genotype. Concerning the structural aspect, no significant differences were noted. CONCLUSION: The presence of punctual aa variations in the NSP4 genotypes may indicate that NSP4 mutates mainly via accumulation of point mutations.